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Counting lattice walks by winding angle

Andrew Elvey Price∗1

1LaBRI, Université de Bordeaux, France

Abstract. We address the problem of counting walks by winding angle on the Krew-
eras lattice, an oriented version of the triangular lattice. Our method uses a new de-
composition of the lattice, which allows us to write functional equations characterising
a generating function of walks counted by length, endpoint and winding angle. We
then solve these functional equations in terms of Jacobi theta functions. By using this
result in conjunction with the reflection principle, we count walks confined to a cone
of opening angle any multiple of π

3 , allowing us to extract asymptotic and algebraic
information for these walks. Our method and results extend analogously to three other
lattices, including the square lattice and triangular lattice. On the square lattice, most
of our results were derived by Timothy Budd in 2017, so the current work can be seen
as an extension of Budd’s results to the three other lattices that we consider. Budd’s
method of deducing these results was very different, as it was based on an explicit
eigenvalue decomposition of certain matrices counting paths in the lattice.
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1 Introduction

We study walks by winding number around the origin 0 on four different lattices shown
in Figure 1: The triangular lattice, the square lattice, the king lattice and the Kreweras
lattice. On the square lattice, our results coincide with those derived by Timothy Budd
[5] using a very different method involving an explicit eigenvalue decomposition of
certain matrices.

Each lattice can be positioned either so that 0 is at the centre of a cell of the lattice,
or so that 0 is one of the vertices of the lattice. In the former case we call the lattice
cell-centred while in the latter case we call it vertex-centred (see Figure 1). In each case the
walks are forbidden from passing through the origin (this is relevant for the cell-centred
king lattice and all vertex-centred lattices). Given a walk w, we define the winding angle
of w as follows: let x be a variable point that moves continuously along the path w, and
let vx = x

|x| be a variable unit vector pointing towards x. The winding angle of w is the
total anticlockwise angle that vx spins around 0. If w starts and finishes at the same
point, its winding angle θ will necessarily be a multiple of 2π.
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2020 research and innovation programme, under the Grant Agreement No. 759702.
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Figure 1: The four lattices on which we count walks by winding number: The Kreweras
lattice, the triangular lattice, the square lattice and the king lattice. Walks may travel
in either direction along unoriented edges. In the cell-centred cases the origin is at the
blue circle, while in the vertex-centred cases the origin is at the green triangle. In each
case, we count walks starting at the red square by winding angle around the origin.

For each lattice in Figure 1, in both the vertex-centred and cell-centred cases, we have
derived an exact expression counting walks starting at a specific point near the origin by
length, endpoint and winding angle. We present here only the results on the Kreweras
lattice. All of our results are in terms of the power series T0(u, q), T1(u, q), . . . defined by

Tk(u, q) =
∞

∑
n=0

(−1)n(2n + 1)kqn(n+1)/2(un+1 − (−1)ku−n).

These are related to the Jacobi theta function ϑ(z, τ) ≡ ϑ11(z, τ) by

ϑ(k)(z, τ) = e
(πτ−2z)i

2 ikTk(e2iz, e2iπτ), (1.1)

where the derivatives are taken with respect to z. So, our results can equivalently be
written in terms of this theta function.

For our first theorem we enumerate, by length and winding angle, walks starting and
ending near the origin on the cell-centred Kreweras lattice shown on the left of Figure 2.
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Figure 2: Left: A path with winding angle 4π
3 on the cell-centred Kreweras lattice.

Right: a path with winding angle − 2π
3 on the vertex-centred Kreweras lattice.

Theorem 1. Let q(t) ≡ q = t3 + 15t6 + 279t9 + · · · be the unique series with constant term 0
satisfying

t = q1/3 T1(1, q3)

4T0(q, q3) + 6T1(q, q3)
.

