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Abstract. In this paper we explore the asymptotic enumeration of three-dimensional
excursions confined to the positive octant. As shown in [30], both the exponential
growth and the critical exponent admit universal formulas, respectively in terms of the
inventory of the step set and of the principal Dirichlet eigenvalue of a certain spherical
triangle, itself being characterized by the steps of the model. We focus on the critical
exponent, and our main objective is to relate combinatorial properties of the step set
(structure of the so-called group of the walk, existence of a Hadamard decomposition,
existence of differential equations satisfied by the generating functions) to geometric
or analytic properties of the associated spherical triangle (remarkable angles, tiling
properties, existence of an exceptional closed-form formula for the principal eigenvalue).
As in general the eigenvalues of the Dirichlet problem on a spherical triangle are not
known in closed form, we also develop a finite-elements method to compute approximate
values, typically with ten digits of precision.
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Figure 1. Critical exponents in the asymptotics of 3D walks (and 3D
Brownian motion as well) in the orthant N3 can be computed in terms of
the smallest eigenvalue for the Dirichlet problem on spherical triangles
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1. Introduction

Context. The enumeration of lattice walks is an important topic in combinatorics. In
addition to having various applications, it is connected to other mathematical fields such
as probability theory. Recently, lots of consideration have been given to the enumeration
of walks confined to cones. We will typically be considering walks on Zd that start at the
origin and consist of steps taken from S, a finite subset of Zd. Most of the time we will
constrain the walks in the orthant Nd, with N denoting the set of non-negative integers
{0, 1, 2, . . .}.

Figure 2. Motzkin paths in N (with steps (1, 1), (1, 0) and (1,−1)) and
Gessel’s walks in N2 (with steps (1, 0), (1, 1), (−1, 0) and (−1,−1))

In dimension d = 1 (Figure 2, left) there is essentially one unique cone (the positive
half-line), and positive (random) walks are very well understood, see in particular [10, 5].

Following the seminal works [36, 21], many recent papers deal with the enumeration of
2D walks with prescribed steps confined to the positive quadrant (Figure 2, right). In the
case of small steps (S included in {0,±1}2), various results have been obtained: exact and
asymptotic expressions [21, 15, 18], classification of the generating function according to the
classes rational, algebraic, D-finite (that is, solution to a linear differential equation with
polynomial coefficients) [21], non-D-finite [51, 18], and even non-differentially algebraic
[31].

One of the most striking results in the quadrant walks world is the following: the
generating function is D-finite if and only if a certain group associated with the step set S
is finite. Remarkably this result connects an arithmetic property of the generating function
to a geometric feature (the group, related to the symmetries of the step set). Non-convex
cones (see [20] for the three quarter plane) as well as larger steps [14] have recently also
been considered.

In dimension three, determining whether the above equivalence between D-finiteness
of the generating function and finiteness of the symmetry group holds or not remains an
open problem. More generally, much less is known on 3D lattice walks confined to the non-
negative octant N3. An intrinsic difficulty lies in the number of models to handle: more
than 11 millions [13]. (Compare with 79 quadrant models.) The first work is an empirical
classification by Bostan and Kauers [15] of the models with at most five steps. Then in
[13], Bostan, Bousquet-Mélou, Kauers and Melczer study models of cardinality at most six.
They introduce key concepts: the dimensionality (1D, 2D or 3D) of a model, the group of
the model, the Hadamard structure (roughly speaking, it is a generalization of Cartesian
products of lower dimensional models). These notions will be made precise in Section 2.
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Figure 3. From left to right: the simple walk, Kreweras 3D model, a
(1, 2)-type Hadamard model and a (2, 1)-type Hadamard model. These
pictures are courtesy of Alin Bostan. As these perspective drawings might
be difficult to read, we will prefer the cross-section views of the step sets as
in Figure 4
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Figure 4. For each model, the first diagram shows steps of the form
(i, j,−1), the second the steps (i, j, 0), and the third the steps (i, j, 1). The
models are the same ones as in Figure 3. These cross-section views were
first proposed in [15, 13]

Furthermore, the authors of [13] classify the models with respect to these concepts and
compute, in various cases (but only in presence of a finite group), the generating function

O(x, y, z; t) =
∑

i,j,k,n>0

o(i, j, k;n)xiyjzktn, (1)

where o(i, j, k;n) is the number of n-step walks in the octant starting at the origin (0, 0, 0)
and ending at position (i, j, k). In majority, the techniques used in [13] to solve finite
group models are the algebraic kernel method and computer algebra (using the guessing-
and-proving paradigm).

The classification (in particular with respect to the finiteness of the group and the
Hadamard structure) of the 3D small step models with arbitrary cardinality is pursued in
the articles [2, 32, 61, 49]. Table 2 reproduces this classification.

Asymptotics of the excursion sequence. Let us finally mention the article [30] by
Denisov and Wachtel, which is fundamental to our study. It proves in a great level of
generality the following asymptotics for the excursion sequence oA→B(n), i.e., the number
of n-step walks in the octant starting (resp. ending) at A ∈ N3 (resp. B ∈ N3). If A and
B are far enough from the boundary, as n→∞,

oA→B(pn) = κ(A,B) · ρpn · n−λ · (1 + o(1)), (2)

where κ(A,B) > 0 is some constant, ρ ∈ (0, |S|] is the exponential growth, λ > 0 is the
critical exponent and p ∈ N is the period of the model, i.e.,

p = gcd{n ∈ N : oA→B(n) > 0}. (3)

The asymptotics (2) is proved in [30] in the aperiodic case (p = 1) and commented in
[34, 14] for periodic models (p > 1). For exact hypotheses and a discussion, see Theorem
3 in Section 2.5 and the comments following the statement.

Most of the time we shall assume that
(H) The step set S is not included in any half-space {y ∈ Rd : 〈x, y〉 > 0} with

x ∈ Rd \ {0}, 〈·, ·〉 denoting the classical Euclidean inner product.
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Figure 5. On the left: a particular spherical triangle with two right angles
(these triangles will eventually correspond to Hadamard models). On the
right: a generic triangle with angles α, β, γ

The quantities ρ and λ in (2) are computed in [30]. First, ρ is the global minimum on Rd+
of the inventory (or characteristic polynomial)

χS(x, y, z) = χ(x, y, z) =
∑

(i,j,k)∈S

xiyjzk (4)

and is thus well understood and easily computed (it is an algebraic number). On the
other hand, λ is much more elaborate: applying the results of [30] (see in particular
Equation (12) there) readily shows, under the hypothesis (H), the following expression for
the critical exponent:

λ =

√
λ1 +

1

4
+ 1, (5)

where λ1 is the smallest eigenvalue Λ of the Dirichlet problem for the Laplace-Beltrami
operator ∆S2 on the sphere S2 ⊂ R3{

−∆S2m = Λm in T,
m = 0 in ∂T, (6)

T = T (α, β, γ) being a spherical triangle (see Figure 5 for an illustration), which can be
computed algorithmically (and easily) in terms of the model S, see Theorem 3 for a precise
statement.

Concerning the algebraic nature of the 3D generating function (1), a few results are
known: in the finite group cases solved in [13], the generating function is always D-finite.
On the other hand, the article [32] proves that for some degenerate (in the sense of the
dimensionality) 3D models, the excursion generating function O(0, 0, 0; t) is non-D-finite,
by looking at the asymptotic behavior of the excursion sequence and showing that λ in (2)
is irrational, extending the work [18]. Does there exist a non-degenerateÂă3D finite group
model with a non-D-finite generating function (1)? The 3D Kreweras model of Figure 3
could provide such an example. The 3D simple walk in the complement of an octant is
also conjectured to admit a non-D-finite generating function, see [54, Sec. 4].

Contributions of the present work. In Section 2 we recall all needed definitions and
first properties of 3D models. In particular, we associate to each model a spherical triangle,
which will capture a lot of combinatorial information. Results in that section come from
[30, 13, 2, 49]. Section 3 gives the exact value of the angles.
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Figure 6. Left: tiling of the sphere by equilateral triangles with right
angles, corresponding to the simple walk. Right: the tetraedral partition of
the sphere, corresponding to Kreweras 3D model. See Figure 9 for further
examples of tilings

Section 4: Our next result deals with Hadamard models (mostly with infinite group,
as finite group Hadamard walks are solved in [13]). They have birectangular triangles,
as in Figure 5, left. Finite (resp. infinite) group Hadamard models correspond to angles
β such that π

β ∈ Q (resp. π
β /∈ Q). Hadamard models are quite special for combinatorial

reasons, as explained in [13], but also for the Laplacian: to the best of our knowledge, their
birectangular triangles are the only triangles (with the exception of the tiling triangles
described in Lemma 23) for which one can compute the spectrum. We deduce the critical
exponent λ and show that (most of) infinite group Hadamard models are non-D-finite.
This is the first result on the non-D-finiteness of truly 3D models.
Section 5: We classify the models with respect to their triangle and the associated

principal eigenvalue, and compare our results with the classification in terms of the group
and the Hadamard property obtained in [13, 49]. Finite group models correspond to
triangular tilings of the sphere S2. The simplest example is the simple walk with steps

S = {(±1, 0, 0), (0,±1, 0), (0, 0,±1)},

see Figure 4 (leftmost). Its triangle has three right angles, namely α = β = γ = π
2 in

Figures 5 and 6. A second example is 3D Kreweras model, with step set

S = {(−1, 0, 0), (0,−1, 0), (0, 0,−1), (1, 1, 1)},

see Figure 4 (left). The associated triangle is also equilateral, with angles 2π
3 , this

corresponds to the tetrahedral tiling of the sphere. See Figure 6.
We exhibit some exceptional models, which do not have the Hadamard property but

for which, remarkably, one can compute an explicit form for the eigenvalue; this typically
leads to non-D-finiteness results.

Although we won’t consider these issues here, let us mention that we can also see the
dimensionality on the triangle. In the case of 2D models, the triangles degenerate into a
spherical digon, see Section 7.5 (in particular Figure 16).
Section 6: Our last result is about generic infinite group models. Even if no closed-

form formula exists for λ1, we may consider λ1 as a special function of the triangle T
(or equivalently of its angles α, β, γ, as in spherical geometry a triangle is completely
determined by its angles), and with numerical analysis methods, obtain approximations of
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this function when evaluated at particular values. The techniques developed in Section 6
are completely different from the rest of the paper. Notice that for some cases, approximate
values of the critical exponents have been found by Bostan and Kauers [15], Bacher, Kauers
and Yatchak [2], Bogosel [11], Guttmann [43], Dahne and Salvy [25]. See Section 6.1 for
more details.
Section 7 proposes various extensions and remarks. Finally, the brief Appendix A

gathers some elementary facts on spherical geometry.

Brownian motion in orthants. To conclude this introduction, let us emphasize that
all results that we obtain for discrete random walks admit continuous analogues and can
be used to estimate exit times from cones of Brownian motion, see Section 7.6. In the
literature, one can find applications of these estimates to the Brownian pursuit [55, 56].

Acknowledgments. This work has benefited from discussions with many colleagues. We
in particular warmly thank M. Kauers for interesting discussions and for sharing with
us a complete and very precise classification (and many other data) about 3D walks.
Many thanks also to V. Beck, A. Bostan, M. Bousquet-Mélou, S. Cantat, M. Dauge,
T. Guttmann, L. Hillairet, A. Lejay, S. Mustapha and B. Salvy. We also thank the two
anonymous referees for their numerous remarks, which led us to improve the presentation of
our article. This project has received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme under the
Grant Agreement No 759702.

