
DOUBLE-DIMER CONDENSATION AND THE PT-DT
CORRESPONDENCE

HELEN JENNE, GAUTAM WEBB, AND BENJAMIN YOUNG

Abstract. We resolve an open conjecture from algebraic geometry, which states that two
generating functions for plane partition-like objects (the “box-counting” formulae for the
Calabi-Yau topological vertices in Donaldson-Thomas theory and Pandharipande-Thomas
theory) are equal up to a factor of MacMahon’s generating function for plane partitions.
The main tools in our proof are a Desnanot-Jacobi-type condensation identity, and a novel
application of the tripartite double-dimer model of Kenyon-Wilson.
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1. Introduction

Donaldson-Thomas (DT) theory and Pandharipande-Thomas (PT) theory are branches
of enumerative geometry closely related to mirror symmetry and string theory (for an intro-
duction to these theories, see [12, Sections 31

2
, 41

2
]). In both theories, generating functions

arise known as the combinatorial Calabi-Yau topological vertices. These generating functions
enumerate seemingly different plane partition-like objects. In this paper, we prove that these
generating functions coincide up to a factor of M(q), MacMahon’s generating function for
plane partitions [4]. Our result, taken together with a substantial body of geometric work,
proves a geometric conjecture in the foundational work of Pandharipande-Thomas theory
that has been open for over 20 years.

The generating function from Donaldson-Thomas theory is known as the DT topologi-
cal vertex. Denoted V (µ1, µ2, µ3), where each µi is a partition, it counts plane partitions
asymptotic to (µ1, µ2, µ3) (see Section 3.1). The PT topological vertex, denoted byW (µ1, µ2, µ3),
is a generating function for a certain class of finitely generated C[x1, x2, x3]-modules (see Sec-
tion 4.1).

We prove that

Theorem 1.0.1. [11, Calabi-Yau case of Conjecture 4]

(1) V (µ1, µ2, µ3) = M(q)W (µ1, µ2, µ3),

where M(q) =
∏
i≥1

(1− qi)−i.

The geometric corollary of this theorem is a proof of Theorem/Conjecture 2 of [11], which,
loosely speaking, states that W (µ1, µ2, µ3) computes the local contribution to the geometric
Calabi-Yau topological vertex in Pandharipande-Thomas theory. The proof of this corollary
combines Theorem 1.0.1 with the analogous result in DT theory [5, 6, 8], along with [7,
Section 4.1.2]; it is a consequence of the fact that both DT and PT theory give the same
invariants as a third enumerative theory, Gromov-Witten theory.1

To be specific, let ZDT (µ1, µ2, µ3) be the geometric Calabi-Yau topological vertex in
Donaldson-Thomas theory, and let ZPT (µ1, µ2, µ3) be the geometric Calabi-Yau topolog-
ical vertex in Pandharipande-Thomas theory. We have the following system of equalities,
which we have temporarily labelled G, EDT , EPT and C (G for geometry, E for enumeration,
C for combinatorics):

1In [5, 6, 11] and in general elsewhere in the geometry literature, all of the formulas have q replaced by
−q. The sign is there for geometric reasons which are immaterial for us.
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ZDT (µ1, µ2, µ3) M(q)ZPT (µ1, µ2, µ3)

V (µ1, µ2, µ3) M(q)W (µ1, µ2, µ3)

G

EDT EPT

C

In the above, Equation G is the geometric PT-DT correspondence; it says that the two
enumerative theories are equivalent at the level of the topological vertex. The technique
involves showing that both theories are in fact equivalent to Gromov-Witten theory. On the
DT side, this was done in [5, 6]. For proofs that PT theory is equivalent to Gromov-Witten
theory, we refer the reader to a series of papers of Pandharipande and Pixton, culminating
in [10].

Equation EDT is proven in [5, 6]; it says that in the Calabi-Yau case, one can compute
Donaldson-Thomas invariants by enumerating plane partitions asymptotic to (µ1, µ2, µ3).
Proving it, and various generalizations of it, has represented a massive amount of work by
many geometers over several decades.

Equation EPT was conjectured in [11, Theorem/Conjecture 2], and proven in the “two-leg”
case where µ3 is the empty partition; it says (after cancelling the factor of M(q)) that one
can compute Pandharipande-Thomas invariants by counting labelled box configurations of
shape (µ1, µ2, µ3).

Equation C is the titular combinatorial PT-DT correspondence; we prove it in this paper.
Taken together with Equations EDT and G, this establishes the general case of Equation
EPT [11, Theorem/Conjecture 2].

We now turn to a discussion of the methods that we use to show that V (µ1, µ2, µ3) =
M(q)W (µ1, µ2, µ3). The combinatorics problems which we solve are stated in the geometry
literature as “box-counting” problems; that is, the objects of interest are plane partition-like.
The following bijections are well-known:

dimer configurations on
the honeycomb graph

↔ plane partitions↔ finite-length monomial
ideals in C[x1, x2, x3]

The first one is a 3D version of the correspondence between partitions and their Maya
diagrams; it is stated explicitly in Section 3.2. We use essentially the same correspondence
to give a dimer model description of the DT topological vertex V (µ1, µ2, µ3). On the PT
side, the correspondences are:

tripartite double-dimer configs.
on the honeycomb graph

(1)↔ labelled box
configurations

(2)↔ C[x1, x2, x3]-modules
(M1 ⊕M2 ⊕M3)/ 〈(1, 1, 1)〉

The correspondence (1) is new, as far as we are aware. We describe labelled box configura-
tions, and the generating functions for them which arise in PT theory, carefully in Section 4.
Interestingly, though (1) is a purely combinatorial correspondence, it is not bijective—rather,
it is a weight-preserving, 1-to-many correspondence. Here M1 ⊆ C[x1, x

−1
1 , x2, x3] is spanned

by all monomials xi1x
j
2x

k
3 where i ∈ Z and (j, k) ranges over some fixed partition µ1, with

M2,M3 defined similarly; the quotient is killing the diagonal of the direct sum.
The correspondence (2) is incidental to this work and is described in [11]; nor will we need

to discuss the structure of the modules in the codomain. We expect that our methods will
be relevant in other similar situations (one such situation arises in rank 2 DT theory [1])
and we would be eager to learn of other instances in which our techniques may apply.
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We prove Theorem 1.0.1 by observing that both V/M(q) and W are solutions X to the
following functional equation:

(2) qKX(µ1, µ2, µ3)X(µrc1 , µ
rc
2 , µ3) = qKX(µrc1 , µ2, µ3)X(µ1, µ

rc
2 , µ3) +X(µr1, µ

c
2, µ3)X(µc1, µ

r
2, µ3).

This recurrence is called the condensation recurrence. We postpone the definitions of µri , µ
c
i ,

and µrci to Section 2. Here, K := 1 + (µ1)d(µ1) − d(µ1) + (µ′2)d(µ2) − d(µ2), where d(λ) is the
diagonal of λ. This constant is discussed further in Section 5.

The partitions µri , µ
c
i , and µrci are all of smaller length than µi, and none of the topological

vertex terms are equal to zero, so we can divide both sides of the condensation recurrence
by qKX(µrc1 , µ

rc
2 , µ3). Viewed as a recurrence in µ1 and µ2, the resulting equation uniquely

characterizes V/M(q) and W . The base case is when one of the partitions µi is equal to ∅;
equation (1) is known to hold in this situation [11].

When recast in terms of the dimer model, V/M(q) is easily seen to satisfy equation (2) by
Kuo’s graphical condensation [3]; this is essentially the content of Section 3.

Showing that W satisfies equation (2) is considerably more intricate, but once we translate
to the double-dimer model, the bulk of the work was done elsewhere, in work of Jenne [2].
Essentially, [2] evaluates a certain determinant by the classical Desnanot-Jacobi identity, and
then interprets all six terms in the identity in terms of W .

2. Definitions

Fix three partitions µ = (µ1, µ2, µ3). For this paper, we identify µi with the coordinates
of the boxes of its Young diagram, with the corner of the diagram located at (0, 0) and the
rows of the diagram extending in the horizontal direction. Define the following subsets of
Z3, thought of as sets of boxes:

Cyl1 = {(x, u, v) ∈ Z3 | (u, v) ∈ µ1},
Cyl2 = {(v, y, u) ∈ Z3 | (u, v) ∈ µ2},
Cyl3 = {(u, v, z) ∈ Z3 | (u, v) ∈ µ3}.

Moreover, let Z3
≥0 denote the integer points in the first octant (including the coordinate

planes and axes). Let Cyl+i = Cyli ∩ Z3
≥0 and Cyl−i = Cyli \ Z3

≥0. Finally, let

II1̄ = Cyl2 ∩ Cyl3 \ Cyl1,

I− = Cyl−1 ∪ Cyl−2 ∪ Cyl−3 , II2̄ = Cyl3 ∩ Cyl1 \ Cyl2, III = Cyl1 ∩ Cyl2 ∩ Cyl3,

II3̄ = Cyl1 ∩ Cyl2 \ Cyl3,

II = II1̄ ∪ II2̄ ∪ II3̄,

and let

I+ =
(
Cyl+1 ∪ Cyl+2 ∪ Cyl+3

)
\ (II ∪ III) .

