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Abstract

Gessel and Zeilberger generalized the reflection principle to handle walks confined to Weyl chambers,
under some restrictions on the allowable steps. For some models that are invariant under the Weyl group
action, they express the counting function for the walks with fixed starting and endpoint as a constant
term in the Taylor series expansion of a rational function. Here, we focus on the simplest case, the Weyl
groups Ad

1, which correspond to walks in the first orthant Nd taking steps from a subset of {±1, 0}d which
is invariant under reflection across any axis. The principle novelty here is the incorporation of weights on
the steps and the main result is a very general theorem giving asymptotic enumeration formulas for walks
that end anywhere in the orthant. The formulas are determined by singularity analysis of multivariable
rational functions, an approach that has already been successfully applied in numerous related cases.

1 Introduction

The simplicity of lattice walk models in part explains their utility for modelling a variety of objects.
In particular, families of lattice walks which incorporate many types of symmetry are a natural way to
interpret quantities in representation theory. Asymptotic enumeration formulas help us understand the
interaction between combinatorial properties and the large scale behaviour of the walks. In this work, we
consider walks restricted to the positive orthant whose possible steps are chosen from a set with symmetry
across every axis. These are the walks in the fundamental chamber associated to the Weyl group Ad

1. By
considering weighted walks, we are able to examine the impact of a continuous deformation of the drift
on the enumeration. Our main result, Theorem 2, is a very general asymptotic enumeration formula
which can be applied to enumerate weighted walks with reflectable step sets contained in {±1, 0}d. The
formula is parameterized by the dimension and the weights, which clearly illustrates their impact on the
exponential and sub-exponential growth.

1.1 Reflectable walks

To start, we describe the families of walks considered. A lattice model in dimension d is defined by its
stepset, denoted S . Here we restrict to S ⊆ {0, 1,−1}d. Let Q be the set of lattice walks starting at the
origin, taking steps from S which remain in the positive orthant (Zd

≥0). That is, a walk of length n in the
class is a sequence (w1, . . . , wn) of steps wj ∈ S, viewed as incremental moves starting from the origin.
After each move the walk must remain in the positive orthant: (

∑

i=1..k wi) ∈ Z
d
≥0 for k = 1, . . . , n. Here

we focus on stepsets which are reflectable, that is, the stepset is invariant under reflection across any axis.
Furthermore, we require the stepset to be genuinely d-dimensional, in the sense that for any dimension
there is at least one step that moves in that dimension.

Reflectable lattice models appear in the literature in the study of walks in Weyl chambers. Zeil-
berger [17] determined an expression for the generating function of d dimensional highly symmetric
models, and then Gessel and Zeilberger [9] illustrated how to generalize the reflection principle argument
to handle walks in Weyl chambers. As we do not otherwise comment on the representation theoretic
aspects, we point the reader to these sources for details on the connections. The proof of their main
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formulas rely on two key properties of the model: symmetry of the stepset with respect to the underlying
reflection group, and the impossibility of a step jumping over a boundary. We satisfy this latter criterion
here by restricting to unit steps on the integer lattice.

The formulas of Gessel and Zeilberger are well suited to asymptotic analysis. Grabiner [10] used them
to describe the exponential generating function using determinants of matrices of Bessel functions. The
reflection argument in Weyl chambers involves a signed sum over permutations of terms, which leads to
the presence of determinants. The recent work of Feierl develops the related asymptotic formulas for
type A walks [8] using a theorem of Hörmander to estimate a Fourier-Laplace integral, numbered in this
paper as Theorem 7. The results of Melczer and Mishna [14] and Melczer and Wilson [15], and their
formulas are made similarly explicit by using the formalism articulated in the book by Pemantle and
Wilson [16] to apply some of these integral formulas in a more systematic setting. As a result, their
results are a little more general. These papers consider, respectively, unweighted reflectable walks in
arbitrary dimension (called highly symmetric), and a slight relaxation for stepsets lacking symmetry in
precisely one dimension.

More generally, there are several approaches for asymptotic lattice path enumeration. Recent results
in probability theory have been applied to determine asymptotic formulas for excursions for models with
zero drift [6], and general walks with negative drift [7]. These methods cannot be used to determine
the leading constant, or to determine terms beyond the dominant growth. In two and three dimensions
there are several approaches for asymptotic enumeration of lattice models which pass through differential
equations, see [3] and the references therein. Differential equation approaches become computationally
infeasible in higher dimensions, and present theory does not permit treatment of dimension as a symbolic
parameter.