2. Preliminaries

In this section we introduce key concepts to study 3D walks. We are largely inspired by
the paper [13], from which we borrowed Section 2.1 (dimension of a model), Section 2.2
(group of a model) and Section 2.3 (Hadamard structure). The thorough classification
presented in Section 2.4 is done in the papers [2, 49] and the fundamental asymptotic
result of Section 2.5 can be found in [30]. We follow the notations of [13].

2.1. Dimension of a model. Let S be a step set. A walk of length n taking its steps in
S can be viewed as a word w = w1w2 . . . wn made up of letters of S. For s ∈ S, let as be
the multiplicity (i.e., the number of occurrences) of s in w. Then w ends in the positive
octant if and only if the following three linear inequalities hold:∑

s∈S
assx > 0,

∑
s∈S

assy > 0,
∑
s∈S

assz > 0, (7)

where s = (sx, sy, sz). Of course, the walk w remains in the octant if the multiplicities
observed in each of its prefixes satisfy these inequalities.

Definition 1 ([13]). Let d ∈ {0, 1, 2, 3}. A model S is said to have dimension at most d
if there exist d inequalities in (7) such that any |S|-tuple (as)s∈S of non-negative integers
satisfying these d inequalities satisfies in fact the three ones. We define accordingly models
of dimension (exactly) d.

See [13, Fig. 1] for an illustration of Definition 1. In what follows we will be principally
considering models of dimension 3, and in fact only a subclass of them: most of the time
we will assume the hypothesis (H).
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2.2. Group of the model. This group was first introduced in the context of 2D walks
[36, 21] and turns out to be very useful. Let χ be the inventory (4). Introduce the notation

χ(x, y, z) = xA−(y, z) +A0(y, z) + xA+(y, z)

= yB−(x, z) +B0(x, z) + yB+(x, z)

= zC−(x, y) + C0(x, y) + zC+(x, y),

where x = 1
x , y = 1

y and z = 1
z . If S is 3-dimensional then it has a positive step in each

direction and A+, B+ and C+ are all non-zero. The group of S is the group G = 〈φ, ψ, τ〉
of birational transformations of the variables [x, y, z] generated by the following three
involutions: 

φ([x, y, z]) =
[
xA−(y,z)
A+(y,z) , y, z

]
,

ψ([x, y, z]) =
[
x, yB−(x,z)

B+(x,z) , z
]
,

τ([x, y, z]) =
[
x, y, zC−(x,y)

C+(x,y)

]
.

(8)

See [13, Sec. 2.4] for more details on the group. The classification of the models according
to the (in)finiteness of the group is known, see Table 2. Let us also reproduce [49, Tab. 1]:

Group Number of models Group Number of models
G1 = 〈a, b, c | a2, b2, c2〉 10,759,449 G7 = 〈a, b, c | a2, b2, c2, (ab)4〉 82
G2 = 〈a, b, c | a2, b2, c2, (ab)2〉 84,241 G8 = 〈a, b, c | a2, b2, c2, (ab)3, (bc)3〉 30
G3 = 〈a, b, c | a2, b2, c2, (ac)2, (ab)2〉 58,642 G9 = 〈a, b, c | a2, b2, c2, acbacbcabc〉 20
G4 = 〈a, b, c | a2, b2, c2, (ac)2, (ab)3〉 1,483 G10 = 〈a, b, c | a2, b2, c2, (ab)3, (cbca)2〉 8
G5 = 〈a, b, c | a2, b2, c2, (ab)3〉 1,426 G11 = 〈a, b, c | a2, b2, c2, (ca)3, (ab)4, (babc)2〉 8
G6 = 〈a, b, c | a2, b2, c2, (ac)2, (ab)4〉 440 G12 = 〈a, b, c | a2, b2, c2, (ab)4, (ac)4〉 4

Table 1. Various infinite groups associated to 3D models. Notice that the
presentations of the groups are not certified: it is not excluded [49] that
further relations exist, but then involving more than 400 generators a, b, c.
With the exception of G9, G10 and G11, all groups are Coxeter groups.
Most of the time, but not systematically, one can take a = φ, b = ψ and
c = τ

2.3. Hadamard structure. Hadamard models are introduced in [13] (see in particular
Section 5 there). These are 3-dimensional models which can be reduced to the study of a
pair of models, one in Z and one in Z2, using a Hadamard product of generating functions.

There are two types of Hadamard models: the (1, 2)-type and the (2, 1)-type. More
generally, in arbitrary dimension d there is the notion of (D, δ)-Hadamard model, with
D + δ = d, see [13, Sec. 5.2]. Back to the dimension 3, the (1, 2)-type corresponds to
models for which the inventory (4) can be written under the form

χ(x, y, z) = U(x) + V (x)T (y, z). (9)

The (2, 1)-type corresponds to

χ(x, y, z) = U(x, y) + V (x, y)T (z). (10)

The number of Hadamard models (with the additional information on the type) can be
found in Table 2.



3D POSITIVE LATTICE WALKS AND SPHERICAL TRIANGLES 9

Models
(11,074,225)

|G| <∞
(165,962)

3D Hadamard
(2,187)

both
(305)

(1,2)
(84)

(2,1)
(1,798)

non-3D Ha.

|G| =∞
(10,908,263)

3D Hadamard
(58,642)

both
(280)

(1,2)
(672)

(2,1)
(57,690)

non-3D Ha.

Table 2. Classification of 3D walks (of dimension 2 and 3) according to
the finiteness of the group and the Hadamard property [49]. The numbers
of (non-)Hadamard models refer exclusively to dimension 3 models. Hence
among the non-3D Hadamard models one can find models of dimensionality
2 having a (degenerate) Hadamard decomposition. A model labeled “both”
is simultaneously (1, 2)-type and (2, 1)-type Hadamard. The total number
of models is computed in [13], the number of (in)finite groups in [13, 32, 49]
and the refined statistics on 3D Hadamard models in [48]

For each type, an example is presented in Figure 4: for the (2, 1)-type we have taken
U(x, y) = x+x+ y+ y (the 2D simple walk, see Figure 7), V (x, y) = x+xy+xy+xy+ y
(a scarecrow model, see again Figure 7) and T (z) = z + z. For the (1, 2)-type we have
χ(x, y, z) = U(z) + V (z)T (x, y) (permutation of the variables in the definition (9)), with
U(z) = z + z, V (z) = z + 1 + z and T (x, y) the generating function of the same scarecrow
model as above.

Simple walk Kreweras Gessel Scarecrow 1 Scarecrow 2 Scarecrow 3

Figure 7. Some 2D models. The three scarecrows are named after [18, Fig. 1]

Hadamard models extend Cartesian products of walks: Cartesian products (or
equivalently independent random walks in the probabilistic framework) correspond to
taking U(x) = 0 in (9) or U(x, y) = 0 in (10). Notice that Hadamard models in dimension
2 are always D-finite [14], even with large steps.

2.4. Classification of models. Proposition 2.5 of [13] gives the number of models having
dimension 2 or 3, no unused step (that is, a step that is never used in a walk confined to the
octant), and counted up to permutations of the coordinates, ending up with the number
11,074,225 in Table 2.
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2.5. Formula for the exponent of the excursions. We now explain that the exponent
λ in (2) is directly related to the smallest eigenvalue of a certain Dirichlet problem on a
spherical triangle. Let us start with a simple definition:

Definition 2 ([9]). A spherical triangle on S2 is a triple (x, y, z) of points of S2 that are
linearly independent as vectors in R3. We denote it by 〈x, y, z〉.

See examples in Figures 5 and 6. The points x, y, z are the vertices of 〈x, y, z〉. By the
sides of 〈x, y, z〉 we mean the arcs of great circle determined by (x, y), (y, z) and (z, x).

The following result gives a formula for the critical exponent; several explanatory
remarks may be found below the statement.

Theorem 3 ([30]). Let S be a step set satisfying (H) and irreducible. Let χ be its
inventory (4). The system of equations

∂χ

∂x
=
∂χ

∂y
=
∂χ

∂z
= 0 (11)

admits a unique solution in (0,∞)3, denoted by (x0, y0, z0). Define

a =

∂2χ
∂x∂y√
∂2χ
∂x2
· ∂2χ
∂y2

(x0, y0, z0), b =
∂2χ
∂x∂z√
∂2χ
∂x2
· ∂2χ
∂z2

(x0, y0, z0), c =

∂2χ
∂y∂z√
∂2χ
∂y2
· ∂2χ
∂z2

(x0, y0, z0)

(12)
and introduce the covariance matrix

cov =

 1 a b
a 1 c
b c 1

 . (13)

Let S denote a square root of the covariance matrix, namely

cov = SSᵀ. (14)

Consider the spherical triangle T = (S−1R3
+)∩S2. Let λ1 be the smallest eigenvalue of the

Dirichlet problem (6). Then for A and B far enough from the boundary, the asymptotics
(2) of the number of excursions going from A to B holds, where

ρ = min
(0,∞)3

χ (15)

and the critical exponent λ in (2) is given by (5).

The proof of Theorem 3 is sketched in Section 7.7. Here we just comment on its
hypotheses.

• First, under (H) the characteristic polynomial is strictly convex and coercive on
(0,∞)3 and hence there is a unique global minimizing point (x0, y0, z0), which
satisfies (11).
• The covariance matrix (13) is positive definite, this is a direct consequence of (H)
(the rank of the covariance matrix describes the dimension of the subspace in which
the random walk evolves).
• The matrix S−1 has full rank and hence T = (S−1R3

+) ∩ S2 is a spherical triangle
(see our Definition 2), bounded by the three great-circle arcs (S−1ei) ∩ S2, with ei
denoting the ith vector of the canonical basis.
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• The choice of the square root in (14) is not relevant: if cov = S1S
ᵀ
1 = S2S

ᵀ
2 then

obviously S1 = MS2, where M is an orthogonal matrix, and the two associated
spherical triangles are isometric (and in particular they have the same angles).

• The boundary of the spherical triangle is piecewise infinitely differentiable. Under
this assumption, the spectrum of the Laplacian for the Dirichlet problem (6) is
discrete (see [23, p. 169]), of the form 0 < λ1 < λ2 6 λ3 6 · · · .

• The irreducibility hypothesis means that for any two points in the space Z3, there
exists a path connecting these points.

• The asymptotics (2) is proved in [30] under the assumption that the walk is strongly
aperiodic (see the lattice assumption in [30, p. 999]), i.e., irreducible and aperiodic
in the sense of the Markov chains. The aperiodicity is defined by p = 1 in (3). Two
remarks should be made:
– As explained in [14], an extra-assumption (namely, a reachability condition)

has to be made. There is indeed in [14] the example of a 2D walk which is
strongly aperiodic but such that no excursion to the origin is possible, due to
the (ad hoc) particular configuration of the steps. We could easily construct
a 3D analogue such that o(0, 0, 0;n) = 0 for all n.

– The second point is about periodic models (p > 1 in (3)), which stricto
sensu are not covered by [30]. It is briefly mentioned in [34] that the main
asymptotics (2) still holds true. A detailed discussion of the periodic case may
be found in [14].