The generating function E(t, s) of walks in the cell-centred Kreweras lattice starting at w0 and
ending at one of the vertices closest to the origin 0 in which each walk w of length n and winding
angle 2πk

3 contributes tnsk is given by

E(t, s) =
s

(1− s3)t

(
s− q−1/3 T1(q2, q3)

T1(1, q3)
− q−1/3 T0(q, q3)T1(sq−2/3, q)

T1(1, q3)T0(sq−2/3, q)

)
.

The first few terms of the series E(t, s) are given by

E(t, s) =
1
t

(
q

1
3 + sq

2
3 +

(
s2 +

1
s

)
q + · · ·

)
= 1 + st +

(
s2 +

1
s

)
t2 + (5 + s3)t3 + O(t4).

Note for example that the terms (5 + s3)t3 count the six excursions in the Kreweras
lattices of length 3, of which 5 have winding angle 0 and one has winding angle 2π.

For our second theorem we enumerate, by length and winding angle, certain walks
on the vertex-centred Kreweras lattice shown on the right of Figure 2.

Theorem 2. Let w0, w1, w2 be the three vertices on the vertex-centred Kreweras lattice from
which there is an edge pointing to 0. Let q(t) ≡ q = t3 + 15t6 + 279t9 + · · · be the same series
as in Theorem 1. Then the generating function Ẽ(t, s) of walks in the vertex-centred Kreweras
lattice starting at w0 and ending at one of w0, w1, w2 in which each walk w of length n and
winding angle 2πk

3 contributes tnsk is given by

Ẽ(t, s) =
sq−2/3

t(1 + s + s2)

T0(q, q3)2

T1(1, q3)2

(
T1(q, q3)2

T0(q, q3)2 −
T2(q, q3)

T0(q, q3)
− T2(s, q)

2T0(s, q)
+

T3(1, q)
6T1(1, q)

+
T3(1, q3)

3T1(1, q3)

)
.
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Analysing the solutions for E(t, s) and Ẽ(t, s) leads to the following corollaries re-
garding the algebraic and asymptotic nature of these series. Analogous results to these
corollaries on square lattice are, respectively, Corollary 20 and Lemma 22 in [5].

Corollary 1. If s is a root of unity which is not a cubic root of unity, then the generating functions
E(t, s) and Ẽ(t, s) are algebraic in t.

Corollary 2. For s = eiα, with α ∈ (0, π) \
{2π

3

}
, the coefficients vn = [tn]Ẽ(t, s) satisfy

vn ∼ −
35− 3α

π eαiα

2π(1 + eαi + e2αi)Γ(− 3α
2π )

n−
3α
2π−13n,

for large n satisfying 3|n. When 3 - n, we have vn = 0.

In Section 2 we outline the proof of these theorems, and also give a more general
result counting all walks by endpoint and winding angle. In Section 3 we use these
results to count walks on the Kreweras lattice confined to a cone of opening angle πN

3
for any N ∈ N. We then compute the asymptotic number of these walks as the length
approaches infinity, which we find to be consistent with the probabilistic results of [6].
We then show that the associated generating function is algebraic if and only if 3 - N.
Finally, in Section 4 we briefly discuss the other three lattices.

2 Walks by winding number on the Kreweras lattice

2.1 Decomposition and functional equations

Counting walks in the plane by endpoint and winding number on the cell-centred Krew-
eras lattice is equivalent to counting walks in the covering space Γ of C \ {0} by endpoint
(see Figure 3). For each point v ∈ Γ and each n ∈ N0, let pn,v be the number of paths
of length n in Γ, using Kreweras steps, starting at w0 and ending at v. In this section
we study a generating function containing every value of pn,v. In order to characterise
the points v ∈ Γ, we partition Γ into an infinite sequence of wedges, as shown in Figure
4, then we transform these wedges into quarter-planes {Wj}j∈Z as in Figure 5. Each
possible endpoint v then corresponds to a triple (a, b, k), where v ∈Wk and (a, b) are the
coordinates of v in Wk. This way we associate each point v ∈ Γ with a unique mono-
mial fv(s, x, y) = skxayb. The most general series G(t, s, x, y) ∈ Z

[
s, s−1, x, y

]
[[t]] that we

study is

G(t, s, x, y) =
∞

∑
n=0

tn ∑
v∈Γ

pn,v fv(s, x, y).