1.2 Weighted walks

A central weighting is characterized by the property that two walks of the same length that end at the
same point must have the same weight. Kauers and Yatchak [12] determined, in the 2D case, precisely
which weighted models would have finite orbit sums, a property important for a popular enumeration
strategy (the kernel method) from which one can deduce properties such as D-finiteness. The models
they determined are mostly examples of central weightings.

Courtiel et al. [5] showed that the (univariate) ordinary generating function for weighted walks with
a central weighting could be obtained as an evaluation of the (multivariate) generating function for
unweighted walks considering endpoints. Consequently, we will phrase our results in terms of evaluations
of the generating function for unweighted walks. We could interpret this as weighting directions, rather
than steps.

1.3 Main result and organization of the paper

To lighten the presentation of our results we use the following notation. We denote vectors by boldface:
x := (x1, . . . , xd) and we extend operations component-wise when it makes sense: xα := (x1α1, . . . , xdαd);

xα := (xα1

1 , . . . , xαd

d ); x−1 := (x−1
1 , . . . , x−1

d ), and eθ := (eθ1 , . . . , eθd).
Suppose that Q is a class of lattice walks. We define the complete generating function associated to

the model as the formal power series:

Q(x; t) :=
∑

ι∈Nd,n≥0

q(ι;n)xιtn (1)

where q(ι;n) is the number of (unweighted) walks of length n that start at the origin end at the point ι.

Proposition 1. Let S be any stepset and let Q(x; t) be its associated complete generating function. For

any centrally weighted model, there exits a weight-vector α of positive real numbers, and a positive real

constant β such that the quantity qα(n) defined as the weighted sum of all walks of length n is equal to

qα(n) = [tn]Q(α;βt).

Consequently, we define a weighted walk directly using the weight vector α. Furthermore, we assume
β = 1. When β 6= 1, it suffices to rescale our enumeration results by multiplying the formula by βn.
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Let α = (α1, . . . , αd) be a vector of positive real numbers. The weight of a walk weighed by α ending
at ι ∈ Z

d
≥0 is the value

∏
αιi
i . Remark that this is equivalent to weighting a step σ in S by

∏

i=1..d α
σi
i

and taking the weight of a walk to be the product of the weights of the steps.
Our main result is the following enumeration formula for weighted reflectable walks in arbitrary

dimension.

Theorem 2. Fix the dimension d ≥ 1. Let S ⊂ {−1, 0, 1}d be a nontrivial reflectable stepset defining a

lattice model of walks such that each walk starts at the origin and remains in the first orthant Zd
≥0. Let

α = (α1, . . . , αd) be a vector of positive weights, and let qα(n) := [tn]Q(α; t) be the weighted sum of all

walks of length n as defined above. Asymptotically, as n tends to infinity,

qα(n) ∼ γ · S(α+)n · n−(r/2)−m,

where S(x) =
∑

σ∈S xσ, is the stepset inventory Laurent polynomial; α+
i = max{αi, 1} for all i; m is

the number of αi strictly less than 1 and r is the number of αi less than or equal to 1, and γ is a known

computable constant.

The proof of Theorem 2 is given in the next section, and uses a description of the generating function
as a residue which is then converted into a integral of type Fourier-Laplace. The computation first treats
those components of the weight vector greater than one, and then the weights less than or equal to
one. As per usual in analytic combinatorics, the growth is determined by locating singular points near
the boundary of convergence, and identifying the contribution of each to the asymptotics. Those points
which affect the dominant term in the asymptotics are called the contributing critical points. In this case
the characterization is complete, and the leading constant depends on this set of points in a computable
way.

Example 3 (The simple walks). Consider the three dimensional simple walks, where the step set is the
set of elementary vectors, and their negatives:

S = {±(1, 0, 0),±(0, 1, 0),±(0, 0, 1)}

S(x, y, z) = x+ 1/x + y + 1/y + z + 1/z.