As our point is not to state Theorem 3 at the greatest level of generality, we have
stated it under rather strong hypotheses, namely that A and B are far enough from
the boundary (this is sufficient for the reachability condition).

2.6. Computing the principal eigenvalue of a spherical triangle. There are very
few spherical triangles (and more generally, few domains on the sphere, see Section 7.3 and
Appendix A) for which we can explicitly compute the first eigenvalue λ1 of the Dirichlet
problem (6). As a matter of comparison, let us recall that (to our knowledge, see also [8])
there does not exist in general a closed-form expression for the analogous problem for flat
triangles.

Back to spherical triangles, there essentially exists a unique case for which an explicit
expression for λ1 is known: the case of two angles π2 as in Figure 5 (these triangles are called
birectangular). Then according to [60, Eq. (36)] (or [59, Sec. IV]) the smallest eigenvalue
is

λ1 =

(
π

β
+ 1

)(
π

β
+ 2

)
. (16)

Let us give three relevant cases in the range of application of formula (16):

• The 3D simple random walk (Figure 4): then β = π
2 and λ1 = 12, which with (5)

corresponds to λ = 9
2 (in accordance with the intuition 3× 3

2 , i.e., three independent
positive 1D excursions).
• More generally, finite group Hadamard models. They correspond to β ∈ πQ. They
represent tiling groups of the sphere. See Section 5 for more details.
• Last but not least, all Hadamard models, even with infinite group (typically
β /∈ πQ); see Section 4.
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3. The covariance matrix

The angles of the spherical triangle appearing in the main Theorem 3 are totally explicit
in terms of the correlation coefficients a, b and c defined in (12).

Lemma 4. Let α, β, γ be the angles of the spherical triangle T defined in Theorem 3, and
a, b, c as in (12). One has

α = arccos(−a), β = arccos(−b), γ = arccos(−c). (17)

Three remarks should be made.
• It is easily seen that the correlation coefficients a, b and c of Lemma 4 are algebraic
numbers. We can use the exact same algorithmic computations as in [18, Sec. 2.4.1]
to deduce their minimal polynomials.
• The formulas given in Lemma 4 are the most natural generalization of the 2D
situation, where by [18] the spherical triangle is replaced by a wedge of opening
angle arccos(−c), see Figure 8.
• If two of the three correlation coefficients a, b and c are equal to 0, then the spherical
triangle is birectangular.

π
2 arccos(−c)

Figure 8. After decorrelation of a 2D random walk, the quarter plane (left)
becomes a wedge of opening arccos(−c) (right), where c is the correlation
coefficient of the driftless model

Proof of Lemma 4. Let cov be the matrix defined in (13). We easily obtain the Cholesky
decomposition cov = LLᵀ, with

L =

 1 0 0

a
√

1− a2 0

b c−ab√
1−a2

√
1−a2−b2−c2+2abc√

1−a2

 . (18)

One deduces that

L−1 =

 1 0 0
−a√
1−a2

1√
1−a2 0

ac−b√
1−a2

√
1−a2−b2−c2+2abc

ab−c√
1−a2

√
1−a2−b2−c2+2abc

√
1−a2√

1−a2−b2−c2+2abc

 . (19)

Denoting by (e1, e2, e3) the canonical basis of R3, the three points defining the triangle are

x =
L−1e1
‖L−1e1‖

, y =
L−1e2
‖L−1e2‖

, z =
L−1e3
‖L−1e3‖

,

see the third comment following Theorem 3 or Section 7.7. Setting

xy =
y − 〈x, y〉x
‖y − 〈x, y〉x‖
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and xz, yx, yz, zx, zy similarly, we have by [9, 18.6.6] (giving the formulas for the angles of
the triangle 〈x, y, z〉)

α = arccos〈xy, xz〉, β = arccos〈yz, yx〉, γ = arccos〈zx, zy〉.
To conclude the proof it is enough to do the above computations in terms of a, b and c. �

Notice that the above expression of L in terms of a, b and c is particularly simple, and
thus the proof of Lemma 4 is easily obtained. On the other hand, solving the equation
cov = SSᵀ with the constraint of taking a symmetric square root S happens to be much
more complicated and less intrinsic.

Several further aspects of the covariance matrix are provided in Section 7.8.

4. Analysis of Hadamard models

This section is at the heart of the present paper. We consider Hadamard models in
the sense of Section 2.3. Let us briefly recall that these models are characterized by the
existence of a decomposition of their inventory (4) as follows:

χ(x, y, z) = U(x) + V (x)T (y, z) or χ(x, y, z) = U(x, y) + V (x, y)T (z).

As will be shown in Lemmas 5 and 9, such models admit a quite simple covariance matrix

cov =

 1 0 0
0 1 c
0 c 1

 ,

allowing us to perform explicitly many computations. (Notice, however, that the above
form for the covariance matrix does not characterize Hadamard models, we construct
counterexamples in Section 5.4. These examples lead to the notion of exceptional models.)

In particular, spherical triangles associated to Hadamard models are birectangular, i.e.,
two (or three) angles are equal to π

2 , see Figure 5. These triangles are remarkable because
they are the only ones (with the exception of a few sporadic cases) for which a closed-form
expression for the principal eigenvalue is known. Finally, the exponent (5) of the excursion
sequence is computed in Propositions 6 and 10. Using similar techniques as in [18], one
can rather easily study the rationality of this exponent.

In the (1, 2)-type (Section 4.1), the 2D model associated to T (y, z) dictates the exponent,
see Proposition 6. In particular, we will see in Corollary 7 that if the 2D model has an
irrational exponent, then the 3D model is necessarily non-D-finite. To our knowledge, this
is the first proof ever of the non-D-finiteness of truly 3D models, making the Hadamard
case remarkable. On the other hand, (2, 1)-type Hadamard models (Section 4.2) are more
subtle. Their exponents can be computed from exponents of mixtures of two 2D models.

Although we won’t do such considerations here, let us emphasize that most of the results
in this section hold for weighted walks with arbitrarily big steps: the only crucial point is
the existence of a Hadamard decomposition.

4.1. (1,2)-Hadamard models.

Lemma 5. For any (1, 2)-type Hadamard model, the matrix cov in (13) takes the form

cov =

 1 0 0
0 1 c
0 c 1

 , with c =

∂2T
∂y∂z√

∂2T
∂y2
· ∂2T
∂z2

(y0, z0), (20)

where y0, z0 are defined in (11). (Notice in particular that c does not depend on the
horizontal components U and V in the Hadamard decomposition (9).)
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Proof. The proof is elementary. Using the decomposition (9) in the last two equations of
the system (11) gives

V (x)
∂T

∂y
(y, z) = V (x)

∂T

∂z
(y, z) = 0. (21)

As V (x) cannot be equal to 0, we obtain the autonomous system ∂T
∂y = ∂T

∂z = 0. Let (y0, z0)

be its unique solution. Moreover, the first equation in (11) leads to

U ′(x) + V ′(x)T (y0, z0) = 0

which (as T (y0, z0) > 0) has a unique solution x0. Using once again (9) as well as (21), we
deduce that

V ′(x0)
∂T

∂y
(y0, z0) = 0,

whence a = 0 and similarly b = 0. The formula (20) for c is a direct consequence of (12)
and (9). �

Our aim now is to compute the spherical angles in the Hadamard case. We use Lemma 4
to deduce Proposition 6 below.

Proposition 6. The spherical triangles associated to (1, 2)-type Hadamard models have
angles π

2 ,
π
2 , arccos(−c) (as in Figure 5, left), with c defined in (20). The smallest eigenvalue

λ1 of the Dirichlet problem and the exponent λ are respectively given by

λ1 =

(
π

arccos(−c)
+ 1

)(
π

arccos(−c)
+ 2

)
, λ =

π

arccos(−c)
+

5

2
.

In order to completely characterize the excursion exponent we now compute c and λ.
This happens to be done in [18]: for the 2D unweighted models under consideration, c is
always algebraic (possibly rational), and minimal polynomials in the infinite group case
are provided in [18, Tab. 2].

For instance, for the first and second scarecrows in Figure 7 one has c = −1
4 , while

c = 1
4 for the last scarecrow. Moreover, by [18, Cor. 2], λ is irrational for all infinite group

models. This leads to the following corollary.

Corollary 7. For any (1, 2)-type Hadamard 3D model such that the group associated to
the step set T is infinite, the series O(0, 0, 0; t) (and thus also O(x, y, z; t)) is non-D-finite.

We list below important comments on Corollary 7.
• First of all, Corollary 7 is (to the best of our knowledge) the first non-D-finiteness
result on truly 3D models (the 3D models considered in [32] have dimensionality 2
in the sense of Definition 1, and thus do not satisfy the main hypothesis (H), which
guarantees the existence of a non-degenerate spherical triangle, see Section 7.5).
It answers an open question raised in [13, Sec. 9] (concerning the possibility of
extending the techniques of [18] to octant models).
• In order to give a concrete application of Corollary 7, consider a model with
arbitrary U and V (provided that the model is truly 3D), and with T one scarecrow
of Figure 7. This 3D model is non-D-finite since the 2D model associated with T
has an infinite group by [21].
• Note that Corollary 7 can be extended to models with weights and arbitrarily big
steps, provided that the hypothesis on the infiniteness of the group be replaced by
the assumption that π

arccos(−c) is irrational. An algorithmic proof of the irrationality
of such quantities is proposed in [18, Sec. 2.4], and further applied to some weighted
models in [32].
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• The proof of Corollary 7 is a direct consequence of [18, Cor. 2], which states that for
the 51 unweighted non-singular step sets with infinite group in the quarter plane,
the excursion exponent is irrational. By [18, Thm 3] this implies that the series is
non-D-finite.

Remark 8 (Combinatorial interpretation of the exponent). For (1, 2)-type models, 3D
excursions may be decomposed as products of two lowerÂădimensional excursions: a first
excursion in the (y, z)-plane with the inventory T and a second 1D excursion in x. This
can easily be read on the formula of Proposition 6: writing

λ =

(
π

arccos(−c)
+ 1

)
+

3

2
,

the exponent is interpreted as the sum of the exponent of the 2D model (see [18, Thm 4])
and of the universal exponent 3

2 of a 1D excursion.

4.2. (2,1)-Hadamard models.

Lemma 9. For any (2, 1)-type Hadamard model, the matrix cov takes the form

cov =

 1 a 0
a 1 0
0 0 1

 , with a =

∂2 χ|z0
∂x∂y√

∂2 χ|z0
∂x2

·
∂2 χ|z0
∂y2

(x0, y0), (22)

where x0, y0, z0 are defined in (11) and χ|z0 (x, y) = χ(x, y, z0).

Proof. We solve the system (11) in the z-variable first and obtain the point z0 characterized
by T ′(z0) = 0. The first two equations of this system read

∂U

∂x
(x, y) + T (z0)

∂V

∂x
(x, y) =

∂U

∂y
(x, y) + T (z0)

∂V

∂y
(x, y) = 0.

The pair (x0, y0) is the critical point associated to the mixture of models (23). �

The following result is derived similarly as Proposition 6.

Proposition 10. The spherical triangles associated to (2, 1)-type Hadamard models have
angles π

2 ,
π
2 , arccos(−a) (as in Figure 5, left), with a defined in (22). The smallest

eigenvalue λ1 of the Dirichlet problem and the exponent λ are respectively given by

λ1 =

(
π

arccos(−a)
+ 1

)(
π

arccos(−a)
+ 2

)
, λ =

π

arccos(−a)
+

5

2
.