When we wish to emphasize the dependence of Cyl1, Cyl2, Cyl3, I−, II, III, or I+ on µ, we
will write Cyl1(µ), Cyl2(µ), Cyl3(µ), I−(µ), II(µ), III(µ), or I+(µ), respectively. Throughout
this paper, M will denote the quantity max{(µ1)1, `(µ1), (µ2)1, `(µ2), (µ3)1, `(µ3)}.

We will need the following standard notions of Maya diagrams.

Definition 2.0.1. If λ = (λ1, λ2, . . . , λk) is a partition with k parts, define λt = 0 for t > k.
The Maya diagram of λ is the set {λt − t+ 1

2
} ⊆ Z + 1

2
.
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We frequently associate a partition with its Maya diagram by drawing a Maya diagram as
a doubly infinite sequence of beads and holes, indexed by Z+ 1

2
, with the beads representing

elements of the above set. For instance, the Maya diagrams of the empty partition and of
the partition λ = (4, 2, 1) are the sets {−1

2
,−3

2
, . . .} and {7

2
, 1

2
,−3

2
,−7

2
,−9

2
, . . .}, respectively,

which are drawn as

· · · ◦ ◦ ◦ | • • • · · · and · · · ◦ ◦ ◦ • ◦ ◦ • | ◦ • ◦ • • • · · · .
When convenient, we simply mark the location of 0 with a vertical line, rather than labelling
the beads with elements of Z + 1

2
.

Definition 2.0.2. Conversely, if S is a subset of Z + 1
2
, define S+ = {x ∈ S | x > 0} and

S− =
{
x ∈ Z + 1

2
\ S | x < 0

}
. If both S+ and S− are finite, then define the charge of S,

c(S), to be |S+| − |S−|; then it is easy to check that the set {s− c(S) | s ∈ S} is the Maya
diagram of some partition λ; we say that S itself is the charge c(S) Maya diagram of λ.

Definition 2.0.3. If λ is a partition with Maya diagram S, let λr (resp. λc) be the partition
associated to the charge −1 (resp. 1) Maya diagram S \{minS+} (resp. S ∪{maxS−}). Let
λrc be the partition associated to the Maya diagram (S \ {minS+}) ∪ {maxS−}.

1 2

3
1
2

−1
23

2
−3

2

...
...

−3
2

3
2

−1
2

1
2

1
2 −1

23
2 −3

2

2 1

3

3
2

−3
2

1
2

−1
2

−1
2

1
2

−3
2

3
2

...
...

3
2 −3

21
2
−1

2

Figure 1. The graph H(3). Left: The division into sectors for DT. Right:
The division into sectors for PT.

In both DT and PT, it will be convenient to divide the N × N × N honeycomb graph
H(N) into three sectors and label some of the vertices on the outer face, as shown in Figure 1
for H(3). We remark that the divisions into sectors make sense as N →∞. The reason for
this choice of labels is that we will need to specify these particular vertices, both in DT and
PT, based on the Maya diagrams of µ1, µ2, µ3, and various other partitions. Furthermore,
if a vertex u on the outer face in sector i is labelled by a positive (resp. negative) number,
we will say that u is in sector i+ (resp. sector i−).

We will weight the edges of H(N) following Kuo [3].

Definition 2.0.4. [3, Section 6] Weight the edges of H(N) so that the non-horizontal edges
have weight 1 and the horizontal edges are weighted by powers of q. Specifically, the N
horizontal edges along the bottom right diagonal have weight 1. On the next diagonal, the
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q5

q4
q4

q4
q4

q3
q3

q3
q3

q3

q2
q2

q2
q2

q2

q
q

q
q

1
1

1

Figure 2. The graph H(3) with edges weighted as specified in Definition 2.0.4.

horizontal edges have weight q. In general, the weight of the edges on a diagonal is q times
the weight of the edges on the previous diagonal. This is illustrated in Figure 2.

3. DT

3.1. DT box configurations. We say that a plane partition asymptotic to (µ1, µ2, µ3) is
an order ideal under the product order in Z3

≥0 which contains I+∪ II∪ III, together with only
finitely many other points in Z3

≥0. We let P (µ1, µ2, µ3) denote the set of plane partitions
asymptotic to (µ1, µ2, µ3).

If any of µ1, µ2, µ3 are nonzero, then every π ∈ P (µ1, µ2, µ3) is an infinite subset of Z3
≥0.

We define w(π) = |π \ (I+ ∪ II∪ III)| − |II| − 2|III|, the customary measure of “size” of such a
plane partition in the geometry literature (see, for instance, [5]).

Define

V (µ1, µ2, µ3) =
∑

π∈P (µ1,µ2,µ3)

qw(π).

We call V (µ1, µ2, µ3) the topological vertex in Donaldson-Thomas theory. Note that if
π ∈ P (∅, ∅, ∅) with |π| = n, then π is a plane partition of n in the conventional sense, that
is, a finite array of integers such that each row and column is a weakly decreasing sequence
of nonnegative integers. Thus MacMahon’s enumeration of plane partitions [4] gives us

V (∅, ∅, ∅) =
∏∞

i=1 (1− qi)−i.
In [9], there is an expansion of V (µ1, µ2, µ3) in terms of Schur functions. However, since no

similar expansion is known in PT theory, this expansion does not help prove Theorem 1.0.1.

3.2. DT theory and the dimer model. Before giving the dimer description of V (µ1, µ2, µ3),
we review the correspondence between plane partitions and dimer configurations of a hon-
eycomb graph. By representing each integer i in a plane partition as a stack of i unit boxes,
a plane partition can be visualized as a collection of boxes which is stacked stably in the
positive octant, with gravity pulling them in the direction (−1,−1,−1). This collection of
boxes can be viewed as a lozenge tiling of a hexagonal region of triangles that are the faces
of a finite planar graph T . This lozenge tiling is then equivalent to a dimer configuration
(also called a perfect matching) of the dual graph of T , which is a honeycomb graph H(N).

Just as a plane partition can be visualized as a collection of boxes, a plane partition
asymptotic to (µ1, µ2, µ3) can be visualized as a collection of boxes, as shown in Figure 3,

6



left picture. Moreover, a version of the above correspondence puts these box collections in
bijection with dimer configurations on the honeycomb graph H(N) with some outer vertices
removed, which we call H(N ;µ). Specifically, let Si be the Maya diagram of µi. Construct
the sets S+

i , S−i for i = 1, 2, 3 and then remove the vertices with the labels in S+
i ∪ S−i from

sector i of H(N) to obtain H(N ;µ) (here, we are referring to the labelling of the boundary
vertices illustrated in Figure 1, left picture).

Figure 3. Shown left is a plane partition π asymptotic to (µ1, µ2, µ3), where
µ1 = (1, 1), µ2 = µ3 = (2, 1, 1), |II| = 9, |III| = 3, and w(π) = 13−|II|−2|III| =
−2. We see that π is equivalent to a tiling, which is truncated in the center
image so that it corresponds to a dimer configuration of H(7) with a few
vertices on the outer face deleted.

Assume N ≥ M . The bijection described above preserves weight up to an overall mul-
tiplicative constant, if we choose the edge weights in the dimer model correctly. The edge
weights we use are shown in Figure 2. Let ZD(G) denote the weighted sum of all dimer
configurations on G. Let Mmin(µ) be the unique dimer configuration on H(N ;µ) of minimal
weight – equivalently, the one whose height function is minimal. We call Mmin(µ) the minimal
dimer configuration; see Section 5.2.1. This dimer configuration corresponds to the unique
plane partition πmin(µ) asymptotic to (µ1, µ2, µ3) that has no “extra” boxes, i.e., the one
that contains only I+ ∪ II ∪ III. Observe that Mmin(µ) contributes to the lowest-degree term
of ZD(H(N ;µ)), while πmin(µ) contributes to the lowest-degree term of V . In fact, adding a
box to a plane partition asymptotic to (µ1, µ2, µ3) increases the weight of the corresponding
dimer configuration by a factor of q, and removing a box decreases the weight by a factor
of q (this is a consequence of the particular choice of edge weights). So, if the weight of
Mmin(µ) is qwmin(µ), then q−wmin(µ)ZD(H(N ;µ)) and q|II(µ)|+2|III(µ)|V (µ1, µ2, µ3) agree, at least
up to degree N −M . In other words, if w̃min(µ) := wmin(µ) + |II(µ)|+ 2|III(µ)|,

Theorem 3.2.1. As N →∞, Z̃D(H(N ;µ)) := q−w̃min(µ)ZD(H(N ;µ)) converges to V (µ1, µ2, µ3),
where the limit is taken in the sense of formal Laurent series.