The following integer weighting of the steps is central:

Step (1, 0, 0) (−1, 0, 0) (0, 1, 0) (0,−1, 0) (0, 0, 1) (0, 0,−1)
Weight 8 2 4 4 1 16

The associated weight vector is: α = (2, 1, 1/4) with β = 4, hence r = 2, m = 1 in Theorem 2. By Theo-
rem 2 the number of walks of length n has exponential growth β·S(2, 1, 1) = 26 and subexponential growth
n−2/2−1 = n−2. The four critical points are computed to be (2, 1, 1), (2, 1,−1), (2,−1, 1), (2,−1,−1).
However, we know the last two are not contributing critical points via Proposition 8 as the stepset has
weight α2 = 1. Lastly, as |S(2, 1,−1)| < |S(2, 1, 1)|, we know that (2, 1, 1) is the only contributing
critical point. The associated constant factor is 169

3π
, following Equation (21), computed as the product

of c(z1) =
3
4
, c(z2) =

√
13√
2π

, c(z3) =
13

√
13

4
√

2π
( 4
3
)2.

1.4 Comparison to earlier formulas

The case where all weights are 1 was considered by Melczer and Mishna, and our formulas agree. The
drift of a model is the vector sum of the stepset: δS :=

∑

σ∈S σ. By the work of Duraj [7], for the walks

considered here, when this vector is in the negative orthant Zd
<0, the exponential growth factor and the

critical exponent should agree with those found for the excursions of the unweighted model. We show
how to prove this property in the concluding remarks. The excursion enumeration formulas of Denisov
and Wachtel [6] agree with ours for the known 2D and 3D cases [4, 2]. The 1D results of Banderier and
Flajolet [1] also agree with our formulas.

One feature of our formulas is that you can visualize the regions where the formula changes. Figure 1
illustrates the main theorem on the simple two dimensional walks. In particular, we observe that the
exponential growth is smooth across boundaries, whereas the subexponential growth makes jumps at
the boundaries. We also note that the weighted 1-dimensional walk has subexponential growth 0 for
positive drift, -1/2 for zero drift, and -3/2 for negative drift. By varying only one weight and observing
the change in the asymptotic regime, we recover this 1-dimensional behavior. In this sense, we see that
these d-dimensional walks behave as a product of d 1-dimensional walks.
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Figure 1: A schematic of the asymptotic growth for simple two dimensional walks with weight vector (a, b).
The weight vector defines a drift vector of the model, in this case S = {N,S,E,W} with drift (x, y) =
(a − 1/a, b − 1/b). This location of this point on the two figures describes the asymptotic growth of the
model (up to a constant). The left hand side gives the exponential growth µ and the right hand side gives
the subexponential growth nα. For example, the weight vector (2, 1/2), has drift vector (3/2,−3/2). This
vector is indicated in both figures in black, and we read off the number of walks in this class of weighted
walks grows like γ(9

2
)nn−

3
2 for large n and for some constant γ.

2 Proof of Theorem 2

Melczer and Mishna outline the strategy in their study of the unweighted case, and setup here is similar.
However, it differs in that we use the two stage evaluation of the integral following the strategy of Courtiel
et al. The main steps are as follows:

1. Write the generating function as a diagonal of a rational function;
2. Determine the minimal critical points of the rational function;
3. Write the coefficient as an iterated Cauchy integral;
4. Apply univariate residue theorem to reduce the dimensions of the integral, specifically with weights

greater than 1;
5. Rewrite the integral and apply known formulas for Fourier-Laplace integrals.

The final step requires a potentially intense computation. However, the form of the inventory polynomial
permits an important deduction which reduces this computation, and allows us to say general things.

2.1 A diagonal expression

Because of Proposition 1, we can appeal directly to the diagonal expression for the generating function
Q(x; t) of Equation (9) in Melczer and Mishna [14]. The modification of this process required to give
the weighted version which is simply an evaluation follows Chyzak et al. [3]. Here, Diag is the diagonal
operator:

Diag

(
∑

n

f(n1, n2, . . . , nd, nd+1)x
n1

1 xn2

2 · · · xnd

d tnd+1

)

:=
∑

n≥0

f(n, n, . . . , n)tn

which is known to be well defined as applied to these functions, as they are all products geometric series.

Proposition 4. The generating function for weighted walks satisfies:

∑

n≥0

qα(n)t
n = Diag

(
G(x)

H(x; t)

)

= Diag

( ∏d
k=1 α

−2
k (α2

k − x2
k)

1− t(x1 · · ·xd)S(α · x−1)
·

1

(1− x1) · · · (1− xd)

)

. (2)
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We identify G(x) and H(x; t) as the numerator and denominator of Equation (2) respectively.