(2,1)-type Hadamard walks and mixing of 2D models. From a probabilistic point of view,
the (2, 1)-type is slightly more interesting than the (1, 2)-type. Many computations are
indeed related to the concept of mixtures of two 2D probability laws.

More precisely, the polynomials U(x, y) and V (x, y) in (10) both induce a law (or a
model) in 2D, which are mixed as below:

χ|z0 (x, y) = U(x, y) + T (z0)V (x, y), (23)

the parameter z being specialized at z0, the latter being defined by T ′(z0) = 0.
In the combinatorial case, for a 3D model we must have T (z) = z + z, hence z0 = 1

and T (z0) = 2. Equation (23) becomes U(x, y) + 2V (x, y), which is the inventory of a 2D
weighted walk (with possible weights 0, 1, 2, 3). Remark that it is not the first appearance of
weighted 2D walks in the theory of (unweighted) 3D walks: in [13, Sec. 7] (see in particular
Figure 5), 2D projections of 3D models are analyzed, and these projections are typically
weighted 2D walks; see also [50].
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Computing a in (22). From a technical point of view, computing a and studying the
rationality of π

arccos(−a) requires the same type of computations as above for c and π
arccos(−c)

(see Section 4.1). For an illustration see Example 12 below. However, some difficulties may
occur from the fact that weighted steps are allowed:

• It is not possible to exclude that a model with infinite group has a rational exponent
λ (this does not happen in the unweighted case [18], but may happen in the weighted
case, see examples in [14]).
• Knowing the critical exponents associated to U and V does not give much
information on the exponent of the mixture (23).

Applications and examples. We start with a result on non-D-finiteness, for a subclass of
(2, 1)-type Hadamard models.

Corollary 11. For any (2, 1)-type Hadamard 3D model such that the group associated to
the step set V is infinite, and U = V or U = 0, the series O(0, 0, 0; t) (and thus also
O(x, y, z; t)) is non-D-finite.

Corollary 11 applies for several models, but the constraint of taking either U = V or
U = 0 is quite strong. We now construct a more elaborate example.

Example 12. Let U, V be any of the first two scarecrows of Figure 7 (possibly the same
ones). These models have zero drift (meaning that the sum of the steps over the step set
is zero), and thus critical point (1, 1), and an easy computation shows that they have the
same covariance matrices. Then for any T (x) = t1x+ t0 + t−1x, the associated (2, 1)-type
Hadamard model defined by (10) is non-D-finite.

5. Classification of the models and eigenvalues

5.1. Motivations and presentation of the results. In this section we would like to
classify the 11, 074, 225 models with respect to their triangle and the associated principal
eigenvalue. The central idea is that there is a strong link between the group (as defined in
Section 2.2) and the triangle. To understand this connection, we propose a novel, natural
and manipulable geometric interpretation of the group, as a reflection group on the sphere.
More precisely, we will interpret the three generators of the group as the three reflections
with respect to the sides of the spherical triangle. We shall present three main features:

• Finite group case (Section 5.2): we interpret the group G as a tiling group of the
sphere, see Table 3 as well as Figures 6 and 9. We also explain a few remarkable
facts observed in the tables of [2], on the number of different asymptotic behaviors.
• Infinite group case (Section 5.3): the existence of a relation between the generators
of the group can be read off on the angles. The simplest example is the relation
(ab)m = 1, which on the triangle will correspond to an angle equal to kπ/m for
some integer k. In particular, all triangles from the group

G3 = 〈a, b, c | a2, b2, c2, (ac)2, (ab)2〉
of Table 1 (Hadamard models) will have two right angles.
• Exceptional models (Section 5.4): for some infinite group models (a few hundreds
of thousands), some unexpected further identities on the angles hold—unexpected
means not implied by a relation between the generators, as explained above.

The most interesting case is given by some models in G1 and G2, which have
a triangle with exactly 2 right angles. Although these models do not have a
Hadamard structure, their triangle has the same type as classical Hadamard
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Figure 9. Tilings associated to the triangles with angles π
3 ,

π
2 ,

2π
3 (left)

and π
4 ,

π
3 ,

π
2 (right). These triangles correspond to the lines 9 and 17 in

Table 3

models, and the principal eigenvalue (and hence the critical exponent) can be
computed in a closed form.

There are also models with infinite group and three right angles (in this case,
the exponent is 9

2 and cannot be used to detect non-D-finiteness). Let us finally
mention that there are two models with infinite group and having the same triangle
as Kreweras 3D. See Theorem 15.

To summarize, classifying the triangles is close to, but different from classifying the
groups. The latter task has already been achieved in [2] (finite group case; we have
reproduced their results in Table 4) and [49] (infinite groups; see our Table 1), using a
heavy computer machinery. However, the group classification is more precise, in the sense
that the spherical triangle does not determine everything: infinite group models can have a
tiling triangle, and Hadamard models are not the only ones to have birectangular triangles.

5.2. Finite group case.

Some aspects of the group. Let us recall a few applications of this concept:
• When the group is finite and if in addition the orbit-sum of the monomial
x1 × · · · × xd under the group G, namely

OS(x1, . . . , xd) =
∑
g∈G

sign (g) · g(x1 × · · · × xd), (24)

is non-zero, one may obtain closed-form expressions for the generating function
(as positive part extractions). See [21] for the initial application of this technique,
called the orbit-sum method; it was further used in [50, 14].
• When the group is finite but the orbit-sum (24) is zero, it is still possible, in a
restricted number of cases, to derive an expression for the generating function, see
[21, 50, 14] for examples. The applicability of this technique is not completely
clear.
• Last but not least, in dimension 2 there is an equivalence between the finiteness of
the group and the D-finiteness of the generating functions (this is a consequence
of the papers [21, 16, 51] altogether).

Let us now examine each of the above applications in dimension 3. The first item is still
valid, as shown in [13, 61]. As in the 2D case, the second item only works for a few cases.
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For instance, Figure 4 in [13] gives a list of 19 non-Hadamard 3D models with finite group
and zero orbit-sum, which are not solved at the moment. Finally, the third item is an open
question. As an illustration, all 19 previous models (including Kreweras 3D model) have a
finite group, but as explained in [13, Sec. 6.2], these models do not seem D-finite. In this
case, the equivalence in the third item would not be satisfied.

Our contribution. The following result is summarized in Table 3:

Theorem 13. Under the hypothesis (H), there are exactly 17 triangles that are associated
to finite groups. Each triangle corresponds to a particular eigenvalue computed in Table 3.

Proof. The proof of the above result is computational (all computations are done using
symbolic tools and are exact) and is based on Theorem 3. In each case, the critical
point of the inventory function is found by solving (11). Once the critical point is found,
we compute the covariance matrix (13) and we use Lemma 4 to find the angles of the
associated spherical triangle. �

Details concerning the symbolic validation of the results as well as Matlab codes used
are available on the webpage of the article: https://bit.ly/2J4Vf3X.

Comments on Theorem 13. We have computed the critical exponents for each one of the
models corresponding to a finite group, using the fundamental eigenvalue of the associated
spherical triangles. In some cases the eigenvalues are known explicitly and are written in
rational form in Table 3. The computation procedure is described in Section 6. We believe
that all digits shown are accurate.

It is remarkable that among all possible 17 exponents, each one is uniquely assigned to
a particular spherical triangle. Moreover, each group can be realized as a reflection group
for the associated triangles, giving a connection between combinatorial and geometric
aspects. More precisely, we notice that all triangles associated to models with finite
groups are Schwarz triangles, which means that they can be used to tile the sphere,
possibly overlapping, through reflection in their edges. They are classified in [57] and
a nice theoretical and graphical description can be seen on the associated Wikipedia page
(https://en.wikipedia.org/wiki/Schwarz_triangle). The classification of Schwarz
triangles also includes information about their symmetry groups, which are seen to coincide
with the combinatorial groups.

The triangle on the ninth line of Table 3 is exactly half of Kreweras triangle. Accordingly
(and this was confirmed by our numerical approximations) the principal eigenvalue of the
models with half Kreweras triangle equals the second smallest eigenvalue of Kreweras
model.

Some remarks on the tables of [2]. In this paragraph we explain a few conjectural comments
which appear in the captions of Tables 2, 3 and 4 of [2].

First, Table 2 of [2] gives the guessed asymptotic behavior of the 12 models with group
Z2 × S4 and zero orbit-sum (see our Table 4). The first remark of [2] is that the critical
exponent β of the generating function O(1, 1, 1; t) seems to be related to the excursion
exponent λ by the formula

β =
λ

2
− 3

4
. (25)

(Notice that the remark in [2] is stated with +3
4 and not −3

4 ; the reason is that our critical
exponents are opposite to the ones in [2].) Let us briefly mention that (25) is indeed true

https://bit.ly/2J4Vf3X
https://bit.ly/2J4Vf3X
https://en.wikipedia.org/wiki/Schwarz_triangle
https://en.wikipedia.org/wiki/Schwarz_triangle
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Eigenvalue Exponent Nb tri. Angles Hadamard Gr. Size Group

1 4.261,734 3.124,084 2

[
2π

3
,

3π

4
,

3π

4

]
no 48 Z2 × S4

2 5.159,145 3.325,756 7

[
2π

3
,

2π

3
,

2π

3

]
no 24 S4

3 6.241,748 3.547,890 2

[
π

2
,

2π

3
,

3π

4

]
no 48 Z2 × S4

4 6.777,108 3.650,869 5

[
π

2
,

2π

3
,

2π

3

]
no 24 S4

5 70/9 23/6 41

[
π

2
,
π

2
,

3π

4

]
yes 16 Z2 ×D8

6 35/4 4 279

[
π

2
,
π

2
,

2π

3

]
yes/no 12 D12

7 12 9/2 1,852
[π

2
,
π

2
,
π

2

]
yes 8 Z2 × Z2 × Z2

8 12.400,051 4.556,691 2
[
π

3
,
π

2
,

3π

4

]
no 48 Z2 × S4

9 13.744,355 4.740,902 7
[
π

3
,
π

2
,

2π

3

]
no 24 S4

10 20 11/2 172
[π

3
,
π

2
,
π

2

]
yes/no 12 D12

11 20.571,973 5.563,109 2

[
π

4
,
π

2
,

2π

3

]
no 48 Z2 × S4

12 21.309,407 5.643,211 7

[
π

3
,
π

3
,

2π

3

]
no 24 S4

13 24.456,913 5.970,604 2

[
π

4
,
π

3
,

3π

4

]
no 48 Z2 × S4

14 30 13/2 41
[π

4
,
π

2
,
π

2

]
yes 16 Z2 ×D8

15 42 15/2 5
[π

3
,
π

3
,
π

2

]
no 24 S4

16 49.109,945 8.025,663 2

[
π

4
,
π

4
,

2π

3

]
no 48 Z2 × S4

17 90 21/2 2
[π

4
,
π

3
,
π

2

]
no 48 Z2 × S4

Table 3. Characterization of triangles and exponents associated to models
with finite group. One can see some eigenvalues appearing in Lemma 23

Group Hadamard Non-Hadamard OS 6= 0 Non-Hadamard OS = 0
Z2 × Z2 × Z2 1,852 0 0

D12 253 66 132
Z2 ×D8 82 0 0
S4 0 5 26

Z2 × S4 0 2 12
Table 4. Number of models with finite group. Note that OS refers to the
orbit-sum defined in (24). The original version of this table may be found
in [2, Tab. 1]
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Figure 10. Distribution of eigenvalues for triangles associated to the
infinite groups G1, G2 and G3 from Table 1

and is a consequence of Denisov and Wachtel results: by (5) (resp. [30, Thm 1]) one has

λ =

√
λ1 +

1

4
+ 1 and β =

1

2

(√
λ1 +

1

4
− 1

2

)
, (26)

for zero-drift models (which is the case of these models under consideration). This remark
also applies to [2, Tab. 3], giving the excursion asymptotics for the 26 models whose group
is S4 and orbit-sum zero (see again our Table 4).