This is related to the series E(t, s) from Theorem 1 by E(t, s) = G(t, s, 0, 0).
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Γ

w0

Figure 3: Left: The covering space Γ of C \ {0}. Right: The allowed steps for Krew-
eras walks. We enumerate walks on Γ, starting at the red square and following these
directions.

w0

Figure 4: Decomposition of the covering space Γ into an infinite sequence of wedges.

By considering all possible final steps of a path in Γ, we derive the following func-
tional equation, which characterises G(x, y) ≡ G(t, s, x, y) ∈ Z [s, x, y] [[t]]:

G(x, y) = 1 + txyG(x, y) +
t
x
(G(x, y)− G(0, y)) +

t
y
(G(x, y)− G(x, 0))

+ tsG(0, x) + ts−1yG(y, 0).
(2.1)

The last two terms in this equation come from the steps from one wedge to an adja-
cent wedge, so removing these terms yields the well known functional equation for the
generating function F(t, x, y) of paths confined to a quarter plane [2] with the step set
{(1, 1), (0,−1), (−1, 0)} (sometimes called the Kreweras step set).
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W1 W0 W−1

Figure 5: An example of a walk on Γ using Kreweras steps. This walk contributes
t10xy3s−1 to G(t, s, x, y).

2.2 Solution in terms of theta functions

In order to solve the functional equation (2.1), we fix t, s ∈ C and think of G(x, y) as an
analytic function of x and y. More precisely, we assume |t| < 1/3 and |s| = 1, as this
ensures that the series defining G(x, y) ≡ G(t, s, x, y) converges absolutely for |x|, |y| < 1,
using the fact that the total number of paths of length n in Γ is 3n.

The next step is to analyse the kernel

K(x, y) = 1− txy− t
x
− t

y
,

which is the factor of G(x, y) in (2.1). The kernel here is exactly the same as in the
case for paths confined to a quarter plane with step set {(1, 1), (0,−1), (−1, 0)}. More-
over, Kurkova and Raschel [9] showed that the kernel equation K(x, y) = 0 can be
parameterised in terms of the Weierstrass elliptic function ℘ for almost any step set
S ⊂ {−1, 0, 1}2. In this case, as well as the other step sets that we consider, the parame-
terisation can be written more simply in terms of the Jacobi theta function

ϑ(z, τ) =
∞

∑
n=−∞

(−1)ne(
2n+1

2 )
2
iπτ+(2n+1)iz

as follows:

Lemma 3. Let τ ∈ iR>0 satisfy

t = e−
πτi

3
ϑ′(0, 3τ)

4iϑ(πτ, 3τ) + 6ϑ′(πτ, 3τ)

and let X(z) and Y(z) be defined by

X(z) = e−
4πτi

3
ϑ(z, 3τ)ϑ (z− πτ, 3τ)

ϑ (z + πτ, 3τ) ϑ (z− 2πτ, 3τ)
and Y(z) = X(z + πτ).

Then K(X(z), Y(z)) = 0 for all z ∈ C.
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To prove this lemma it suffices to check that the function Ω(z) = K(X(z), Y(z)) is
doubly periodic, has no poles and that Ω(0) = 0. Then the result Ω(z) = 0 follows from
Liouville’s theorem, which states that the only holomorphic, doubly periodic functions
are constant.