2.2 The critical points

The first step is to determine the possible singular points of G(x)
H(x;t)

which contribute to the asymptotic

growth. We use the machinery developed in Pemantle and Wilson [16] to find these points and find
which points given the dominant asymptotics. In this case, it is sufficient to find these solutions ρ∗ to
the following particular set of equations which maximize the value |ρ1 . . . ρd+1|

−1,

H(x; t) = 0, x1
∂H(x; t)

∂x1
= · · · = xd

∂H(x; t)

∂xd
= t

∂H(x; t)

∂t
. (3)

Lemma 4.1. The solutions to (3) are xk = ±αk, t =
1

x1...xd
S(αx−1).

Proof. The first critical point equation is H(x; t) = 0. From this we deduce

t =
1

x1 . . . xd
S(αx

−1),

since there is only one factor in which t appears. We also see that if x∗ is in the closure of the domain
of convergence, each component must satisfy |x∗

i | ≤ 1 for 1 ≤ i ≤ d.
The symmetry of the stepset gives S(x; t) a particular form, which allows us to solve these explicitly.

For each k we have:

S(αx
−1) =

(
αk

xk
+

xk

αk

)

Pk(x) +Qk(x) (4)

where Pk and Qk contain no xk. Using this form we see that the equation xk
∂H(x;t)

∂xk
= t ∂H(x;t)

∂t
is

equivalent to:

0 = tx1 . . . xd ·
1

αk
· (x2

k − α2
k) · Pk(x). (5)

The solution to (5) occurs when either xk = ±αk or Pk = 0. The latter possibility is dismissed since it
implies that the model has no step in the k-th dimension, contradicting the nontriviality hypothesis.

There is a unique minimal critical point in R
d
>0, and we show in Section 2.3 that it determines the

subexponential growth. As we see that xk = −αk is also a solution to (5) we recognize that there are
other minimal critical points, some of which can also contribute. We note that there are a finite number of
solutions to (5), specifically 2d many, and so using the lexicon of Pemantle and Wilson we have following
corollary.

Corollary 5. The point x∗ = (α−, tα−), where

α
− := (α−

1 , . . . , α
−
d ) where α−

k = min{1, αk} and tα− :=
1

α−
1 . . . α−

d S(α
+)

(6)

is a finitely minimal point of
G(x)
H(x;t)

.

There are some cases where the critical points with yi = −xi contribute to the asymptotic growth,
but only the constant term is affected. The two conditions necessary for these points to contribute are
stated in Proposition 8. The first condition is the magnitude of the weighted step function at the critical
|S(αx)| is the same as at the positive critical point S(α+). We now note that the first condition ensures
that the point has the same exponential growth given in the following proposition.

Proposition 6. The exponential growth of qα(n) is

lim
n→∞

qα(n)
1/n =

∣
∣α−

1 . . . α−
d tα−

∣
∣
−1

= S(α+). (7)
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2.3 Subexponential growth

In order to determine the sub exponential growth of qα(n), we express it as an iterated Cauchy integral.
We simplify the integral in two stages: first to account for weights greater than 1, and then the weights less
than or equal to 1. In order to simplify the presentation, we assume that the weights are in ascending order
(reordering the dimensions if necessary): α1 ≤ · · · ≤ αm < 1 = αm+1 = . . . αr = 1 < αr+1 ≤ · · · ≤ αd.
We have

qα(n) = [xn
1 ][x

n
2 ] · · · [x

n
d ][t

n]

( ∏d
k=1 α

2
k(α

2
k − x2

k)

(1− tx1 . . . xdS(αx−1))
∏d

k=1(1− xk)

)

(8)

The next step is to use the multivariate Cauchy Integral Formula (CIF) to express this coefficient extrac-
tion as an integral. In order to do so, we must find a polydisc around the origin that does not contain a
critical point. The polydisc that we choose falls into one of two cases.

If there is a weight αk > 1 then we first note that

[tn]
1

(1− tx1 . . . xdS(αx−1))
= (x1 . . . xdS(αx

−1))n,

which allows us to rewrite Equation (8) as

[x0
1][x

0
2] · · · [x

0
d]

(

S(αx
−1)n

d∏

k=1

α2
k − x2

k

α2
k (1− xk)

)

,

and take a polydisc in the remaining d variables. In this case we define the region of integration as
|xk| = αk for k ≤ r and |xk| = 1− ǫ for r + 1 ≤ k ≤ d, with the following integrand denoted as I1(x),

S(αx
−1)n

d∏

k=1

α2
k − x2

k

α2
kxk (1− xk)

︸ ︷︷ ︸

I(x)

dxd · · · dx1.