The second comment of [2] that we can easily explain is about the number of different
critical exponents. It is remarked in [2] that each exponent λ seems to appear for exactly
two models in their Table 2, and that in their Table 3 there are only four different exponents
(namely, −5.643,21, −4.740,90, −3.650,86 and −3.325,75). This simply follows from the
fact that in [2, Tab. 2] (resp. [2, Tab. 3]) there are only six (resp. four) types of spherical
triangles, which appear twice for the second table.

5.3. Infinite group case. We have numerically computed for each model corresponding
to an infinite group its associated spherical triangle, the eigenvalue and thus the exponent.
Details about numerical computations can be found in Section 6.

As expected, the behavior is irregular (much more than in the finite group case) and the
number of distinct eigenvalues, leading to distinct exponents, is more important. Therefore,
we do not attempt to classify the models by the associated eigenvalues. In order to illustrate
their repartition, we show in Figure 10 the distribution of the eigenvalues for triangles
associated to the models in G1, G2 and G3. Points having y-coordinate zero represent the
cases where the hypothesis (H) is not satisfied.

As in the finite group case (Table 3), we may wonder if there is a connection between the
triangles associated to the models and their combinatorial group. The remark shown below
strongly indicates that the analogous proposition holds. In some cases, like for example
when the triangle has two angles equal to π/2, the realization of the infinite group as a
symmetry group for the triangle is more obvious.

Remark 14. All triangles associated to non-degenerate models with infinite groups satisfy
the following property: the combinatorial group can be realized as a symmetry group of the
triangle. We have two possibilities:

• The generators a, b, c are the reflections with respect to the three sides of the
triangle.
• In cases where the first possibility does not hold, it suffices to replace one of the
reflections by its conjugate with respect to one of the other two (for example replace
a by bab).
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Remark 14 is justified using numerical computations made in Section 6. We notice
that only information on the angles is needed here (which can eventually be obtained
using elementary functions and algebraic numbers). Therefore the arguments below can
be justified using symbolic computations.

Summary of numerical observations justifying Remark 14. For G1 there is nothing to
prove: we may choose a, b, c to be the three reflections with respect to the sides of the
triangle, and no additional relation is required.

Among the 82,453 triangles associated to non-degenerate models of type G2, exactly
79,219 have (at least) one right angle. Therefore, if a and b are reflections with respect to
the sides adjacent to the right angle, then (ab)2 = 1. The remaining 3,234 triangles have
the property that for one particular labeling a, b, c of the symmetries associated to the sides
of the triangles, the composition cacb is a rotation of angle π and therefore (cacb)2 = 1.
Therefore, after a transformation of the type a← cac described in [49], G2 is represented
as a group of symmetries of the associated triangles.

All triangles associated to non-degenerate models in G3 have at least two angles equal
to π/2, and 40 among these have three right angles. Therefore, there is a labeling a, b, c
of the reflections for which (ab)2 = 1 and (ac)2 = 1.

For triangles associated to groups among G4, . . . , G11 (all models in G12 turn out to
be included in a half-space) the relations are not always immediately identifiable with
geometric aspects related to angles. One may find triangles with angles π/k for groups
having relations of the type (ab)k = 1, but this is not always the case. In order to validate
these cases we use the following procedure:

(i) For a triangle T associated to a group Gn, n = 4, . . . , 11, for every one of the six
permutations of the reflections a, b, c, we construct the result of the transformations
R(a, b, c)(T ), where R varies among the relations of the group Gn. We test if the
resulting triangle after the above transformations coincides with the initial triangle.
If this is the case for every relation R of Gn then we have found a representation
of Gn as a group of reflections.

(ii) If the above step fails, then we consider transformations of the type R(cac, b, c)
where, as before, a, b, c are reflections along the sides of the triangles and R varies
among the relations of Gn.

For G5, G7, G8, G9, G10, G11 the step (i) of the above procedure finds a permutation of
basic symmetries which satisfies the group relations. This also works partially for G4

and G6. For all remaining cases, the step (ii) finds a combination of reflections with one
modification of the type a← cac such that Gn is represented again as a symmetry group
of the triangle. �

5.4. Exceptional models. In this section we are interested in a family of models, which
is remarkable in the sense that the triangle has additional symmetries than those implied
by the relations between the generators. We identify models which are non-Hadamard
and which have two right angles, providing additional examples where we may compute
exponents explicitly. Moreover, we identify triangles associated to infinite groups with
three right angles or three angles equal to 2π/3. Numerical investigations show that:

• 200 models in G6, 837 in G4, 77,667 in G2 and 31,005 in G1 have exactly one right
angle;
• 57,935 models in G3, 1,552 in G2 and 28,893 in G1 have exactly two right angles;
• 40 models in G3 and 563 models in G1 have three right angles (see Figure 11);
• 2 models in G4 and 3 models in G1 have three 2π/3 angles (see Figure 11).
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We have used numerical tools to find the numbers of models in each category: we inspect
the triangles by using methods described in Section 6 and use a tolerance of 10−8 in
order to classify the angles of the triangle. Lists with steps corresponding to each one of
the cases presented in the above numerical result can be accessed at the following link:
https://bit.ly/2J4Vf3X.

Some of these results are validated using symbolic computations, as underlined below.

Theorem 15. Among infinite group 3D models, there exist models for which the triangles
have exactly one, two or three right angles. There also exist models having three 2π/3
angles.

Proof. The cases of three right angles and three angles equal to 2π/3 are completely
validated using symbolic computations (using the same approach as in the proof of
Theorem 13). The existence of triangles with exactly one right angle in G1, G2, G4 and G6

and triangles with exactly two right angles in G1, G2 and G3 is validated symbolically. �

Figure 11 provides a few examples of Theorem 15. According to our computations, 40
models in G3 and 563 models in G1 have three right angles, and 2 models in G4 and 3
models in G1 have three 2π/3 angles.
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Figure 11. Left: two models with a group G3 and three right angles.
Right: two models from G4 with three angles of measure 2π/3

The first consequence of Theorem 15 is to illustrate that the spherical triangle does not
determine everything:

• infinite group models can have triangles which tile the sphere,
• Hadamard models are not the only ones to admit birectangular triangles.

Note that the first phenomenon already appears in 2D: it is indeed possible to construct
two-dimensional models with infinite group and rational exponent, see, e.g., [14]. All
known examples have either small steps and weights (not only 0 and 1), or admit at least
one big step. However, restricted to the unweighted case there is equivalence between the
infiniteness of the group and the irrationality of the exponent [18]. This is due to the fact
that there are only 51 (non-singular) infinite group models—and more than 11 millions of
3D models.

The second consequence of Theorem 15 is the following:

Corollary 16. For all models with exactly two right angles (say a = b = 0), the exponent
is given by

λ =
π

arccos(−c)
+

5

2
.

In particular if π
arccos(−c) /∈ Q then the model is non-D-finite.

As an example, we prove that the two models of Figure 12 admit irrational exponents.
We present an alternative approach to the irrationally proof given in [18, Sec. 2.4].

Proof. Assume that arccos(−c) = p
qπ. Then obviously cos(q arccos(−c))− (−1)p = 0, and

thus c is a root of
f(x) = cos(q arccos(−x))− (−1)p, (27)

https://bit.ly/2J4Vf3X
https://bit.ly/2J4Vf3X
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Figure 12. Two models having a group G2 (Table 1). Although these
models do not have the Hadamard structure, they admit birectangular
triangles and thus explicit eigenvalues, providing examples of application
to Corollary 16

which is (up to an additive constant) a Chebychev polynomial. For the first (resp.
second) model in Figure 12, one has c =

√
7/3 (resp.

√
7/10), having respective minimal

polynomials
P (X) = 9X2 − 7 and P (X) = 10X2 − 7. (28)

Since Chebychev polynomials have leading coefficient equal to powers of 2, this is the same
for f(x).

We recall that a polynomial in Z[X] is called primitive if its coefficients have no common
factor. We also recall that the product of two primitive polynomials is again primitive, by
Gauss’ lemma.

Suppose that P is a primitive polynomial and that P divides, in Q[X], the polynomial
f defined in (27). Then there exists another polynomial Q ∈ Q[X] such that f = PQ.
Suppose that Q does not have integer coefficients. Then, let cQ be the least common
multiple of the denominators of the coefficients of Q. In this way, the polynomial cQQ has
integer coefficients and is primitive. Therefore

P · (cQQ) = cQf,

and since P and cQQ are both primitive, it follows that cQf is also primitive. This leads
to a contradiction if cQ > 1. Therefore Q ∈ Z[X].

We can now finish the proof and give the following general result: if P ∈ Z[X] is a
primitive polynomial and the leading coefficient of P is greater than 2 and is not a power
of 2, then P cannot divide f . Using the argument given in the previous paragraph we can
conclude that f admits a factorization of the type f = PQ with Q ∈ Z[X]. Therefore
the leading coefficient of f is a product of the leading coefficients of P and Q. Since the
leading coefficient of P is greater than 2 and is not a power of 2, it cannot divide the
leading coefficient of f , which is a power of 2.

In particular, both polynomials in (28) are primitive and have leading coefficient greater
than 2, but not a power of 2. Therefore they cannot divide f , and the exponent cannot be
rational in these cases. �

5.5. Equilateral triangles. In spherical geometry, there exists an equilateral triangle
with angles α for any α ∈ (π/3, π). The limit case α = π/3 (resp. α = π) is the empty
triangle (resp. the half-sphere).

Among the 11 millions of models, we have numerically found 279 different equilateral
triangles. The most remarkable ones admit the angles π/2 (the simple walk), 2π/3
(Kreweras), arccos(1/3) (polar triangle for Kreweras), arccos(

√
2 − 1) (the smallest

equilateral triangle), 2π/5, 3π/5. It seems that only the first one admits an eigenvalue
in closed-form.

Except for the equilateral triangles with angles π/2 and 2π/3, which exist in G3 and
G4, all other equilateral triangles come from G1. The list of equilateral triangles in G1

and the list of all possible angles observed can be consulted on the webpage of the article:
https://bit.ly/2J4Vf3X.

https://bit.ly/2J4Vf3X 
https://bit.ly/2J4Vf3X
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6. Numerical approximation of the critical exponent

6.1. Literature. In lattice walk problems (and more generally in various enumerative
combinatorics problems), it is rather standard to generate many terms of a series and to try
to predict the behavior of the model, as the algebraicity or D-finiteness of the generating
function, or the asymptotic behavior of the sequence. Having a large number of terms
allows further to derive estimates of the exponential growth or of the critical exponent.
More specifically, in the context of walks confined to cones, it is possible to make use
of a functional equation to generate typically a few thousands of terms (the functional
equation corresponds to a step-by-step construction of a walk, see [13, Eq. (4.1)] for a
precise statement).