When µ1 = µ2 = µ3 = ∅, the weight qwmin(µ) of Mmin(µ) is computed, for instance in [3].
For general µ, the computation is substantially messier, and is postponed to Section 5.2.1.
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3.3. The condensation recurrence in DT theory. We now show that the DT partition
function satisfies the condensation recurrence; this is a corollary of the well-known “graphical
condensation” theorem of Kuo:

Theorem 3.3.1. [3, Theorem 5.1] Let G = (V1, V2, E) be a weighted planar bipartite graph
with a given planar embedding in which |V1| = |V2|. Let vertices a, b, c, and d appear in a
cyclic order on a face of G. If a, c ∈ V1 and b, d ∈ V2, then

(3) ZD(G)ZD(G− {a, b, c, d}) = ZD(G− {a, b})ZD(G− {c, d}) +ZD(G− {a, d})ZD(G− {b, c}).

Take G to be H(N ;µrc1 , µ
rc
2 , µ3) for N ≥M . Let a and b be the vertices in sector 1 labelled

by maxS−1 and minS+
1 , respectively. Similarly, we let c and d be the vertices in sector 2

labelled by maxS−2 and minS+
2 . The resulting six dimer model partition functions are all

instances of the topological vertex, up to degree N −M .
The graph G− {a, b, c, d} is H(N ;µ1, µ2, µ3),

G− {a, b} = H(N ;µ1, µ
rc
2 , µ3), and G− {c, d} = H(N ;µrc1 , µ2, µ3).

On the other hand, the graphs G − {a, d} and G − {b, c} are not equal to H(N ;λ1, λ2, λ3)
for any partitions λ1, λ2, λ3, since such partitions would have to satisfy |S+

i | = |S−i | ± 1
for i = 1, 2, which is impossible (the Maya diagram S of a partition λ always satisfies
|S+| = |S−|). Instead, these graphs are associated with Maya diagrams of nonzero charge:
G−{a, d} is constructed from the charge −1 Maya diagram associated to µr1 and the charge
1 Maya diagram associated to µc2, and G − {b, c} is constructed from the charge 1 Maya
diagram associated to µc1 and the charge −1 Maya diagram associated to µr2. However,
the correspondence discussed in Section 3.2 can still be applied in these cases, with minor
modifications: plane partitions asymptotic to (µr1, µ

c
2, µ3) correspond to dimer configurations

on G−{a, d}, with the origin in Z3 corresponding to the face directly above the central face
of H(N), and plane partitions asymptotic to (µc1, µ

r
2, µ3) correspond to dimer configurations

on G−{b, c}, with the origin in Z3 corresponding to the face directly below the central face
of H(N). For this reason, we refer to the dimer configurations on G− {a, d} and G− {b, c}
of minimal weight by Mu

min and Md
min, respectively.

Figure 4. A dimer configuration of H(7;µ1, µ2, µ3), and the vertices a, b, c,
and d, where µ1 = (3, 2), µ2 = (2, 2), and µ3 = (2, 1).

8



Figure 5. Modifications of the graph G from Example 3.3.2, and their min-
imal dimer configurations. First row: The graph G − {a, b} and its minimal
dimer configuration. Second row: The graph G−{c, d} and its minimal dimer
configuration. Third row: The graph G − {a, d} and its minimal dimer con-
figuration. Fourth row: The graph G− {b, c} and its minimal dimer configu-
ration.

Example 3.3.2. Let N = 7, and let µ1 = (3, 2), µ2 = (2, 2), and µ3 = (2, 1). Figure 4 shows
a dimer configuration of G− {a, b, c, d} = H(N ;µ1, µ2, µ3) and the vertices a, b, c, and d.

9



We note that µrc1 = (3, 1) and µrc2 = (2, 1). The graphs G− {a, b} = H(N ;µ1, µ
rc
2 , µ3) and

G− {c, d} = H(N ;µrc1 , µ2, µ3), along with their minimal dimer configurations, are shown in
Figure 5.

We have µr1 = (4), µc2 = (1, 1, 1), µc1 = (2, 1, 1), and µr2 = (3). The graphs G − {a, d},
G−{b, c} and their minimal dimer configurations are also shown in Figure 5. This figure il-
lustrates the fact that the correspondence between plane partitions asymptotic to (µr1, µ

c
2, µ3)

(resp. (µc1, µ
r
2, µ3)) and dimer configurations on G−{a, d} (resp. G−{b, c}) requires a shift;

the image shows that the “floor” of the plane partition is shifted up (resp. down).

Let qw
u
min and qw

d
min be the weights of Mu

min and Md
min, respectively. Then let w̃umin =

wumin + |II(µr1, µc2, µ3)|+ 2|III(µr1, µc2, µ3)|, w̃dmin = wdmin + |II(µc1, µr2, µ3)|+ 2|III(µc1, µr2, µ3)|,

Z̃D(H(N ;µrc1 , µ
rc
2 , µ3)− {a, d}) = q−w̃

u
minZD(H(N ;µrc1 , µ

rc
2 , µ3)− {a, d}),

and
Z̃D(H(N ;µrc1 , µ

rc
2 , µ3)− {b, c}) = q−w̃

d
minZD(H(N ;µrc1 , µ

rc
2 , µ3)− {b, c}).

Also, let

A = w̃min(µ1, µ2, µ3) + w̃min(µrc1 , µ
rc
2 , µ3),

B = w̃min(µrc1 , µ2, µ3) + w̃min(µ1, µ
rc
2 , µ3), and

C = w̃umin + w̃dmin.

From (3) and the preceding remarks, we have

qAZ̃D(H(N ;µ1, µ2, µ3))Z̃D(H(N ;µrc1 , µ
rc
2 , µ3))(4)

= qBZ̃D(H(N ;µrc1 , µ2, µ3))Z̃D(H(N ;µ1, µ
rc
2 , µ3))

+ qCZ̃D(H(N ;µrc1 , µ
rc
2 , µ3)− {a, d})Z̃D(H(N ;µrc1 , µ

rc
2 , µ3)− {b, c}).

From Lemma 5.2.1, we see that A = B, and we multiply equation (4) by q−A. In Section 5.2.2,
we show that C − A = −K, which does not depend on the variable N . For this reason, we

can take N →∞; in this limit, all six of the Laurent series Z̃D converge to instances of V ,

with different partitions as parameters. By Theorem 3.2.1, the first four Laurent series Z̃D

converge to V (µ1, µ2, µ3), V (µrc1 , µ
rc
2 , µ3), V (µrc1 , µ2, µ3), and V (µ1, µ

rc
2 , µ3), respectively. Sim-

ilarly, Z̃D(H(N ;µrc1 , µ
rc
2 , µ3)−{a, d}) converges to V (µr1, µ

c
2, µ3), and Z̃D(H(N ;µrc1 , µ

rc
2 , µ3)−

{b, c}) converges to V (µc1, µ
r
2, µ3). Thus,

(5) V (µ1, µ2, µ3)V (µrc1 , µ
rc
2 , µ3) = V (µrc1 , µ2, µ3)V (µ1, µ

rc
2 , µ3) + q−KV (µr1, µ

c
2, µ3)V (µc1, µ

r
2, µ3).

Multiplying by qK

(M(q))2
, we conclude that V/M(q) satisfies the condensation recurrence (2).

4. PT

This section is, in principle, parallel to the previous one, except our computations are
done in PT theory [11], rather than DT theory. However, the computations in question are
substantially more intricate.

The overall plan is as follows. In Section 4.1, we describe the original index set for the
generating function W (µ1, µ2, µ3) that was introduced in [11]; it consists of certain novel
plane-partition-like objects that we call PT box configurations. These configurations come
with a notion of labelling, which is needed to describe the coefficients of the generating
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function W . We introduce two alternate combinatorial models for the index set for W :
namely AB configurations in Section 4.2, and double-dimer configurations in Section 4.3.
We demonstrate in Section 4.4 that these combinatorial objects are computing the same
generating function W (µ1, µ2, µ3) by describing and analyzing algorithms, called the labelling
algorithms, which are used in recovering PT box configurations from the other models.
Finally, in Section 4.5, we review the facts we need from [2] about the condensation identity
in the double-dimer model, and explain how this identity is applied to compute W (µ1, µ2, µ3).

4.1. Labelled PT box configurations. We refer to elements of Z3 as cells.

Definition 4.1.1. If w = (w1, w2, w3) is a cell, the set of back neighbors of w, denoted
BN(w), is

{(w1 − 1, w2, w3), (w1, w2 − 1, w3), (w1, w2, w3 − 1)} .

We now introduce labelled box configurations. Their definition is taken from [11].

Definition 4.1.2. A set of labelled boxes is a finite subset of I− ∪ II ∪ III, whose elements
are referred to as boxes, where each type III box w may be labelled by an element of

P1
w := P

(
C · 1w ⊕ C · 2w ⊕ C · 3w

C · (1, 1, 1)w

)
.

Definition 4.1.3. A labelled box configuration is a set of labelled boxes that satisfies the
following box-stacking rules.