We first simplify this integral, and then we use a known theorem to estimate it to give the asymptotic
form. If there is no such weight then we take the polydisc

|xk| = αk, |t| =
1

x1 . . . xdS(αx−1)
− ǫ,

which is handled in Section 2.5. In both cases we consider subtracting a larger integral (and adding on
the corresponding error term) to do a residue evaluation. We detail the first case in the following section.

2.4 Large Weights

For each dimension in which the weight is more than 1, we can estimate the integral with a residue
computation with a controlled error term. We show how to treat the innermost integral, and then repeat
this process for all of the dimensions where the weight is greater than 1. This process will result in an
expression with r integrals remaining.

In order to estimate the integrals in variables with large weights, we use a residue computation which
differs from the original integral by a small enough error term. We sketch how to do this for one variable,
xd, but we can iterate the argument for each variable with large weights. (Or, skip this entirely if d = r.)

We can show the integral of I1(x) over |xd| = 1 + ǫ has exponential growth strictly less that S(α+)
using some elementary bounds. Therefore, we know that for some constants K > 0, and Mǫ < S(α+),

∣
∣
∣
∣
∣

∫

. . .

∫ ∫

|xd|=1+ǫ

I(x) dxd · · · dx1

∣
∣
∣
∣
∣
≤ K Mn

ǫ . (9)

Therefore we can subtract off this integral and add an error term of O(Mn
ǫ ), so that we can use the

residue theorem inside the region 1− ǫ ≤ |x1| ≤ 1 + ǫ. That is,

qα(n) =

(
1

2πi

)d ∫

. . .

∫
(
∫

|xd|=1−ǫ

−

∫

|xd|=1+ǫ

I1(x) dxd

)

dxd−1 . . . dx1 +O(Mn
ǫ ).

6



The only pole in the region is a simple pole is at xd = 1. Thus, the innermost integral evaluates to
2πi (xd − 1)I1(x) evaluated at xd = 1. Thus,

qα(n) =
(α2

d − 1)

α2
d(2πi)

d−1
· (10)

∫

· · ·

∫

|xj |=αj

S

(
α1

x1
, . . . ,

αd−1

xd−1
, αd

)n d−1∏

k=1

α2
k − x2

k

α2
kxk (1− xk)

dxd−1 · · · dx1 +O(Mn
ǫ ).

In short, we see that the the dimensions with large weights don’t contribute to the subexponential growth
of the dominant term.

2.5 Small Weights

After processing the large weights we have:

qα(n) =

∏d
k=r+1(α

2
k − 1)α−2

k

(2πi)r
·

∫

· · ·

∫

|xj |=αj

S

(
α1

x1
, . . . ,

αr

xr
, αr+1, . . . , αd

)n r∏

k=1

α2
k − x2

k

α2
kxk (1− xk)

dxr · · · dx1 +O(Mn
ǫ ). (11)

Alternatively, if there were no large weights to process, then we have the following integral,

qα(n) =

∫

· · ·

∫

|xj |=αj ,|t|=t
α−

−ǫ

( ∏d
k=1 α

2
k(α

2
k − x2

k)

(1− tx1 . . . xdS(αx−1))
∏d

k=1(1− xk)

)

1

(x1 . . . xdt)n+1

︸ ︷︷ ︸

I2(x)

dt dxd . . . dx1.

Next we use a residue computation to evaluate the t integral which will give an integral in the same form
as Equation (11).

∫

· · ·

∫

|xj |=αj

(∫

|t|=t
α−

−ǫ

−

∫

|t|=t
α−

+ǫ

)

I2(x)dt dxd . . . dx1 +O(Nn
ǫ ).

This residue is more involved than the previous, and we refer to Pemantle and Wilson [16, Theorem
10.2.2] for the necessary formula for evaluating to give

∫

· · ·

∫

|xj |=αj

S(αx
−1)n

d∏

k=1

α2
k − x2

k

α2
kxk (1− xk)

dxd · · · dx1 +O(Nn
ǫ ).