One can find in [15, 2, 43] various estimates of critical exponents (contrary to the results
presented here, the estimates of [15, 2, 43] also concern the total numbers of walks—and
not only the numbers of excursions). In [15], Bostan and Kauers consider 3D step sets of
up to five elements, and guess various asymptotic behaviors using convergence acceleration
techniques. Bacher, Kauers and Yatchak go further in [2], computing more terms and
considering all 3D models (with no restriction on the cardinality of the step set). In [43],
Guttmann analyses the coefficients of a few models by either the method of differential
approximants or the ratio method. The methods of [43] for generating the coefficients and
for analyzing the resulting series are given in Chapters 7 and 8 of [42].

Some other techniques have the advantage of being applicable to any spherical triangle,
not necessarily related to a 3D model. Using the stereographic projection, the 3D
eigenvalue problem (6) can be rewritten as a 2D eigenvalue problem for a different operator.
Since the stereographic projection maps circles onto circles, the new domain is bounded
by three arcs of circles and is thus rather simple. However, as expected, the eigenvalue
problem becomes more complicated and is a priori not exactly solvable. See [38, 37] for
more details (in particular [37, Eq. (2.12) and Fig. 3]). In [25], the authors present a
method for enclosing the principal eigenvalue of any triangle using validated numerical
techniques.

Finally, the authors of [52] describe a Monte Carlo method for the numerical computation
of the first Dirichlet eigenvalue of the Laplace operator in a bounded domain. It is based
on the estimation of the speed of absorption of Brownian motion by the boundary of
the domain. Theoretically this could certainly be used in our situation, but as in many
probabilistic methods, it is hard to expect a precision such as ours (typically, ten digits).

6.2. Finite element method. Our techniques are completely different here: we develop
a finite element method and compute precise approximations of the eigenvalue (typically,
10 digits of precision). We make available our codes at the following link: https:
//bit.ly/2J4Vf3X. The finite element computation consists in a few standard steps.
For general aspects regarding finite element spaces defined on surfaces, we refer to [35].
We underline the fact that the method described below can be applied to general subsets
of the sphere, not only for triangles. A method for computing eigenvalues of spherical
regions using fundamental solutions was recently proposed in [1] for smooth domains on
the sphere. The singular behavior generated by the corners of the triangles renders this
method is not directly adapted to our needs.

(a) Triangulation of the domain. In order to discretize the spherical triangle, we consider
triangulations. For simplicity, we work with triangulations with flat triangles, which
approximate the curved surface of the sphere better and better as the number of triangles
increases. In order to construct such triangulations, we use the classical midpoint

https://bit.ly/2J4Vf3X
https://bit.ly/2J4Vf3X
https://bit.ly/2J4Vf3X
https://bit.ly/2J4Vf3X
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Figure 13. Triangulation of a spherical triangle using successive refinements

refinement procedure. Starting from a triangle, we construct the midpoints projected on
the sphere, and we replace the initial triangle with four smaller triangles. We iterate this
procedure a few times until we reach the desired precision. The triangulation procedure is
described in Algorithm 1. Details concerning the number of refinements and the precision
will be discussed below. An illustration can be seen in Figure 13.

Algorithm 1 Constructing a triangulation of a spherical triangle
Require: • L: Three distinct points A,B,C on the sphere

• k: number of refinements
1: Initialize the set of vertices P
2: Initialize the set of triangles T
3: for iter = 1 : k do
4: for Ti = XY Z ∈ T do
5: Construct M1,M2,M3 the projections on the sphere of the midpoints of Ti
6: Add M1,M2,M3 to P
7: Remove Ti from T
8: Add the four triangles determined by X,Y, Z,M1,M2,M3 to T
9: end for

10: end for
return P, T

(b) Assembly. Given a triangulation T of the spherical triangle, we denote by (nj)
N
j=1

an enumeration of the nodes and by (Ti)
M
i=1 an enumeration of the triangles. Each Ti

contains the associated nodes to its three vertices. On the triangulation T we consider
the P1-Lagrange finite element space. This consists of associating to each node nj in the
discretization a finite element function ϕj which is piecewise affine on each of the triangles
Ti such that ϕj(nk) = δjk. A function u ∈ H1(T ) is approximated by a linear combination
of the finite element functions

u ≈
N∑
j=1

ajϕj .

A standard approach in numerical computations is to use the weak formulation of the
Laplace-Beltrami eigenvalue problem∫

T
∇τu∇τv = λ

∫
T
uv, ∀v ∈ H1(T ),

where ∇τ represents the tangential gradient to the surface of the sphere. When replacing
u and v by their finite element approximations u ≈

∑N
j=1 ajϕj and v ≈

∑N
j=1 bjϕj , we

obtain the discrete version

vᵀKu = λvᵀMu, ∀v ∈ RN , (29)
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where u = (a1, . . . , aN ) and v = (b1, . . . , bN ). Here we have denoted by K the rigidity
matrix and by M the mass matrix:

K =

(∫
T
∇τϕi · ∇τϕj

)
16i,j6n

and M =

(∫
T
ϕiϕj

)
16i,j6n

.

The matrices K and M are computed in an explicit way for every triangulation.

(c) Solving the discretized problem. We notice that the problem (29) is equivalent to the
generalized eigenvalue problem

Ku = λMu.

We are interested in the smallest eigenvalue associated to this problem. We solve this
problem using the eigs function in Matlab.

6.3. Improving the precision using extrapolation. We start by testing our algorithm
for the spherical triangle having three right angles, for which the first eigenvalue is known
and is equal to 12. After 11 refinements we arrive at the value 12.000,001,608 by using
12,589,057 discretization points. This is at the limit of what we can do using the finite
element method without parallelization. The computation took 12 minutes and used over
80GB of RAM memory.

It is possible to improve the precision by using extrapolation procedures. Various
techniques for improving the convergence of a sequence based on a finite number of terms
can be found in [12]. We choose to use Wynn’s epsilon algorithm, which starting from 2n+1
terms can deliver the exact limit of a sequence, whenever this sequence can be written as
a sum of n geometric sequences. For any discretization parameter h small enough the
discrete eigenvalue approximation λh has a Taylor-like expansion

λh = λ+ C1h
k1 + C2h

k2 + . . . ,

where ki is an increasing sequence of positive real numbers. Applying Wynn’s epsilon
algorithm to a sequence of approximation corresponding to h, h/2, . . . , h/2k will cancel
the first terms in the above expansion, giving a better convergence rate. Applying the
extrapolation procedure for the triple right angle triangle with 11 refinement steps gives
the value 11.999,999,999,999,46, which is close to machine precision.

Wynn’s epsilon algorithm is described in [12, p. 247]. An illustration of the improvement
of the convergence rate in the case of the triple right angle triangle is given in Figure 14.
One may note that the initial finite element approximation has convergence of order 2,
which is expected [39, 46]. On the other hand, the extrapolation procedure seems to have
order of convergence at least 6. Examples of applications of Wynn’s algorithm and other
extrapolation procedures can be found in [12], together with Matlab codes.

6.4. Computing exponents. When given a sequence of steps corresponding to a 3D
walk, the first step is to test if all points belong to the same half-space, determined by
a plane passing through the origin (see our assumption (H)). We choose to loop over all
pairs of steps and test if all remaining points are on the same side of the plane determined
by the current pair and the origin.

Once we confirm that the current sequence of steps is not contained in a half-space,
we know that the inventory χ has a unique minimum point (which is obviously a critical
point) in the positive octant. We use a numerical optimization procedure in order to
find this minimizer. It is straightforward to compute the gradient and the Hessian of
the inventory χ, therefore a Newton algorithm is applicable. We use the function fmincon
from the Matlab Optimization Toolbox to find the minimizers. In all our computations the
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Figure 14. Improvement of the convergence rate when applying the
extrapolation procedure using Wynn’s epsilon algorithm

numerical solution satisfies the critical equations (11) with a numerical precision between
10−12 and 10−16. We mention that for cases of interest, exact solutions can be found (for
example using Maple, see [18, Sec. 2.4]). We choose to work with numerical approximations
in view of the large number of computations involved in our study.

Once the critical point is found, we may compute the coefficients a, b, c of the covariance
matrix and find the associated spherical triangle as described in Theorem 3. Next we apply
the procedure of Sections 6.2 and 6.3 in order to compute the eigenvalue of the triangle.
The exponent is then computed using the formula (5).

We make available at https://bit.ly/2J4Vf3X our codes for constructing the
triangulation, matrix assembly, eigenvalue computation and extrapolation procedure.

6.5. Discussion of the computations. We performed our computations in Matlab using
floating point arithmetic (16 significant digits of precision). This leads to a significant
acceleration of the computations. The computation of the eigenvalues is done using 7
refinement steps for finite groups (typically 8 digits of precision) and 5 refinement steps
for the infinite groups (6 digits of precision). We underline that the computation of the
critical points of the inventory function can be computed using symbolic computations.
We have a Matlab code which can do this for the majority of the cases we tested and it
can be consulted on the webpage associated to this article.

Computations for the models associated to finite groups took a few hours on a laptop
with an i7 processor and 16GB of RAM memory. Computations for the infinite groups
G2, G3, . . . , G12 were performed in a few hours on a 12 core machine clocked at 3.5Ghz
and 256GB of RAM. The computations for G1 took 52 hours on the same machine.

The precision for the computation of the elements of the triangle (points and angles) is
always close to machine precision (between 10−12 and 10−16). This is due to the fact that
when minimizing a well-conditioned convex function, it is possible to obtain an upper bound
for the distance between the numerical and exact minimizers in terms of the norm of the
final gradient. Once the minimizer for the inventory function is found, all computations
made in order to compute the triangles and the corresponding angles are explicit. For
eigenvalues, the precision depends on the size of the triangulation.

If we want to have more precision for a particular model, it is possible to compute
explicitly the components of the triangle and find the fundamental eigenvalue and the
exponent close to machine precision. For example, we found that the eigenvalue of the
triangle associated to the Kreweras model is

λ1 = 5.159,145,642,470,

https://bit.ly/2J4Vf3X 
https://bit.ly/2J4Vf3X
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where we believe that all digits present are correct. This is very close to the result of
Guttmann [43].

7. Miscellaneous

7.1. Walks avoiding an octant and complements of spherical triangles. Rather
than counting walks confined to an octant, one could aim at counting walks avoiding
an octant (or equivalently, walks confined to the union of seven octants). This model
is briefly presented in [54, Sec. 4]. It is inspired by the dimension two case, where the
model of walks avoiding a quadrant has started to be studied [20, 54, 58]. At first sight,
the (geometric) difference between quarter plane and three-quarter plane is anecdotal.
However, the combinatorial complexity is much higher in the three quadrants; this is well
illustrated by the fact that the simple walk model in the three-quarter plane has the same
level of difficulty as quadrant Gessel walks, as shown by Bousquet-Mélou in [20].

Going back to walks avoiding an orthant in dimension three, it is clear from our
construction that the critical exponent λ of the excursion sequence is given by the same
formula (5), where λ1 is now the principal eigenvalue of the Dirichlet problem (6) on the
complement of a spherical triangle.