Conditions 4.1.4. 1. If w ∈ I− and any cell in BN(w) is a box, then w must be a box.
2. If w ∈ IĪi and any cell n ∈ BN(w) is a box that is not a type III box labelled span{in +

C · (1, 1, 1)n}, then w must be a box.
3. If w ∈ III and the span of subspaces of

C · 1w ⊕ C · 2w ⊕ C · 3w
C · (1, 1, 1)w

induced by boxes in BN(w) is nonzero, then w must be a box. If the dimension of the
span is 1, then w may either be labelled by the span or be unlabelled. If the dimension
of the span is 2, then w must be unlabelled.

Remark 4.1.5. By Conditions 4.1.4.3, if w ∈ III and n ∈ BN(w) is an unlabelled type III
box, then w must be an unlabelled box. This is because unlabelled type III boxes induce the
whole 2-dimensional space C·1w⊕C·2w⊕C·3w

C·(1,1,1)w
.

We then define

W (µ1, µ2, µ3) = q−|II|−2|III|
∑

labelled box configs. π

χtop(π)q|π|,

where |π| is the number of boxes in π plus the number of unlabelled type III boxes in π,
and χtop(π) is the topological Euler characteristic of the moduli space of labellings of π.
When we wish to emphasize the variable being used, we will write W (µ1, µ2, µ3; q) instead
of W (µ1, µ2, µ3).

We will also use the terminology introduced in the following definition.
11



Definition 4.1.6. We say that a type III box w of a labelled box configuration π is freely
labelled if w is labelled and for any ` ∈ P1

w, there is a labelling of π in which w is labelled `.
In this case, we also say that w is labelled by a freely chosen element of P1.

The following example appears in [11, Section 5.4].

Example 4.1.7. Let µ1 = (1), µ2 = (2), and µ3 = (1). Then III = {(0, 0, 0)} and II = II1̄ =
{(0, 0, 1)}. We list labelled box configurations π with |π| ≤ 3.

There is a unique empty labelled box configuration. There are two labelled box configu-
rations π with |π| = 1:

(1) a box at (0, 0, 0) labelled with C · 1(0,0,0) + C · (1, 1, 1)(0,0,0),
(2) a box at (0, 0, 1).

There are three labelled box configurations with |π| = 2:

(1) boxes at (0,−1, 1) and (0, 0, 1),
(2) a box at (0, 0, 0) labelled with C · 1(0,0,0) + C · (1, 1, 1)(0,0,0) and a box at (−1, 0, 0),
(3) a freely labelled box at (0, 0, 0) and a box at (0, 0, 1).

There are six labelled box configurations with |π| = 3:

(1) an unlabelled box at (0, 0, 0) and a box at (0, 0, 1),
(2) a freely labelled box at (0, 0, 0), and boxes at (0,−1, 1) and (0, 0, 1),
(3) a box at (−1, 0, 0), a box at (0, 0, 0) labelled with C · 1(0,0,0) +C · (1, 1, 1)(0,0,0), and a

box at (0, 0, 1),
(4) a box at (0, 0,−1), a box at (0, 0, 0) labelled with C · 3(0,0,0) +C · (1, 1, 1)(0,0,0), and a

box at (0, 0, 1),
(5) a box at (0, 0, 0) labelled with C · 1(0,0,0) + C · (1, 1, 1)(0,0,0), and boxes at (−2, 0, 0)

and (−1, 0, 0),
(6) boxes at (0,−2, 1), (0,−1, 1), and (0, 0, 1).

4.2. Labelled AB configurations. Given a labelled box configuration π such that χtop(π) =
2k, our objective is to associate to π a certain collection of 2k pairs (A,B), called labelled
AB configurations. We begin by defining AB configurations, and then describe how to label
these configurations.

Definition 4.2.1. An AB configuration is a pair (A,B) of finite sets A ⊆ I− ∪ III and
B ⊆ II∪ III, whose elements are referred to as boxes, which satisfies the following conditions.

Conditions 4.2.2. 1. If w ∈ I− ∪ III and BN(w) ∩ A 6= ∅, then w ∈ A.
2. If w ∈ II ∪ III and BN(w) ∩B 6= ∅, then w ∈ B.

We remark that these are the familiar conditions for plane partitions, except that gravity
is pulling the boxes in the direction (1, 1, 1). Also, we call an AB configuration (A,B) empty
(resp. nonempty) if A ∪B is empty (resp. nonempty).

If there is a labelled box configuration π so that the additional conditions below are
satisfied, then we say that (A,B) is an AB configuration on π.

Conditions 4.2.3. 1. A ∪B is the set of boxes in π.
2. A ∩B is the set of unlabelled type III boxes in π.

12



Figure 6. The AB configuration (III, II ∪ III), in the case where µ1 = µ2 =
µ3 = (2).

4.2.1. The base AB configuration. The set of all AB configurations on π will be denoted
AB(π). There is always at least one way to construct an AB configuration on π. This will
be called the base AB configuration, ABbase(π).

Definition 4.2.4. Construct A and B from the boxes of π as follows. Let A consist of the
type I− boxes and the type III boxes. Let B consist of the type II boxes and the unlabelled
type III boxes. Define ABbase(π) = (A,B).

Example 4.2.5. If µ1 = µ2 = µ3 = (2), then there is a labelled box configuration π
consisting of an unlabelled type III box (0, 0, 0), and type II boxes (1, 0, 0), (0, 1, 0), and
(0, 0, 1). The base AB configuration is ABbase(π) = (A,B), where A = {(0, 0, 0)} and
B = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)}, and is illustrated in Figure 6. In this case, A = III
and B = II ∪ III.

We will now show that ABbase(π) ∈ AB(π). To establish this fact as well as subsequent
statements, the following lemmas will be needed.

Lemma 4.2.6. Suppose w ∈ Cylj and n(i) ∈ BN(w) is the back neighbor obtained by
subtracting 1 from the ith coordinate of w. Then, if i = j or the ith coordinate of w is
positive, n(i) ∈ Cylj.

Proof. Let w = (w1, w2, w3) and n(i) = (n1, n2, n3), so that ni = wi − 1 and nl = wl
for l 6= i. In what follows, all indices should be considered modulo 3. Since w ∈ Cylj,
(wj+1, wj+2) ∈ µj. Suppose i = j. Then (nj+1, nj+2) = (wj+1, wj+2) ∈ µj, so n(i) ∈ Cylj.
Suppose wi > 0. We may assume i 6= j, so i = j + 1 or i = j + 2. In the first case,
wj+1− 1 ≥ 0, so (nj+1, nj+2) = (wj+1− 1, wj+2) ∈ µj, while in the second case, wj+2− 1 ≥ 0,
so (nj+1, nj+2) = (wj+1, wj+2 − 1) ∈ µj. In both cases, n(i) ∈ Cylj. �

Lemma 4.2.7. Let i ∈ {1, 2, 3}. If w ∈ I− is adjacent to w′ ∈ IĪi, then w ∈ Cyl−j for some
j ∈ {1, 2, 3} \ {i}.

Proof. Either w ∈ BN(w′) or w′ ∈ BN(w). Since w′ ∈ II ⊆ Z3
≥0, if w′ ∈ BN(w), then

w ∈ Z3
≥0. However, w ∈ I−, so w 6∈ Z3

≥0. Thus, w ∈ BN(w′). Since w ∈ I−, w ∈ Cyl−j for

some j ∈ {1, 2, 3}, so the jth coordinate of w must be negative. Since w′ ∈ Z3
≥0, w must be

the back neighbor obtained by subtracting 1 from the jth coordinate of w′. Since w ∈ Cylj,
we find that w′ ∈ Cylj. On the other hand, since w′ ∈ IĪi, w

′ 6∈ Cyli, so j 6= i. �
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Lemma 4.2.8. Let i ∈ {1, 2, 3}. If w ∈ II is adjacent to w′ ∈ IĪi, then w ∈ IĪi.

Proof. Either w ∈ BN(w′) or w′ ∈ BN(w). If w ∈ BN(w′), observe that w′ ∈ Cylj for
j 6= i, so by Lemma 4.2.6, BN(w′) ∩ Z3

≥0 ⊆ Cylj. Since w ∈ II ⊆ Z3
≥0, we have w ∈ Cylj for

j 6= i, so w ∈ IĪi. Otherwise, w′ ∈ BN(w). Then w ∈ IIj̄ for some j ∈ {1, 2, 3}, and by the
same argument, w′ ∈ IIj̄. We deduce that j = i, so w ∈ IĪi. �

Lemma 4.2.9. Suppose w ∈ III and n ∈ BN(w). Then n ∈ I− ∪ III.

Proof. Let n(i) ∈ BN(w) be the neighbor obtained by subtracting 1 from the ith coordinate
of w. If n(i) 6∈ III, then n(i) 6∈ Cylj for some j ∈ {1, 2, 3}, so by Lemma 4.2.6, the ith
coordinate of w is not positive. Since w ∈ III ⊆ Z3

≥0, it follows that the ith coordinate of w
is 0, so the ith coordinate of n(i) is −1. Therefore, by the same lemma, n(i) ∈ Cyli \Z3

≥0 =

Cyl−i ⊆ I−. �

Lemma 4.2.10. If π is a labelled box configuration, then ABbase(π) satisfies Conditions 4.2.2
and Conditions 4.2.3, i.e., ABbase(π) ∈ AB(π).