In both cases we apply the following change of variables to the remaining r variables (where r = d when
there are no large weights):

xk = αke
iθk ; dxk = αkie

iθkdθk. (12)

The integral part of this expression becomes
∫

[0,2π)r
A(θ)e−nφ(θ)dθ (13)

with1

A(θ) :=
m∏

k=1

(
1− e2iθk

)

(1− αkeiθk )

r∏

k=m+1

(

1 + eiθk
)

. (14)

and

φ := ln
(
S(α+)

)
− ln

(

S

(
1

eiθ1
, · · · ,

1

eiθm
,

1

eiθm+1
, · · · ,

1

eiθr
, αr+1, . . . , αd

))

. (15)

To estimate the integral in Eq. (13), we appeal directly to a theorem of Hörmander [11, Theorem 7.7.5],
rephrased by Pemantle andWilson [16, Theorem 13.3.2]. In order to prove the formula for sub-exponential
growth, we must determine the first non-zero value of Ck in the equation below. Again, the symmetry
will permit a useful simplification which is what allows us to obtain the general result. We note that the
dimension of the integral below is r, following our simplification in the earlier section.

1
Recall that αm+1 = · · · = αr = 1.
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Theorem 7 (Hörmander; Pemantle and Wilson). Suppose that the functions A(θ) and φ(θ) in r variables

are smooth in a neighbourhood N of the origin and that φ has a critical point at θ = 0; the Hessian H
of φ at 0 is non-singular; φ(0) = 0; and the real part of φ(θ) is non-negative on N .

Then for any integer M > 0 there are constants C0, · · · , CM such that

∫

N
A(θ)e−nφ(θ)dθ =

(
2π

n

)r/2

det (H)−1/2 ·
M∑

j=0

Cjn
−j +O(n−M−1). (16)

The constants Cj are given by the formula:

Cj = (−1)j
∑

ℓ≤2j

Dℓ+j(Aφℓ)(0)

2ℓ+jℓ!(ℓ+ j)!
, with φ := φ− 〈θ,Hθ〉 (17)

where D is the differential operator D :=
∑

au,v(H
−1)u,v

∂
∂θu

∂
∂θv

.

We satisfy the conditions of the theorem as seen below by calculating the partial derivatives. The
dominant asymptotics are determined by the integration around a small neighborhood of the critical
points. The final asymptotics are then the sum of the asymptotics over each critical point. Below we
show what the computation is like for the unique positive critical point. The analysis for critical points
with negative components is similar.

The computation of the Cj is then:

S
(

e−iθ
)

=
(

e−iθk + eiθk
)

Pk +Qk =⇒
∂

∂θk
φ(θ) =

(
−ie−iθk + ieiθk

)
Pk

(e−iθk + eiθk )Pk +Qk
, (18)

since Pk and Qk have no θk. We can see that this is zero when θk = 0, and indeed any mixed partials
will evaluate to 0 when θ = 0. Then the second order partial with respect to θk is

∂2

∂2θk
φ(0) = −

2Pk(0)

2Pk(0) +Qk(0)
,

which are subtracted off by φ so that the function vanishes at all second derivatives.
This kind of analysis, and a similar analysis of A, which factors into a product such that each

multiplicand has a single θk, is crucial to the proof of the following lemma.

Lemma 7.1. For weights α1, · · · , αm < 1, αm+1 = · · · = αr = 1, and A,φ, as defined above, the first j
such that Cj in Eq. (17) is nonzero is m, and the only nonzero term in the sum for Cm is ℓ = 0.

Proof. First, observe that A(θ1, · · · , θr) can be written as

A(θ) :=

r∏

j=1

Aj(θj) =

m∏

k=1

(
1− e2iθk

)

(1− αkeiθk )

r∏

k=m+1

(

1 + eiθk
)

.

Since Aj(0) = 0 for 1 ≤ j ≤ m, the composition of a differential operator applied to A evaluated at
0 is a nonzero map only if the operator has a term with each ∂k for 1 ≤ k ≤ m. Given that D does
not have any mixed partials, this only happens once D is raised to the mth power, which proves the first
claim in Lemma 7.1.