We were not able to identify any non-degenerate spherical triangle for which the principal
eigenvalue of its complement is known to admit a closed form. A fortiori, we did not find
any model for whose exponent of the excursion sequence in the seven octants has an explicit
form. From that point of view, one notices the same complexification phenomenon as in
dimension 2.

Take the example of the simple walk, for which one should compute the principal
eigenvalue of the complement of the equilateral right triangle. Even for this very simple
case, no closed-form expression for λ1 seems to exist, and the exponent λ is conjectured
to be irrational, see Conjecture 4.1 in [54]. Numerical computations show that λ is
approximatively equal to 0.660,44.

7.2. Walks avoiding a wedge. Let us now mention the combinatorial model of 3D walks
avoiding a wedge, which is a higher dimensional analogue of walks in the slit plane [22].
3D walks avoiding a wedge also appear as a degenerate case of the previous model of
Section 7.1, when the triangle collapses into a single great arc of circle.

From a spherical geometry viewpoint, the problem becomes that of computing the first
eigenvalue for the Dirichlet problem on the complement of a portion of great arc of circle
of some given length in [0, π]. Such a problem is analyzed in [59, Sec. 6]. The extremal
cases π and 0 are solved in [59, Sec. 4], they correspond to λ1 = 3

4 (exponent 2) and
λ1 = 0 (exponent 3

2), respectively. Tables 7 and 8 of [59] provide approximate values of
the fundamental eigenvalue for other values of the arc length.

7.3. Other cones. As we have seen throughout the article, computing critical exponents
for walks in N3 (or in any cone formed by an intersection of three half-spaces, by a linear
transform) requires the computation of the principal eigenvalue of a spherical triangle.
More generally, we could consider walks confined to an arbitrary cone K in dimension 3 or
more (even so the natural combinatorial interpretation of positive walks is lost), and ask
whether there exists a closed-form expression for the principal eigenvalue. However, only
very few domains seem to admit such closed-form eigenvalues. Besides spherical digons
and birectangle triangles, there are for instance the revolution cones, see Figure 15. The
first eigenvalue (and in fact the whole spectrum) is described in Lemma 22 of Section A.2
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ζ

Figure 15. The revolution cone (or spherical cap) K(ζ) of apex angle ζ

in the appendix. From an analytic viewpoint, the domains leading to explicit eigenvalues
have typically the property of separation of the variables, see [55, 56] for more details.

7.4. Total number of walks. Throughout the article we have considered the asymptotics
of the number of excursions (essentially, the coefficients of O(0, 0, 0; t), see (1) and (2)),
but other questions are relevant from an enumerative combinatorics viewpoint, as the
asymptotics of the total number of walks (regardless of the ending position), or equivalently
the coefficients of the series O(1, 1, 1; t).

Let us recall that it is still an open problem to determine, in general, the asymptotics
as n→∞ of the coefficients of O(1, 1, 1; t). Assume that it has the form

[tn]O(1, 1, 1; t) = κ · ρn · n−β · (1 + o(1)). (30)

Recall from [41] that under the hypothesis (H), there exists (x∗, y∗, z∗) ∈ [1,∞)3 such that

min
[1,∞)3

χ = χ(x∗, y∗, z∗),

and then the exponential growth ρ in (30) is given by ρ = χ(x∗, y∗, z∗); compare with (15).
There are essentially three cases for which the critical exponent β in (30) is known:

• Case of a drift in the interior of N3 (β = 0);
• Zero drift (then β = λ

2 −
3
4 , λ being the critical exponent of the excursions (2));

• Case when the point (x∗, y∗, z∗) is in the interior of the domain [1,∞)3, i.e., x∗ > 1,
y∗ > 1 and z∗ > 1 (in that case β = λ).

In the first case (drift with positive entries), the exponent is obviously 0 by the law of
large numbers. In the second case the exponent β is given by the formula (26) proved in
[30]. As recalled in (25), β is a simple affine combination of λ, namely β = λ

2 −
3
4 . The

last case is proved by Duraj in [33]. The original statement of Duraj is in terms of the
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minimum of the Laplace transform of the step set on the dual cone, but it is equivalent to
the one presented above, after an exponential change of variables and using the self-duality
of the octant N3. The hypothesis that the point (x∗, y∗, z∗) is an interior point cannot be
easily translated in terms of the drift; note, however, that it contains the case of a drift
with three negative coordinates. The intuition of the formula β = λ is that the drift being
directed towards the vertex of the cone, a typical walk will end at a point close to the
vertex, and thus asymptotically the total number of walks is comparable to the number of
excursions.

Among the more than 11 millions of models, there are of course many examples
corresponding to each of the above cases.

7.5. Walks in the quarter plane and spherical digons. In this paragraph we briefly
explain how the more classical model of walks in the quarter plane enters into the framework
of spherical geometry. In one sentence, spherical triangles become degenerate and should
be replaced by spherical digons, see Figure 16, for which the principal eigenvalue (and in
fact the whole spectrum) is known.

Indeed, given a 2D positive random walk {(X(n), Y (n))}, we can choose an arbitrary
1D random walk {Z(n)} and embed the 2D model as a 3D walk {(X(n), Y (n), Z(n))},
with no positivity constraint on the last coordinate. The natural cone is therefore N2×Z,
or after the decorrelation of the coordinates, the cartesian product of a wedge of opening
α and Z. On the sphere S2, the section of the latter domain is precisely a spherical digon
of angle α.

The smallest eigenvalue λ1 of a spherical digon is easily computed, see, e.g., [59, Sec. 5]:

λ1 =
π

α

(π
α

+ 1
)
.

The formula (5) relating the smallest eigenvalue to the critical exponent gives an exponent
equal to π

α + 3
2 . To find the exponent of the initial planar random walk we have to subtract

1
2 (exponent of an unconstrained excursion in the z-coordinate), which by [30, 18] is the
correct result.

Figure 16. A spherical digon is the domain bounded by two great arcs of circles

7.6. Exit time from cones for Brownian motion. As shown in [29, 6] (see in particular
[6, Cor. 1]), the exit time of a standard d-dimensional Brownian motion from a cone K
behaves when t→∞ as

Px[τ > t] = B1 ·m1

(
x

|x|

)
·
(
|x|2

2

)λ1(K)/2

· t−λ1(K)/2, (31)
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where λ1(K) is equal to

λ1(K) =

√
λ1(C) +

(
1− d

2

)2

+

(
1− d

2

)
and λ1(C) is the principal eigenvalue of the Dirichlet problem on the section C = K∩Sd−1:{

−∆Sd−1m = Λm in C,
m = 0 in ∂C. (32)

In the asymptotics (31), m1 is the (suitably normalized) eigenfunction associated to λ1.
In the particular case of 3D Brownian motion, if the cone K is an intersection of three

half-spaces, the section C becomes a spherical triangle and the exponent in (31) is directly
related to the principal eigenvalue of a spherical triangle, which is the main object of
investigation studied in this paper.

Let us finally comment on the case of non-standard Brownian motion (in arbitrary
dimension d > 2). First, the case of non-identity covariance matrices is easily reduced to
the standard case, by applying a simple linear transform (notice, however, that this implies
changing the initial cone, and therefore the domain of the Dirichlet problem). The situation
is more subtle in the case of drifted Brownian motion: various asymptotic regimes exist,
depending on the position of the drift with respect to the cone and the polar cone [40].
In some regimes the exponent in (31) involves the principal eigenvalue λ1; in some other
cases (e.g., a drift which belongs to the interior of the cone) the exponent is independent
of the geometry of the cone.

7.7. Sketch of the proof of Theorem 3. This proof follows a certain number of steps
that we now briefly recall. For more details we refer to the presentation of [18] (see
Section 2.3 there, see also [30]).

• Probabilistic interpretation: Following Denisov and Wachtel [30, Sec. 1.5], the main
idea is to write the number of excursions (see (1)) as a local probability for a random walk,
namely,

o(i, j, k;n) = |S|nP

[
n∑
`=1

(X(`), Y (`), Z(`)) = (i, j, k), τ > n

]
, (33)

where {(X(`), Y (`), Z(`))} are i.i.d copies of a random variable (X,Y, Z) having uniform
law on the step set S, i.e., for each s ∈ S, P[(X,Y, Z) = s] = 1/|S|, and where τ is the first
hitting time of the translated cone (N ∪ {−1})3. At the end we shall apply the local limit
theorem [30, Thm 6] for random walks in cones. The latter theorem gives the asymptotics
of (33) for normalized random walks, in the sense that the increments of the random walks
should have no drift, i.e.,

∑
s∈S P[(X,Y, Z) = s] ·s = 0, and a covariance matrix (13) equal

to the identity.

• Removing the drift: It is rather standard to perform an exponential change of measure
so as to remove the drift of a random variable (this is known as the Cramér transform).
Define the triplet (X1, Y1, Z1) by (with s = (s1, s2, s3) ∈ S)

P[(X1, Y1, Z1) = s] =
xs10 y

s2
0 z

s3
0

χ(x0, y0, z0)
.

Under our hypothesis (H), the drift of (X1, Y1, Z1) is zero if and only if (x0, y0, z0) is
solution to (11), which we now assume.
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• Covariance identity: We first normalize the variables by

(X2, Y2, Z2) =

(
X1√
E[X2

1 ]
,

Y1√
E[Y 2

1 ]
,

Z1√
E[Z2

1 ]

)
,

so that the variances of the coordinates are 1, and more generally the covariance matrix
of (X2, Y2, Z2) is given by (13). Writing cov = SSᵀ as in (14) and X3

Y3
Z3

 = S−1

 X2

Y2
Z2

 ,

we obtain that (X3, Y3, Z3) has an identity covariance matrix, since S−1 · cov · (S−1)ᵀ is
the identity. If (X,Y, Z) is defined in the octant R3

+, then (X3, Y3, Z3) takes its values in
the cone S−1R3

+.

• Conclusion: Remarkably, the probability on the right-hand side of (33) can be
expressed in terms of the random walk with increments (X3, Y3, Z3). For instance, for
(i, j, k) equal to the origin,

P

[
n∑
`=1

(X(`), Y (`), Z(`)) = (0, 0, 0), τ > n

]
=

(
χ(x0, y0, z0)

|S|

)n
P

[
n∑
`=1

(X3(`), Y3(`), Z3(`)) = (0, 0, 0), τ3 > n

]
,

with τ3 denoting the exit time from the cone S−1R3
+. Using (33) and applying [30, Thm 6]

finally gives the result stated in Theorem 3.

7.8. Further properties of the covariance matrix. We establish a strong relationship
between the cosine matrix of the angles and the Coxeter matrix of the group, we then
interpret the covariance matrix as a Gram matrix, and finally we show that it is possible
to realize any spherical triangle as a walk triangle.