Proof. Let (A,B) = ABbase(π). Conditions 4.2.3 are immediate. To check Conditions 4.2.2.1,
suppose that w ∈ I− ∪ III and n ∈ BN(w) ∩ A. We must show that w ∈ A. Since n ∈ A, n
is a box of π in I− ∪ III. If w ∈ I−, the claim follows from Conditions 4.1.4.1. If w ∈ III, the
claim follows from Conditions 4.1.4.3.

Similarly, to check Conditions 4.2.2.2, suppose that w ∈ II ∪ III and n ∈ BN(w) ∩ B. We
must show that w ∈ B. Since n ∈ B, n is a type II box of π or an unlabelled type III box
of π. If w ∈ II, then the claim follows from Conditions 4.1.4.2. If w ∈ III, then w is a box
of π, by Conditions 4.1.4.3, but we need to check that w is unlabelled. Since w ∈ III and
n ∈ BN(w), Lemma 4.2.9 shows that n cannot be in II, so it must be an unlabelled type III
box. Since n is unlabelled, w must be unlabelled as well by Remark 4.1.5. �

We will also need the following definitions.

Definition 4.2.11. Let PT-box be the set of all labelled box configurations, and let ABall

be the set of all AB configurations.

Let φbase : PT-box → ABall be the map that sends π to ABbase(π), and let ABbase =
φbase(PT-box). Observe that

ABbase =
⋃

π∈PT-box

{ABbase(π)} .

4.2.2. The labelling algorithm for AB configurations. Thus far, we have described a method
for constructing an AB configuration from a labelled box configuration. We now describe
an algorithm that labels AB configurations. When successful, its output can be used to
construct a labelled box configuration from an AB configuration. Note that the algorithm
assigns labels to cells, not boxes.

Definition 4.2.12. Let (A,B) ∈ ABall. We call the set

L(A,B) := (I− ∩ A) ∪ (II \B) ∪ (III ∩ (A4B))

the labelling set of (A,B).
14



We label cells by assigning labels to connected components of L(A,B) using the following
algorithm.

Algorithm 4.2.13. 1. If a connected component of L(A,B) contains a cell in Cyl−i ∪ IĪi and
a cell in Cyl−j ∪ IIj̄, where i 6= j, terminate with failure.

2. For each connected component C of L(A,B) that contains a cell in Cyl−i ∪ IĪi, label each
element of C by i.

3. For each remaining connected component C of L(A,B), label each element of C by the

same freely chosen element of P
(

C·1⊕C·2⊕C·3
C·(1,1,1)

)
.

Remark 4.2.14. When the context is clear, we will denote P
(

C·1⊕C·2⊕C·3
C·(1,1,1)

)
by P1. We will

also use 〈z1, z2, z3〉w to denote span {z11w + z22w + z33w + C · (1, 1, 1)w} ∈ P
(

C·1w⊕C·2w⊕C·3w
C·(1,1,1)w

)
and 〈z1, z2, z3〉 to denote span {z11 + z22 + z33 + C · (1, 1, 1)} ∈ P

(
C·1⊕C·2⊕C·3

C·(1,1,1)

)
.

Definition 4.2.15. For i ∈ {1, 2, 3}, if w ∈ Cyl−i ∪ IĪi, set `(w) := i.

Lemma 4.2.16. If w ∈ I−∪ II is labelled at any point in Algorithm 4.2.13, then it is labelled
by `(w).

Proof. Let w ∈ I− ∪ II. Suppose w is labelled at some point in Algorithm 4.2.13. Then
w is an element of some connected component C of L(A,B). If w ∈ I−, then w ∈ Cyl−i
for some i ∈ {1, 2, 3}, so w is labelled by i in step 2 of Algorithm 4.2.13, and `(w) = i.
Otherwise, w ∈ II, so w ∈ IĪi for some i ∈ {1, 2, 3}. In this case, w is labelled by i in step 2
of Algorithm 4.2.13 and `(w) = i. �

Definition 4.2.17. Given (A,B) ∈ ABall and a connected component C of L(A,B), let

N (C) =
∣∣{` (w) | w ∈ C ∩

(
I− ∪ II

)}∣∣ .
Remark 4.2.18. Let (A,B) ∈ ABall. Algorithm 4.2.13 terminates if and only if there is a
connected component C of L(A,B) such that N (C) > 1. Moreover, if Algorithm 4.2.13 does
not terminate, then a connected component C of L(A,B) is labelled in step 2 if and only if
N (C) = 1, and C is labelled in step 3 if and only if N (C) = 0. Finally, if w is labelled in
step 3 of Algorithm 4.2.13, then w ∈ C, where C is a connected component of L(A,B) that
does not contain any cells in Cyl−i ∪ IĪi for any i ∈ {1, 2, 3}, so

w ∈ C ⊆ L(A,B) \

(
3⋃
i=1

Cyl−i ∪ IĪi

)
= L(A,B) \ (I− ∪ II) ⊆ III ∩ (A4B).

Because Algorithm 4.2.13 may fail in step 1, there are AB configurations that cannot be
labelled.

Definition 4.2.19. A labelled AB configuration is an AB configuration for which Algo-
rithm 4.2.13 succeeds.

Example 4.2.20. As in Example 4.1.7, let µ1 = (1), µ2 = (2), and µ3 = (1), so III =
{(0, 0, 0)} and II = II1̄ = {(0, 0, 1)}. In Figure 7, we illustrate four AB configurations, three
of which are labelled AB configurations. The first three of these configurations appear in
Example 4.1.7 as the configuration (1) with |π| = 1, the configuration (4) with |π| = 3, and
the configuration (3) with |π| = 2.
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Figure 7. The AB configurations from Example 4.2.20.

(1) A consists of a single box at (0, 0, 0) and B = ∅. Step 2 of Algorithm 4.2.13 gives
the connected component consisting of cells (0, 0, 0) and (0, 0, 1) the label 1, which
is indicated by the color purple. The cell (0, 0, 0) is opaque because it is a box; the
cell (0, 0, 1) is not.

(2) A = {(0, 0, 0), (0, 0,−1)} and B = {(0, 0, 1)}. The box in B is not in the labelling
set. Step 2 labels the cells in A by 3, which we illustrate by coloring the two boxes
cyan. The box at (0, 0, 1) is colored gray because it does not get a label.

(3) A = ∅ and B = {(0, 0, 0), (0, 0, 1)}. Again, the box at (0, 0, 1) is not in the labelling
set. The box at (0, 0, 0) has a freely chosen label in P1.

(4) B = ∅ and A = {(0, 0, 0), (0, 0,−1)}. The algorithm terminates with failure in
step 1 because (0, 0,−1) ∈ Cyl−3 and (0, 0, 1) ∈ II1̄, and these cells are in the same
connected component. In the figure, (0, 0, 0) is colored both cyan, required by the
box at (0, 0,−1), and purple, required by the cell at (0, 0, 1).

Figure 8. The AB configuration from Example 4.2.21.

Example 4.2.21. Figure 8 shows a labelled AB configuration with µ1 = (3, 3, 1), µ2 =
(3, 2, 2, 1), and µ3 = (5, 3, 3, 1). The left image shows the configuration. The boxes belonging
to A are marked; all other boxes are in B. The right image includes surrounding cells in II.
In both images, yellow cells are labelled 2 and purple cells are labelled 1. Opaque cells are
boxes in the configuration and transparent cells are not. The two connected components of
L(A,B) labelled by freely chosen elements of P1 are colored black and orange, respectively.

4.2.3. Projection to the base AB configuration. Given a labelled AB configuration (A,B),
we can define a set of labelled boxes π(A,B) as follows.

Definition 4.2.22. Take A ∪ B to be the set of boxes of π(A,B) and label type III boxes
using the labels specified by Algorithm 4.2.13. More precisely, given a connected component
C of L(A,B), if Algorithm 4.2.13 labels C by i ∈ {1, 2, 3}, let the label of w ∈ III ∩ C in
π(A,B) be span {iw + C · (1, 1, 1)w}, while if Algorithm 4.2.13 labels C by a freely chosen
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element 〈z1, z2, z3〉 of P1, let the label of w ∈ III ∩ C in π(A,B) be the same freely chosen
element 〈z1, z2, z3〉w of P1

w.

Define a map P : ABall → ABall by letting P (A,B) be the AB configuration obtained by
moving all multiplicity 1 type III boxes into A. That is, let

P (A,B) = (A ∪ (III ∩ (B \ A)), B \ (III ∩ (B \ A))).

Lemma 4.2.23. This map is well-defined. In fact, P takes every element of AB(π) to
ABbase(π).

Proof. Given (A,B) ∈ ABall, let (A′, B′) = (A∪ (III∩ (B \A)), B \ (III∩ (B \A))). We need
to see that (A′, B′) ∈ ABall.