Next we consider which differentials applied to φ evaluated at (0) are non-zero. Due to the assump-
tions on φ in Theorem 7 and the definition of φ, we know that φ vanishes to order three at 0. Therefore,

Dφ(0) = 0 and so Dℓφℓ(0) = 0 for each l ≥ 1. As we want to consider derivatives of order three and
higher of φ we need only consider those of φ. Since φ is constructed using the stepset, it has a term of

the form (e−iθk + eiθk)Pk +Qk for each k. Therefore, for partials in some variable to an odd degree then
the evaluation at (0) is 0.

That is, all order four or higher derivatives that can be formed from a product of the ∂1 · · · ∂r and Dℓ

have a partial to an odd power, so it annihilates φℓ(0). Combining this with Dℓφℓ(0) = 0, we conclude

that Dm+ℓAφℓ(0) = 0 for l ≥ 1. Therefore, the first nonzero term is Cm and the only nonzero term in
the sum is ℓ = 0.
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Note that the integral of interest is over [0, 2π)r, but the contributing part of the integral is only in
smooth neighborhoods of critical points. Suppose that there is a critical point at 0 and π. Then we
express the integral as

∫

[0,2π)r
A(θ)e−nφ(θ)dθ =

(
∫

[0,ǫ)r
+

∫

[ǫ,π−ǫ)r
+

∫

[π−ǫ,π+ǫ)r
+

∫

[π+ǫ,2π)r

)

A(θ)e−nφ(θ)dθ,

where only the first and third integrals contribute to the dominant asymptotics, which are calculated
using Theorem 7.

Let Cp be the projection of the critical points onto the r dimensions with weight αj ≤ 1, and let τ ∈ Cp

be the projected critical point under the change of variables given in Equation (12). In general, we know
that all contributing critical points will be isolated, so we can always break the region of integration into
sums of integral over regions of the critical points, and regions which don’t contribute. Thus, we have

∫

[0,2π)r
A(θ)e−nφ(θ)dθ ∼

∑

τ∈Cp

∫ τ+ǫ

τ−ǫ
A(θ)e−nφ(θ)dθ.

In the case with one contributing critical point, applying Theorem 7 gives

∫

N
A(θ)e−nφ(θ)dθ ∼

(
2π

n

)r/2

det (H)−1/2n−m · (−1)m
DmA(0)

2mm!
, (19)

and so the subexponential growth is n−r/2−m as claimed in Theorem 2.
Now consider the subexponential growth for a critical point which has a negative coordinate. If the

weight in that coordinate is greater than 1, we can’t use the same technique of applying the residue
theorem with an error term, as the singularity is at -1 instead of 1. Thus, we would get a higher order
term in the exponential growth by having another variable in our application of Theorem 7. Similarly,
if the weight in that coordinate is exactly 1, then the numerator of A(θi) will vanish to a higher degree,
and so the subexponential term will be larger. Thus, the only way that the subexponential term is the
same is when there is a dimension with weight less than 1. This, combined with Proposition 6 gives us
the following classification of contributing critical points.

Proposition 8. The contributing critical points are points z ∈ C satisfying S(z) = S(α+). Furthermore,

zj > 0 unless αj < 1.

We combine Equation (19) and Equation (11) to get:

qα(n) ∼

∏d
k=r+1 α

−2
k (α2

k − 1)

(2πi)r
· S(α+)nir

∫

N
A(θ)e−nφ(θ)dθ

∼

∏d
k=r+1 α

−2
k (α2

k − 1)

(2πi)r
· S(α+)nir

∑

τ∈Cp

(
2π

n

)r/2

det (H(τ ))−1/2n−m · (−1)m
DmA(τ )

2mm!

= γ · S(α+)n · n−(r/2)−m,

where we can now calculate the constant γ.
Note that the constant is calculated for each critical point which contributes to the asymptotics,

which we write as Φα,z(n) for each z ∈ C. Thus the constant γ in Theorem 2 is computed as

γ =
∑

z∈C

d∏

j=1

c(zj). (20)

The constant factor of a critical point a product of factors c(zj), given below. In cases where multiple
critical points contribute, the constant term can depend on the parity of n. Since we know there is always
a contributing point with positive exponential growth, then if a contributing point has an exponential
growth of (−S(α+)), then the corresponding contributions are added when n is even, and subtracted

9



when n is odd. For a given contributing critical point with component zj and step set with Pj steps in
the positive j direction, the constant term is calculated as:

c(zj) =







1− 1
α2
j

αj > 1

1√
2·π · (2Pj)

−1/2 ·
√

S(α+) · 2 αj = 1
1√
2·π · (2Pj)

−3/2 · (S(α+))3/2 · 2
(1−αj)

2 αj < 1, zj = αj

1√
2·π · (2Pj)

−3/2 · (S(α+))3/2 · 2
(1+αj)

2 αj < 1, zj = −αj

. (21)

Throughout the article we have considered the weighting to be central. This makes the notation
simpler as a weighting can be interpreted as an evaluation, but the analysis applies to a more general
weighting. In particular, the following corollary extends our results to a weighting formed by a product
of a central weighting and a highly symmetric weighting.