Since X(0) = Y(0) = 0, we can substitute x = X(z) and y = Y(z) into (2.1) for z in a
neighbourhood of 0. Writing

L(z) = stG(0, X(z))− t
Y(z)

G(X(z), 0), (2.2)

the resulting equation simplifies to

1 = −L(z) +
L(z + πτ)

sX(z)
. (2.3)

Moreover, we can prove that the only poles of L(z) in 0 ≤ Im(z) ≤ Im(πτ) are simple
poles at the points in πZ. Together with (2.3), this uniquely defines L(z):

L(z) =
1

1− e3iα

(
e3iα +

e2iα

X(z)
+ eiαX(z− πτ)

)
+

eiα+ 5iπτ
3 ϑ(πτ, 3τ)ϑ′(0, τ)

(1− e3iα)ϑ( α
2 −

2πτ
3 , τ)ϑ′(0, 3τ)

ϑ(z− 2πτ, 3τ)ϑ(z− α
2 + 2πτ

3 , τ)

ϑ(z, τ)ϑ(z, 3τ)
.

We can then extract G(X(z), 0) from (2.2) using the fact that X(z) = X(πτ − z):

G(X(z), 0) =
L(z)− L(πτ − z)

tX(z)(X(z + πτ)− X(z− πτ))
.

Hence we have an exact, parametric expression for G(x, 0). We can similarly derive
such an expression for G(0, y), which yields the exact solution for G(x, y), using (2.1).
Substituting z→ 0 yields the following expression for E(t, s) = G(0, 0):

E(t, eiα) =
eiα

t(1− e3iα)

(
eiα − e

4πτi
3

ϑ′(2πτ, 3τ)

ϑ′(0, 3τ)
− e

πτi
3

ϑ(πτ, 3τ)ϑ′( α
2 −

2πτ
3 , τ)

ϑ′(0, 3τ)ϑ( α
2 −

2πτ
3 , τ)

)
.

Theorem 1 follows by expanding both t and E(t, eiα) as series in s = eiα and q = e2πτi.
On the vertex centred Kreweras lattice we have a slightly different decomposition,

which leads to the functional equation

G̃(x, y) = 1 + txyG̃(x, y) +
t
x
(G̃(x, y)− G̃(0, y)) +

t
y
(G̃(x, y)− G̃(x, 0))

+
ts
x

(
G(0, x)− G̃(0, 0)

)
+ ts−1y2G̃(y, 0).

(2.4)

Using the same method as above, we solve this functional equation and, in doing so,
derive Theorem 2.
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2.3 Asymptotic results

For fixed α ∈ (0, π) \ {2π
3 }, we determine the asymptotic behaviour of the coefficients

[tn]Ẽ(t, eiα) for large n. The first step is to use the Jacobi identity

ϑ(z, τ) = i(−iτ)−1/2e−
i

πτ z2
ϑ

(
z
τ

,−1
τ

)
to write t and Ẽ(t, eiα) in terms of τ̂ = − 1

3τ . For t, the expression is t = ϑ′(0,τ̂)
6ϑ′(π/3,τ̂) . Then

using (1.1), both t and Ẽ(t, eiα) can be expanded as series in q̂ = e2πiτ̂:

t =
1
3
− 3q̂ + 18q̂2 + O(q̂3)

tẼ(t, eiα) = a0 + a1q̂− 27αeiα

2π(1 + eiα + e2iα)
q̂

3α
2π − 27(2π − α)eiα

2π(1 + eiα + e2iα)
q̂3− 3α

2π + a2q̂
3α
2π+1 + O(q̂2),

where a0, a1 and a2 are explicit functions of α. We can prove that the dominant sin-
gularity t = 1/3 corresponds to q̂ = 0, and from the series expansion for t above, we
have q̂ ∼ 1−3t

9 in the vicinity of this point. The behaviour of the coefficients of Ẽ(t, s) is
determined by the term

− 27αeiα

2π(1 + eiα + e2iα)
q̂

3α
2π ∼ − 33− 3α

π αeiα

2π(1 + eiα + e2iα)
(1− 3t)

3α
2π .

After taking care of the singularities of Ẽ(t, s) at t = 1
3 e

2iπ
3 and t = 1

3 e−
2iπ

3 , this yields
Corollary 2.