First, A′ ⊆ A ∪ III ⊆ I− ∪ III and B′ ⊆ B ⊆ II ∪ III are finite, since A′ ⊆ A ∪ B and since
A and B are both finite. Also, note that A ⊆ A′. To check Conditions 4.2.2.1, suppose
w ∈ I− ∪ III and n ∈ BN(w)∩A′. If n ∈ A, then w ∈ A ⊆ A′, by Conditions 4.2.2.1 and the
fact that (A,B) is an AB configuration. Otherwise, n ∈ A′ \A, i.e., n ∈ III∩ (B \A). Then
n ∈ III ⊆ Z3

≥0, so w ∈ Z3
≥0. Since w ∈ I−∪ III, it follows that w ∈ III, so by Conditions 4.2.2.2

and the fact that (A,B) is an AB configuration, w ∈ III ∩B ⊆ III ∩ (A ∪B) ⊆ A′.
Similarly, to check Conditions 4.2.2.2, suppose w ∈ II ∪ III and n ∈ BN(w) ∩ B′. Since

B′ ⊆ B, w ∈ B, by Conditions 4.2.2.2 and the fact that (A,B) is an AB configuration.
If w ∈ II, then w ∈ B′. Otherwise, w ∈ III. By Lemma 4.2.9, n ∈ I− ∪ III. However,
n ∈ B′ ⊆ II ∪ III. Thus, n ∈ III. Since n ∈ B′, n ∈ III ∩ B′ ⊆ III ∩ B \ (B \ A) ⊆ A ∩ B. In
particular, n ∈ A, so by Conditions 4.2.2.1 and the fact that (A,B) is an AB configuration,
w ∈ A, i.e., w ∈ A ∩B ⊆ B′.

Finally, suppose (A,B) ∈ AB(π). The fact that (A′, B′) ∈ AB(π) is a consequence of
the equalities A′ ∪ B′ = A ∪ B, and A′ ∩ B′ = A ∩ B, which are both clear. We claim that
(A′, B′) = ABbase(π). To see this, we must show that A′ consists of the type I− and type III
boxes of π, while B′ consists of the type II and unlabelled type III boxes of π. Since (A′, B′) is
an AB configuration on π, we have A′ ⊆ I− ∪ III and B′ ⊆ II∪ III, and by Conditions 4.2.3.1,
A′ must contain all type I− boxes of π, while B′ must contain all type II boxes of π. Also,
by Conditions 4.2.3.2, we know that A′ and B′ contain all unlabelled type III boxes of π.
So, by Conditions 4.2.3.1 and since A′ ⊆ I− ∪ III and B′ ⊆ II ∪ III, (A′, B′) = ABbase(π)
if A′ contains all labelled type III boxes of π and any box w ∈ B′ ∩ III is unlabelled. For
the first statement, if w is a labelled type III box of π, then by Conditions 4.2.3, w ∈
III ∩ ((A ∪ B) \ (A ∩ B)) = III ∩ ((A \ B) ∪ (B \ A)) ⊆ (A \ B) ∪ (III ∩ (B \ A)) ⊆ A′.
For the second statement, if w ∈ B′ ∩ III is a labelled box of π, then by Conditions 4.2.3,
w ∈ B′ ∩ ((A′ ∪B′) \ (A′ ∩B′)) = B′ ∩ ((A′ \B′)∪ (B′ \A′)) ⊆ B′ \A′, so w 6∈ A′ ⊇ A. This
in turn implies that w ∈ III ∩ (B′ \ A) ⊆ III ∩ (B \ A) ⊆ A′, a contradiction. �

Let AB = P−1(ABbase). Clearly,

ABbase ⊆
⋃

π∈PT-box

AB(π) ⊆ AB ⊆ ABall.

In fact, the following lemma shows that
⋃

π∈PT-box

AB(π) = AB. Moreover, as defined, P |AB

is a surjection from AB onto ABbase.
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Lemma 4.2.24. We have
AB =

⋃
π∈PT-box

AB(π).

More precisely, P−1(ABbase(π)) = AB(π).

Proof. By Lemma 4.2.23, AB(π) ⊆ P−1(ABbase(π)). Conversely, suppose (A,B) ∈ P−1(ABbase(π)),
that is, (A,B) is an AB configuration such that (A′, B′) := P (A,B) = ABbase(π). To
show that (A,B) ∈ AB(π), we just need to check that Conditions 4.2.3 hold. Since
(A′, B′) = ABbase(π) ∈ AB(π), we have that A ∪ B = A′ ∪ B′ is the set of boxes in
π and A ∩ B = A′ ∩ B′ is the set of unlabelled type III boxes in π, as desired. Thus,
P−1(ABbase(π)) ⊆ AB(π). Finally,

AB = P−1(ABbase) = P−1

( ⋃
π∈PT-box

{ABbase(π)}

)
=

⋃
π∈PT-box

P−1(ABbase(π)) =
⋃

π∈PT-box

AB(π).

�

Lemma 4.2.25. Suppose π is a labelled box configuration, (A,B) ∈ AB(π), and w ∈ III ∩
(A4B) is a box that is adjacent to a cell n ∈ L(A,B). If n ∈ Cyl−l ∪IIl̄ for some l ∈ {1, 2, 3},
then the label of w in π is span{lw +C · (1, 1, 1)w}. If n ∈ III∩ (A4B)∩BN(w), then n is a
labelled type III box of π, and if the label of n in π is span {z11n + z22n + z33n + C · (1, 1, 1)n},
then the label of w in π is 〈z1, z2, z3〉w.

Proof. By Conditions 4.2.3, w is a labelled type III box of π. Suppose n ∈ Cyl−l for some
l ∈ {1, 2, 3}. Then n ∈ I−∩A and n 6∈ Z3

≥0. Since w ∈ III ⊆ Z3
≥0, n ∈ BN(w). Since (A,B) ∈

AB(π), n is a box of π, by Conditions 4.2.3.1. Then, note that the span S of subspaces of
C·1w⊕C·2w⊕C·3w

C·(1,1,1)w
induced by boxes in BN(w) contains the subspace span{lw + C · (1, 1, 1)w},

so S is that subspace or S is 2-dimensional. By Conditions 4.1.4.3, it follows that the label
of w in π is span{lw + C · (1, 1, 1)w} or w is an unlabelled box of π. In the latter case,
by Conditions 4.2.3.2, w ∈ A ∩ B, contradicting the fact that w ∈ A4B. So, the former
statement must hold.

Suppose n ∈ IIl̄ for some l ∈ {1, 2, 3}. Then n ∈ II \ B. By Lemma 4.2.9, n 6∈ BN(w),
so w ∈ BN(n). Since A ⊆ I− ∪ III, n 6∈ A, so n 6∈ A ∪ B. Since (A,B) ∈ AB(π), n is
not a box of π, by Conditions 4.2.3.1. By Conditions 4.1.4.2, the label of w in π must be
span{lw + C · (1, 1, 1)w}.

Finally, suppose n ∈ III∩(A4B)∩BN(w). Then, by Conditions 4.2.3, n is a labelled type
III box of π. Let `w denote the label of w in π and span {z11n + z22n + z33n + C · (1, 1, 1)n}
be the label of n in π. Since n ∈ BN(w), the span S of subspaces of C·1w⊕C·2w⊕C·3w

C·(1,1,1)w
induced

by boxes in BN(w) contains the subspace 〈z1, z2, z3〉w induced by n. By Conditions 4.1.4.3,
S is 1-dimensional and `w = S. Thus, `w = S = 〈z1, z2, z3〉w. �

Theorem 4.2.26. Given an AB configuration (A,B), Algorithm 4.2.13 succeeds if and only
if (A,B) ∈ AB.

Proof. Let (A,B) ∈ ABall. Suppose Algorithm 4.2.13 succeeds. By Lemma 4.2.24, to show
that (A,B) ∈ AB, it suffices to find a labelled box configuration π such that (A,B) ∈ AB(π).
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To achieve this, we will show that π(A,B) satisfies Conditions 4.1.4, and then show that
Conditions 4.2.3 hold.

Conditions 4.1.4. Suppose w ∈ I− and n ∈ BN(w) ∩ (A ∪ B). Since w 6∈ Z3
≥0, n 6∈ Z3

≥0, so
n 6∈ II ∪ III, implying that n ∈ A. Then, by Conditions 4.2.2.1, w ∈ A ⊆ A ∪B.

Next, suppose w ∈ IĪi and n ∈ BN(w) ∩ (A ∪ B) is not a type III box labelled span{in +
C · (1, 1, 1)n}. If n ∈ B, then by Conditions 4.2.2.2, w ∈ B ⊆ A ∪ B. Otherwise, n 6∈ B,
so n ∈ A \ B. Then n ∈ I− ∪ III. If n ∈ I−, by Lemma 4.2.7, n ∈ Cyl−j for some j ∈
{1, 2, 3} \ {i}. Since n ∈ I− ∩A ⊆ L(A,B) and Algorithm 4.2.13 does not terminate at step
1, w ∈ II\L(A,B) ⊆ B ⊆ A∪B. Otherwise, n ∈ III. In this case, suppose w 6∈ A∪B. Then
w ∈ II \ B ⊆ L(A,B) and n ∈ III ∩ (A \ B) ⊆ III ∩ (A4B) ⊆ L(A,B), so Algorithm 4.2.13
assigns a label of i to n at step 2. However, by Definition 4.2.22, the label of n in π(A,B)
is span{in + C · (1, 1, 1)n}, contradicting our assumption, so w ∈ A ∪B.