Relation with the Coxeter matrix. Assume that there exists a representation of the group
G of Section 2.2 as

G = 〈a, b, c | a2, b2, c2, (ab)mab , (ac)mac , (bc)mbc〉,

with mab =∞ if there is no relation between a and b, and similarly for mac and mbc. (It
is not always possible to represent the group G as above, see Table 1.) Following Bourbaki
[19] we introduce the two matrices

 1 mab mac

mab 1 mbc

mac mbc 1

 and


1 − cos

(
π
mab

)
− cos

(
π
mac

)
− cos

(
π
mab

)
1 − cos

(
π
mbc

)
− cos

(
π
mac

)
− cos

(
π
mbc

)
1

 . (34)

The first one is called the Coxeter matrix, see Def. 4 in [19, Ch. IV]. The second one is
used in [19] to define a quadratic form, whose property of being non-degenerate eventually
characterizes the finiteness of the group G, see Thm 2 in [19, Ch. V].
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Our point here is to remark the strong link between the matrix on the right-hand side of
(34) and the covariance matrix, which by Lemma 4 may be rewritten as the cosine matrix 1 − cos(γ) − cos(β)

− cos(γ) 1 − cos(α)
− cos(β) − cos(α) 1

 . (35)

There are, however, two differences between the matrices (35) and (34). The first one is
that in the infinite group case, all non-diagonal coefficients of the matrix (35) are in the
open interval (−1, 1), while if there is no relation between a and b (say), then mab = ∞
and − cos( π

mab
) = −1. See [28] for a rather general study of cosine matrices (35).

The second difference is about the finite group case. Take any two step sets which are
obtained the one from the other by a reflection (see Figure 17 for an example). Then the
group has the exact same structure and thus the matrix of [19] is unchanged. On the other
hand, the matrix (35) changes after a reflection (Kreweras on the left, reflected Kreweras
on the right):  1 1

2
1
2

1
2 1 1

2
1
2

1
2 1

 and

 1 −1
2 −1

2

−1
2 1 1

2

−1
2

1
2 1

 .

· · ·
· • ·
· · ·

· • ·
• ·
· · ·

· · ·
· · ·
· · •

· · ·
· • ·
· · ·

· • ·
· •
· · ·

· · ·
· · ·
• · ·

Figure 17. On the left, Kreweras 3D model. On the right, the reflection
of Kreweras 3D with respect to the x-axis, which can be thought of as a 3D
tandem model

Polar angles and Gram matrix. It is possible to compute the angles between the three
segments connecting the origin to the vertices of the triangle 〈x, y, z〉. These angles may
also be interpreted as the lengths A = yz, B = xz and C = xy of the sides of the triangle,
see [9, 18.6.6]. By [9, 18.6.12.2] they are the complements to π of the polar angles (see
Definition 18).

Lemma 17. Let O denote the origin (0, 0, 0). The angles between the vectors ~Ox, ~Oy and
~Oz are given by

A = arccos

(
bc− a√

1− b2
√

1− c2

)
, B = arccos

(
ac− b√

1− a2
√

1− c2

)
, C = arccos

(
ab− c√

1− a2
√

1− b2

)
.

As it should be, the quantity bc−a√
1−b2

√
1−c2 (and its cyclic permutations as well) in

Lemma 17 belongs to (−1, 1). Indeed if bc > a then

bc− a√
1− b2

√
1− c2

< 1 iff (bc− a)2 < (1− b2)(1− c2) iff 1− a2 − b2 − c2 + 2abc > 0.

The quantity 1−a2−b2−c2+2abc is positive because it is the determinant of the covariance
matrix (13), which is assumed positive definite. In the case bc 6 a we would prove similarly
that bc−a√

1−b2
√
1−c2 > −1.



34 B. BOGOSEL, V. PERROLLAZ, K. RASCHEL, AND A. TROTIGNON

Proof of Lemma 17. The angles are easily computed: if e1, e2 and e3 are the vectors of the
canonical basis and L−1 is as in (19),

〈L−1e1, L−1e2〉 = ‖L−1e1‖ · ‖L−1ej‖ · cosC, (36)

and cyclic permutations of the above identities hold. The formulas stated in Lemma 17
follow from (36), after having computed the norms and the dot products of the columns
of L−1.

An alternative proof is to invert the covariance matrix (13) and to use the orthogonality
relations between the angles and their polar angles, see Definition 18. �

Finally, we stress that the covariance matrix may be interpreted as the Gram matrix 〈u, u〉 〈u, v〉 〈u,w〉〈u, v〉 〈v, v〉 〈v, w〉
〈u,w〉 〈v, w〉 〈w,w〉

 ,

where u, v, w are the three vectors on the sphere which are the columns of the matrix
√
1−a2−b2−c2+2abc√

1−c2 0 0
bc−a√
1−c2 −

√
1− c2 0

b c 1

 .

The reverse construction. Our general construction consists in associating to every model
of walks the covariance matrix (13), and thereby a spherical triangle with angles α, β, γ as
in Lemma 4. It is natural to ask about the converse: is it possible to realize any spherical
triangle as a walk triangle? The answer turns out to be positive, if we allow weighted
walks.

More specifically, let 〈x, y, z〉 be an arbitrary spherical triangle, having angles α, β, γ ∈
(0, π). Introduce a, b, c ∈ (−1, 1) such that (17) holds. Let finally (U, V,W ) be a triplet of
independent random variables (actually, having non-correlated variables is enough) with
unit variances. Introduce the random variables Z

Y
X

 = L

 U
V
W

 , (37)

where L is the matrix (18) appearing in the Cholesky decomposition of the matrix cov.
Then by construction the covariance matrix of (X,Y, Z) is (13) and its spherical triangle
has angles α, β, γ. In conclusion, the random walk model whose increment distribution is
the same as (X,Y, Z) given by (37) has a spherical triangle with generic angles α, β, γ.

7.9. Open problems. Besides the open problems listed in [13, Sec. 9], let us mention the
following:

Singularity analysis. Is it possible to obtain similar results on non-D-finiteness of
Hadamard models using the Hadamard product of generating functions? This would mean
to prove Corollaries 7 and 11 directly, at the level of generating functions.

3D Kreweras model. This is clearly the model for which we can find the greatest number
of estimations in the literature; its triangle is equilateral with angle 2π/3. Let us quickly
give a chronological list (probably non-exhaustive):

• [5.15, 5.16] by Costabel (2008, [27])
• 5.159 by Ratzkin and Treibergs (2009, [55, 56])
• 5.1589 by Bostan, Raschel and Salvy (2012, [17])
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Figure 18. Two triangles (color red) and their polar triangles (in blue),
see Definition 18

• 5.162 by Balakrishna (2013, [3])
• 5.1606 by Balakrishna (2013, [4])
• 5.1591452 by Bacher, Kauers and Yatchak (2016, [2])
• 5.159145642466 Guttmann (2017, [43])
• 5.159145642470 by our result

What is the exact value? Is it a rational number? The triangle associated to Kreweras
model, which corresponds to the tetrahedral partition of the sphere, is also related to
minimal 4-partitions of S2, see [44].

Appendix A. Elementary spherical geometry and Dirichlet eigenvalues of
spherical triangles

A.1. Elementary spherical geometry. Our main source is the book [9] by Berger.
Spherical triangles have been introduced in Definition 2. A spherical digon is a domain
bounded by two great arcs of circles, see Figure 16 and [9, 18.3.8.2].

A natural operation in spherical geometry is to take the polar spherical triangle; see [9,
18.3.8.2] and [9, 18.6.12] for more details.

Definition 18 (polar triangle). Let 〈x, y, z〉 be a spherical triangle in the sense of
Definition 2. Define the triplet (x′, y′, z′) by the conditions 〈x

′, y〉 = 〈x′, z〉 = 0, 〈x′, x〉 > 0,
〈y′, z〉 = 〈y′, x〉 = 0, 〈y′, y〉 > 0,
〈z′, x〉 = 〈z′, y〉 = 0, 〈z′, z〉 > 0.

Then 〈x′, y′, z′〉 is a spherical triangle, called the polar triangle of 〈x, y, z〉.

The polar transformation is involutive, and the equilateral right triangle is invariant.
There is no simple formula relating the eigenvalues of a spherical triangle to that of its
polar triangle. See Figure 18 for examples.

Interestingly, polar cones already appear in [41] (resp. [40]) to compute the exponential
decay of the survival probability of random walks (resp. the exponential decay and the
critical exponent of the Brownian survival probability) in cones.

A.2. Some properties of the principal eigenvalue. Our main reference here is the
book [26] of Dauge.

Monotonicity and regularity of the eigenvalues.

Lemma 19 (Lemma 18.5 in [26]). Let T1 and T2 be two simply connected domains on S2.
If T1 ⊂ T2 then

λ1(T1) > λ1(T2).
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In particular, as any spherical triangle is included in a half-sphere (whose principal
eigenvalue equals 2), one has the universal lower bound

λ1(T ) > 2

for any spherical triangle T . (By (5), this implies that the critical exponent λ should be
bigger than 5

2 .)
Classical arguments in perturbation theory for operators [47] state that analytic

perturbations of the operator induce analytic perturbations of the eigenvalues, see in
particular [45, Lem. 2.1] in our context.

Lemma 20. The function λ1(T ) = λ1(α, β, γ) is analytic in the angles α, β, γ.

A consequence of Lemma 20 is that a generic triangle has an irrational (and even
transcendental) principal eigenvalue λ1.

Lemma 21. As one of the angles goes to 0, λ1 goes to infinity.

Proof. Lemma 21 is a simple consequence of Lemma 19 and the fact that each spherical
triangle can be included in any of the digons determined by its angles. Indeed, suppose
the triangle T has an angle equal to α. Then T is included in the digon Dα with angle α
and

λ1(T ) > λ1(Dα) =
π

α

(π
α

+ 1
)
.

We can notice immediately that if α→ 0 then the first eigenvalue of T goes to infinity. �

Revolution cones. We now compute the spectrum of a revolution cone (or solid angle) in
arbitrary dimension d > 2. Introduce some notation. We fix a half-axis A in Rd and for
any x 6= 0 denote by θ(x) ∈ [0, π] the angle between the axes A and ~x. By definition, the
revolution cone with apex angle ζ is (see Figure 15)

K(ζ) = {x ∈ Rd \ {0} : θ(x) ∈ (0, ζ)}. (38)

Its section on the sphere is the circle C(ζ) = K(ζ) ∩ S2.

Lemma 22 (Proposition 18.10 in [26]). The spectrum of C(ζ) is the set of positive
ν(ν + d − 2) for which there is m ∈ N such that Pmν (cos ζ) = 0, where Pmν denotes the
mth Legendre function of the first kind.

Notice that [26, Prop. 18.10] computes the spectrum of the cone K(ζ), not of its section
C(ζ). However the eigenvalues λi(K) of a cone K are directly related to the eigenvalues
of its section C = K ∩ S2, namely (see, e.g., [26, 18.3])

λi(K) =

√
λi(C) +

(
1− d

2

)2

+

(
1− d

2

)
. (39)

A few remarkable spherical triangles. Consider triangles with angles(
π

p
,
π

q
,
π

r

)
, with p, q, r ∈ N \ {0, 1}.

As recalled in [7, 26], the only possible triplets are
• (2, 3, 3) tetrahedral group;
• (2, 3, 4) octahedral group;
• (2, 3, 5) icosahedral group;
• (2, 2, r) dihedral group or order 2r > 4
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Each triplet above corresponds to a tiling of the sphere. See Figures 6 and 9 for a few
examples. Denote by T(p,q,r) the associated triangle when it exists.

Lemma 23 (Theorem 6 in [7]). The eigenvalues of T(p,q,r) have the form ν(p,q,r)(ν(p,q,r)+1),
with (`1, `2 ∈ N)

• ν(2,3,3) = 6 + 3`1 + 4`2;
• ν(2,3,4) = 9 + 6`1 + 6`2;
• ν(2,3,5) = 15 + 6`1 + 10`2;
• ν(2,2,r) = r + 1 + 2`1 + r`2.
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