In the cases α = 0 and α = 2π
3 , the numerator and denominator in our expression for

Ẽ(t, eiα) are both 0, so we need to take derivatives in α to obtain the correct expression.
We then apply the same method as above to determine the asymptotic form of vn. We
find that Ẽ(t, eiα) exhibits a logarithmic singularity in these cases.

2.4 Algebraicity results

Due to the relation to the theta function, the series G(t, s, x, y) and G̃(t, s, x, y) are differ-
entially algebraic in each variable, meaning that they satisfy a non-trivial algebraic differ-
ential equation with respect to that variable. For certain specialisations, these series take
a much simpler form:

Corollary 4. Let N be a positive integer and let s satisfy sN = 1 but s3 6= 1. The generating
functions G(x, y) ≡ G(t, s, x, y) and G̃(t, s, x, y) are algebraic in t, x and y.

The algebraicity of G(x, 0) in x follows from the fact that the functions X(z) and
G(X(z), 0) are both elliptic with periods π and 6Nπτ, since any two elliptic functions
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with the same periods are algebraically related. For the algebraicity of G(x, 0) in t, we
use modular properties of t and G(t, s, X(z), 0) as functions of τ. The proof that G(0, y)
is algebraic in t and y is similar, and together these imply that G(t, s, x, y) is algebraic in
t, x and y.

In the case s3 = 1, even E(t, s) = G(t, s, 0, 0) and Ẽ(t, s) are not algebraic, as they each
have a logarithmic singularity. Nonetheless, we can use similar ideas as above to show
that E(t, s) and Ẽ(t, s) are D-finite in these cases, meaning they each satisfy a non-trivial
linear differential equation.

3 Walks confined to a cone

Walks in cones are the subject of a wealth of literature in both combinatorics [2, 1] and
probability theory [8, 6]. The simplest non-trivial example is that of walks in the quarter-
plane. The systematic study of these walks was started by Bousquet-Mélou and Mishna
in 2010 [2], where they considered walks with any step set S ⊂ {−1, 0, 1}2, showing that
there are 79 non-trivial and combinatorially distinct such step sets. This study is now in
some sense complete as differentially algebraic solutions for the generating function are
now known for 32 step sets S, while for the other 47 step sets, the generating function is
known to be non-differentially algebraic [7]. In recent years several authors have started
to extend this by considering walks with small steps on the three quarter plane [1, 10, 4].
Another interesting cone on which simple walks have been counted is the slit plane [3],
that is the cone with opening angle 2π.

In this section we use our results, in conjunction with the reflection principle, to count
Kreweras walks on a cone with opening angle Nπ

3 for any positive integer N. Analogous
results were found by Budd on the square lattice [5, Section 3.3]. One new result of this
type is the enumeration of walks confined to the three quarter plane using the step set
{(0, 1), (−1, 0), (1,−1)}.

For integers k1 < 0 < k2 and k satisfying k1 < 2k < k2, let Ẽk,k1,k2(t) be the generating
function for Kreweras walks w with the following properties:
• w starts at a fixed vertex w0, adjacent to 0,
• w ends at a vertex adjacent to 0,
• w does not pass through 0,
• w has winding angle 2kπ

3 ,
• The winding angle is confined to stay within the interval ( k1π

3 , k2π
3 ) for all interme-

diate points along w.
Let Ẽk(t) denote the generating function of Kreweras walks satisfying only the first three
properties. Then the generating function Ẽ(t, s) from Theorem 2 is given by

Ẽ(t, s) =
∞

∑
k=−∞

skẼk(t).
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Using the reflection principle we can write Ẽk,k1,k2(t) in terms of Ẽk(t):

Ẽk,k1,k2(t) =
∞

∑
j=−∞

(
Ẽk−jk1+jk2(t)− Ẽ−k−jk1+(j+1)k2

(t)
)

.