Now, suppose w ∈ III and the span S of subspaces of C·1w⊕C·2w⊕C·3w
C·(1,1,1)w

induced by boxes in

BN(w)∩ (A∪B) is nonzero. In this case, BN(w)∩ (A∪B) 6= ∅, so by Conditions 4.2.2.2,
w ∈ A ∪B. By Lemma 4.2.9, BN(w) ⊆ I− ∪ III, so

BN(w)∩(A∪B) ⊆ (I−∪III)∩(A∪B) = (I−∩(A∪B))∪(III∩(A∪B)) ⊆ (I−∩A)∪(III∩(A∪B)).

Suppose the dimension of S is 1. Then no cell in BN(w) ∩ (A ∪ B) is left unlabelled
by Algorithm 4.2.13, for any such cell must be an unlabelled type III box in π(A,B), and
such boxes induce the whole 2-dimensional space C·1w⊕C·2w⊕C·3w

C·(1,1,1)w
. As a result, BN(w)∩ (A∪

B) ⊆ L(A,B). We must show that the label of w in π(A,B) is S or w is unlabelled in
π(A,B). Suppose w is not unlabelled in π(A,B). Then Algorithm 4.2.13 must assign a
label to w, so w ∈ L(A,B). Thus, since w is adjacent to each cell in BN(w) ∩ (A ∪ B),
{w} ∪ (BN(w) ∩ (A ∪ B)) is contained in a single connected component C of L(A,B), so
Algorithm 4.2.13 assigns the same label ` to each element of {w} ∪ (BN(w) ∩ (A ∪B)).

Let n ∈ BN(w) ∩ (A ∪ B). Since BN(w) ∩ (A ∪ B) ⊆ (I− ∩ A) ∪ (III ∩ (A ∪ B)), either
n ∈ I−∩A, so n ∈ Cyl−i for some i ∈ {1, 2, 3} and ` = i, or n ∈ III∩(A∪B). In the first case, n
induces the subspace span{iw+C·(1, 1, 1)w} of C·1w⊕C·2w⊕C·3w

C·(1,1,1)w
, so span{iw+C·(1, 1, 1)w} ⊆ S,

but since S is 1-dimensional, span{iw + C · (1, 1, 1)w} = S. Then, since w ∈ III ∩ (A ∪ B)
and Algorithm 4.2.13 labels w by ` = i ∈ {1, 2, 3}, the label of w in π(A,B) is span{iw +C ·
(1, 1, 1)w} = S, according to Definition 4.2.22. In the second case, since n,w ∈ III ∩ (A ∪B)
and Algorithm 4.2.13 labels n,w ∈ {w} ∪ (BN(w) ∩ (A ∪ B)) by `, either ` ∈ {1, 2, 3} and
the labels of n and w in π(A,B) are span{`n + C · (1, 1, 1)n} and span{`w + C · (1, 1, 1)w},
or ` is a freely chosen element 〈z1, z2, z3〉 of P1 and the labels of n and w in π(A,B) are
the same freely chosen elements `n := span {z11n + z22n + z33n + C · (1, 1, 1)n} and `w :=
〈z1, z2, z3〉w. Then n induces the subspace span{`w + C · (1, 1, 1)w} or `w, respectively, of
C·1w⊕C·2w⊕C·3w

C·(1,1,1)w
, so span{`w + C · (1, 1, 1)w} ⊆ S or `w ⊆ S, respectively. Since S is 1-

dimensional, span{`w +C · (1, 1, 1)w} = S or `w = S, respectively. That is, the label of w in
π(A,B) is S.

Suppose the dimension of S is 2. We must show that w is an unlabelled box of π(A,B).
In other words, we must show that w 6∈ L(A,B). If BN(w) ∩ A ∩ B 6= ∅, then by Con-
ditions 4.2.2, w ∈ III ∩ A ∩ B, so w 6∈ L(A,B). Otherwise, BN(w) ∩ A ∩ B = ∅. In this
case, since BN(w) ∩ (A ∪ B) ⊆ (I− ∩ A) ∪ (III ∩ (A ∪ B)), we have BN(w) ∩ (A ∪ B) ⊆
(I− ∩ A) ∪ (III ∩ (A4B)) ⊆ L(A,B). Suppose w ∈ L(A,B). Then, since w is adjacent to
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each cell in BN(w) ∩ (A ∪B), {w} ∪ (BN(w) ∩ (A ∪B)) is contained in a single connected
component C of L(A,B), so Algorithm 4.2.13 assigns the same label ` to each element of
{w} ∪ (BN(w) ∩ (A ∪ B)). Either ` ∈ {1, 2, 3} or ` is a freely chosen element 〈z1, z2, z3〉
of P1. By the arguments given in the previous paragraph, in the first case, each element of
BN(w) ∩ (A ∪ B) induces the subspace span{`w + C · (1, 1, 1)w} of C·1w⊕C·2w⊕C·3w

C·(1,1,1)w
, and in

the second case, each element of BN(w) ∩ (A ∪ B) induces the same freely chosen element
`w := 〈z1, z2, z3〉w of P1

w. In the first case, S = span{`w + C · (1, 1, 1)w}, and in the second
case, S = `w. In either case, S is 1-dimensional. By contradiction, w 6∈ L(A,B).

Conditions 4.2.3. Conditions 4.2.3.1 holds by construction. For Conditions 4.2.3.2, suppose
w ∈ A ∩ B. Then, since A ⊆ I− ∪ III and B ⊆ II ∪ III, w ∈ (I− ∪ III) ∩ (II ∪ III) ⊆ III,
which means that w 6∈ L(A,B). Therefore, w is an unlabelled box of π(A,B). Conversely,
suppose w is an unlabelled type III box of π(A,B). Then w ∈ III∩(A∪B)\L(A,B) ⊆ A∩B.

For the converse, suppose (A,B) ∈ AB. Then, by Lemma 4.2.24, (A,B) ∈ AB(π) for
some π ∈ PT-box. We must show that Algorithm 4.2.13 succeeds, i.e., we must show that
it passes step 1. Suppose not. Then a connected component C of L(A,B) contains a cell
wi ∈ Cyl−i ∪ IĪi and a cell wj ∈ Cyl−j ∪ IIj̄, where i 6= j.

Suppose wi is adjacent to wj. Without loss of generality, assume wi ∈ BN(wj). Observe
that Cyl−i is not adjacent to Cyl−j , because Cyl−i and Cyl−j are subsets of non-adjacent

octants of Z3, so at least one of wi and wj is a type II cell. In fact, if wi ∈ II ⊆ Z3
≥0, since

wi ∈ BN(wj), we have wj ∈ Z3
≥0. Then wj 6∈ I−, in which case, wj ∈ II. In any case, we

deduce that wj ∈ II, so wj ∈ IIj̄. Suppose wi ∈ II. Then, by Lemma 4.2.8, wi ∈ IIj̄. Since
wi ∈ Cyl−i ∪ IĪi and i 6= j, this is a contradiction. Consequently, wi 6∈ II, so wi ∈ Cyl−i ⊆ I−.
Furthermore, wi, wj ∈ L(A,B), so wi ∈ A ⊆ A ∪ B, while wj 6∈ I− ∪ III ∪ B, implying that
wj 6∈ A ∪ B. By Conditions 4.2.3.1, wi is a box of π, while wj is not. On the other hand,
by Conditions 4.1.4.2, wj is a box of π. By contradiction, wi is not adjacent to wj. In fact,
since wi and wj were arbitrary, this argument shows that C cannot contain two adjacent
cells w,w′ ∈ I− ∪ II such that `(w) 6= `(w′).

Since wi, wj ∈ C and C is a connected subset of L(A,B), there is a sequence of adjacent
cells wi := p0, p1, . . . , pr := wj, each of which is an element of C ⊆ L(A,B). Let 0 ≤ t ≤ r
be the index such that pt is the last cell in this sequence that is an element of Cyl−i ∪ IĪi.
Then pt, wj ∈ C and pt, pt+1, . . . , pr = wj is a sequence of adjacent cells, each of which is an
element of C. So, without loss of generality, assume that wi is the only cell in the sequence
wi = p0, p1, . . . , pr = wj that is an element of Cyl−i ∪ IĪi. Then, let 0 < t′ ≤ r be the
index such that pt′ is the first cell in the sequence p1, p2, . . . , pr = wj that is an element of
I− ∪ II. Since wi is the only cell in the sequence wi = p0, p1, . . . , pr = wj that is an element
of Cyl−i ∪ IĪi, pt′ ∈ (I− ∪ II) \ (Cyl−i ∪ IĪi), so pt′ ∈ Cyl−l ∪ IIl̄ for some l ∈ {1, 2, 3} \ {i}.
Also, wi, pt′ ∈ C and wi = p0, p1, . . . , pt′ is a sequence of adjacent cells, each of which is an
element of C. So, without loss of generality, assume that ps 6∈ I− ∪ II for 0 < s < r. Then,
for 0 < s < r, ps ∈ L(A,B) \ (I− ∪ II) ⊆ III ∩ (A4B). Moreover, since wi is not adjacent to
wj, 1 < r, so 1 ≤ r − 1. In particular, p1, . . . , pr−1 ∈ III ∩ (A4B).