Corollary 9 (Non-Central Weights). Let S be a reflectable stepset, and let ω be a weighting on the steps

such that the weighted step set Sω is symmetric over every axis. Let α be a central weighting on S, and
qα,ω(n) count the weight of all walks of length n from the set S, remaining in the positive orthant. Then

qα,ω(n) ∼ γ · Sω(α+)n · n−(r/2)−m,

with α+, r,m as defined in Theorem 2. Moreover, writing Sω(x) =
(

xk + 1
xk

)

Pk(x) + Qk(x), where

Pk, Qk contain no xk as in Equation (4), the constants are calculated as

c(zj) =







1− 1
α2
j

αj > 1

1√
2·π · (2Pj(1))

−1/2 ·
√

Sω(α+) · 2 αj = 1
1√
2·π · (2Pj(1))

−3/2 · (Sω(α+))3/2 · 2
(1−αj)

2 αj < 1, zj = αj

1√
2·π · (2Pj(1))

−3/2 · (Sω(α+))3/2 · 2
(1+αj)

2 αj < 1, zj = −αj

. (22)

Proof. The diagonal expression in Equation (2) holds for the weighted stepset Sω as it is still symmetric
over the axes. The proof of Theorem 2 only used the symmetry S(αx) = S

(
1
αx

)
which remains true

when weighting the stepset by ω. The resulting analysis is the same, with evaluations of the unweighted
step function S being replaced by evaluations of the weighted step function Sω .

Example 10 (Non-Central Weights). Consider the simple step set with symmetric weighting ω as

Sω(x, y) = 3

(

x+
1

x

)

+ 5

(

y +
1

y

)

.

Then applying the weighting α = ( 1
2
, 7) gives the weighting

Sω(
x

2
, 7y) =

3x

2
+

6

x
+ 35y +

5

7y
.

Note that there are two walks of length two returning to the origin which have different weight as
3x
2
· 6
x
= 9, 35y · 5

7y
= 25. Thus, the weighting is not central. To calculate the corresponding asymptotics

of qα,ω(n), we see

Sω(1, 7) = 3(1 + 1) + 5

(

7 +
1

7

)

=
292

7
,

P1 = 3.

The corresponding asymptotics are

qα,ω(n) ∼
18688

7203
·

√

1533

π
·

(
292

7

)n

n
−3

2 .
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3 General observations and future work

This strategy also gives access to many related asymptotic factors. The following two results are easy
consequences of our work. Under the same hypotheses as the main theorem, we can give similar formulas
for the number of walks in the positive orthant which end on k axes. In particular, the number of
excursions in the positive orthant with steps from S of length n grows as S(1)nn−3d/2. The constant
factor can be computed using a similar analysis. We also note that setting the weights to 1 gives the
same asymptotics as the highly symmetric weighted case given by Theorem 68 of Melczer [13].

A similar approach should work to determine general asymptotic formulas for weighted versions of
the nearly symmetric walks recently investigated by Melczer and Wilson [15]. They consider symmetries
which leave the weighted stepset invariant under the transformation x → 1

x
in all but one axis, whereas

the symmetry we consider is the transformation αx → 1
αx

. There is some overlap between the two results.
In particular, in the case where the stepset is completely symmetric and they consider a non-symmetric
weighting, the formulas they have agree with ours. The approach is similar to the one given in this work,
and a comparison shows how the different invariants of the weighted stepset change the analysis. Their
work allows for more variability in the stepset, whereas our approach allows for more general weights.
More generally, this approach will work for other Weyl groups. This is work in progress.

Following the model of Courtiel et al., we can adapt this to consider arbitrary starting points. As in
that case, the dominant constant term is then parametrized by the starting point and turns out to be a
discrete harmonic function.
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