This can be written as a sum of values of Ẽ(t, s) as follows:

Ẽk,k1,k2(t) =
1

k2 − k1

k2−k1−1

∑
j=1

(
e−

2πijk
k2−k1 − e

2πij(k−k1)
k2−k1

)
Ẽ
(

t, e
2πij

k2−k1

)
. (3.1)

Example 1: By (3.1), the generating function Ẽ0,−1,1(t) is given by

Ẽ0,−1,1(t) = Ẽ(t,−1).

This counts walks starting and ending at (1, 0), which are confined to stay within the
wedge with opening angle 120◦, shown in Figure 6. Equivalently, E0,−1,1(t) counts
quarter-plane excursions with the step set {(−1,−1), (0, 1), (1, 0)} (these are sometimes
called reverse Kreweras walks). Note that Corollary 1 implies that this generating function
is algebraic. Indeed this step set is one of only four for which the generating function of
excursions on the quarter-plane is algebraic [2].

w0

w0

Figure 6: The Kreweras lattice with opening angle 2π
3 is equivalent to the quarter plane

with the step set {(−1,−1), (0, 1), (1, 0)}. Excursions from w0 are counted by Ẽ0,−1,1(t).

Example 2: By (3.1), the generating function E0,−2,3(t) is given by

Ẽ0,−2,3(t) =
1
5

4

∑
j=1

(
1− e

4πij
5

)
Ẽ
(

t, e
2πi

5

)
counts walks in the 5/6-plane. Equivalently, this counts walks in the three quarter plane,
starting and ending at (0,−1), using the step-set {(0, 1), (−1, 0), (1,−1)} (see Figure 7).
Again by Corollary 1, this generating function is algebraic in t.

In these two examples we saw that Ẽk,k1,k2(t) is algebraic in t. More generally, using
(3.1) and Corollary 1, the generating function Ẽk,k1,k2(t) is algebraic when 3 - k1 − k2.
When 3|k1− k2 the generating function Ek,k1,k2(t) remains D-finite, however we can prove
that it is not algebraic.
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w0

w0

Figure 7: The Kreweras lattice with opening angle 5π
6 is equivalent to the three quar-

ter plane with step set {(0, 1), (−1, 0), (1,−1)}. Excursions from w0 are counted by
Ẽ0,−2,3(t).

3.1 Asymptotic number of walks in a cone

Recall from Corollary 2 that we know the asymptotic form of the coefficients of Ẽ(t, eiα)
for fixed α ∈ (0, π). By symmetry we have Ẽ(t, eiα) = Ẽ(t, e−iα), so we can extend this
result to α ∈ (−π, 0). We also have similar results at α = 0 and α = π. Using these
results together with (3.1) we derive the asymptotic form of the coefficients of Ẽk,k1,k2(t):

[tn]Ẽk,k1,k2(t) = −
2 · 35− 6

k2−k1 sin
(

k1π
k2−k1

)
sin
(
(k1−2k)π

k2−k1

)
π(k2 − k1)2

(
1 + 2 cos

(
2π

k2−k1

))
Γ
(
− 3

k2−k1

)n−1− 3
k2−k1 3n.

Writing β = (k2−k1)π
3 to denote the opening angle of the cone, the polynomial term

n−1−π
β above appears much more generally [6], but to our knowledge the exact value of

the constant term above is new.

4 Conclusion and other lattices

In the previous sections we described how to count walks on the Kreweras lattice by
length and winding number. As a consequence we counted walks on a conic subsection
of this lattice using the reflection principle. The same method can be readily applied to
extract analogous results for walks on the triangular lattice, the square lattice and the
king lattice, shown in Figure 1. On each lattice we count walks on cones with opening
angle Nr for any positive integer N, where r = π

3 for the triangular lattice and Kreweras
lattice and r = π

4 for the square lattice and king lattice. On the square lattice, many of
our results were found by Timothy Budd in 2017 using a very different method [5].

One direction for further research is to generalise this method to apply to walks using
different step sets S ⊂ {−1, 0, 1}2, as have been studied on the quarter plane and, more
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recently, on the three quarter plane.
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