Since p1 ∈ III∩(A4B) is adjacent to p0 = wi ∈ L(A,B)∩(Cyl−i ∪IĪi), Lemma 4.2.25 shows
that the label of p1 in π is span{ip1 +C · (1, 1, 1)p1}. Similarly, pr−1 ∈ III∩ (A4B) is adjacent
to pr = wj ∈ L(A,B)∩ (Cyl−j ∪ IIj̄), so the label of pr−1 in π is span{jpr−1 +C · (1, 1, 1)pr−1}.
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Since i 6= j, 1 < r − 1. However, by Lemma 4.2.25, we then find that the label of p2 in π is
span{ip2 + C · (1, 1, 1)p2}, since p1 ∈ BN(p2) or p2 ∈ BN(p1). Then, since i 6= j, 2 < r − 1.
By repeating this argument finitely many times, we eventually see that the label of pr−1

in π is span{ipr−1 + C · (1, 1, 1)pr−1}, contradicting the fact that i 6= j. This completes the
proof. �

Corollary 4.2.27. Given (A,B) ∈ AB, π(A,B) is a labelled box configuration.

Proof. According to the theorem, Algorithm 1 succeeds. So, as established by the first half
of the proof, π(A,B) is a labelled box configuration. �

Define ψbase : ABbase → PT-box by letting ψbase(A,B) = π(A,B).

Lemma 4.2.28.

φbaseψbase = 1ABbase
;

ψbaseφbase = 1PT-box.

Proof. For the second equation, we must show for all π ∈ PT-box, that ψbase(φbase(π)) = π.
However, φbase(π) = ABbase(π), so we just need to show that ψbase(ABbase(π)) = π. And,
given this equation, we have

φbase(ψbase(ABbase(π))) = φbase(π) = ABbase(π)

for all π ∈ PT-box, thereby also establishing the first equation. In other words, it suffices to
show for all π ∈ PT-box, that if (A,B) := ABbase(π), then π(A,B) = π. So, let π ∈ PT-box
and (A,B) = ABbase(π). First, since (A,B) = ABbase(π) ∈ AB(π), A ∪ B is the set of
boxes in π, and A ∩ B is the set of unlabelled type III boxes in π. Furthermore, from
Definition 4.2.22, A∪B is the set of boxes of π(A,B). Since A∩B ⊆ (I− ∪ III)∩ (II∪ III) ⊆
III, we have A ∩ B ⊆ III \ L(A,B) ⊆ III \ (A4B), so by Definition 4.2.22, A ∩ B is the
set of unlabelled type III boxes of π(A,B). Therefore, the set of labelled type III boxes
in π coincides with the set of labelled type III boxes of π(A,B), and both are equal to
III∩ (A∪B) \ (A∩B) = III∩ (A4B). We need only show that π and π(A,B) associate the
same labels to each of these boxes. More precisely, given w ∈ III ∩ (A4B), we must show
that the label `w of w in π is equal to the label of w in π(A,B).

Suppose w ∈ III ∩ (A4B), C is the connected component of L(A,B) containing w, and
Algorithm 4.2.13 labels C by i ∈ {1, 2, 3}. Then the label of w in π(A,B) is span{iw +
C · (1, 1, 1)w}, and C contains a cell p0 ∈ Cyl−i ∪ IĪi. Since C is connected, there is a
sequence of adjacent cells p0, p1, . . . , pr := w, each of which is an element of C ⊆ L(A,B).
Without loss of generality, assume that p0 is the only cell in the sequence in Cyl−i ∪ IĪi.
Since (A,B) is a labelled AB configuration, C contains no cells in Cyl−j ∪ IIj̄, for j 6= i,

so for 0 < s ≤ r, ps ∈ L(A,B) \ (I− ∪ II) ⊆ III ∩ (A4B). Since p1 ∈ III ∩ (A4B) is
adjacent to p0 ∈ L(A,B) ∩ (Cyl−i ∪ IĪi), Lemma 4.2.25 shows that the label of p1 in π is
span{ip1 + C · (1, 1, 1)p1}. Then, if 1 < r, by Lemma 4.2.25, we find that the label of p2 in π
is span{ip2 +C · (1, 1, 1)p2}, since p1 ∈ BN(p2) or p2 ∈ BN(p1). By repeating this argument
finitely many times, we eventually see that the label of pr in π is span{ipr + C · (1, 1, 1)pr},
i.e., `w = span{iw + C · (1, 1, 1)w}.

Now consider the connected components of L(A,B) that Algorithm 4.2.13 labels by freely
chosen elements of P1. Since L(A,B) ⊆ A ∪ II ∪ III ⊆ A ∪ [0,M − 1]3, L(A,B) is finite, so
there are finitely many such components, which we will denote C1, C2, . . . , Ck. Consider one
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such component Cm. Since Cm does not contain any cells in Cyl−i ∪ IĪi for any i ∈ {1, 2, 3},
Cm ⊆ L(A,B) \ (I− ∪ II) ⊆ III ∩ (A4B). Suppose w and w′ are adjacent cells in Cm. Then
w,w′ ∈ III∩(A4B) are labelled type III boxes in π, and by Lemma 4.2.25, since w ∈ BN(w′)
or w′ ∈ BN(w), the labels of w and w′ in π must match: if the label of w in π is `w =
〈z1, z2, z3〉w, then the label of w′ in π must be span {z11w′ + z22w′ + z33w′ + C · (1, 1, 1)w′}.
By the connectedness of Cm, this implies that Cm consists of labelled type III boxes in π,
all of whose labels in π match. That is, there exists `m := 〈z1, z2, z3〉 ∈ P1 such that, for
all w ∈ Cm, w is a labelled type III box in π and the label of w in π is `w = 〈z1, z2, z3〉w.
Since Algorithm 4.2.13 labels Cm by a freely chosen element of P1, the label of each w ∈ Cm
in π(A,B) is the same freely chosen element. So, it just remains to show that `m can
be freely chosen for 1 ≤ m ≤ k, i.e., regardless of the values of `1, `2, . . . , `k, π satisfies
Conditions 4.1.4.

Suppose there is a choice L1, L2, . . . , Lk of the labels `1, `2, . . . , `k for which π does not
satisfy Conditions 4.1.4, i.e., for which the corresponding labelling π′ of π is not a labelled
box configuration. Since π satisfies Conditions 4.1.4 and Conditions 4.1.4.1 does not refer
to labels, π′ also satisfies Conditions 4.1.4.1. Suppose π′ does not satisfy Conditions 4.1.4.2.
Then there is a cell w ∈ IĪi \ (A ∪ B) and a cell n ∈ BN(w) ∩ (A ∪ B) that is not a type
III box whose label in π′ is span{in + C · (1, 1, 1)n}. In particular, Algorithm 4.2.13 assigns
w ∈ II\B ⊆ L(A,B) the label i in step 2. Furthermore, since π satisfies Conditions 4.1.4.2, it
must be the case that n is a type III box whose label in π is span{in+C ·(1, 1, 1)n}. However,

labels in π and π′ may only differ for boxes in
⋃k
j=1 Cj, so from this it follows that n ∈ Cm

for some 1 ≤ m ≤ k. Then, since n and w are adjacent, w ∈ Cm, which is a contradiction.
We conclude that π′ satisfies Conditions 4.1.4.2, so π′ does not satisfy Conditions 4.1.4.3.

Thus, there exists a cell w ∈ III such that (i) the span S ′ of subspaces of C·1w⊕C·2w⊕C·3w
C·(1,1,1)w

induced by boxes of π′ in BN(w) is 1-dimensional, and w is neither a box whose label in π′

is S ′ nor an unlabelled box in π′, or (ii) S ′ is 2-dimensional, and w is not an unlabelled box
in π′. In either case, BN(w)∩ (A∪B) 6= ∅, so by Conditions 4.2.2, w ∈ A∪B. As a result,
w is a labelled box in π′. Let the label of w in π′ be `′. In case (i), `′ 6= S ′. Since the set of
labelled type III boxes in π is equal to the set of labelled type III boxes in π′, w is a labelled
box in π. Let the label of w in π be ` and let S be the span of subspaces of C·1w⊕C·2w⊕C·3w

C·(1,1,1)w

induced by boxes of π in BN(w). Since BN(w)∩ (A∪B) 6= ∅, S is nonzero. Then, since π
satisfies Conditions 4.1.4.3, S is 1-dimensional and ` = S. So, in case (i), ` 6= `′ or S 6= S ′,
and in case (ii), S 6= S ′. In all cases, for some 1 ≤ m ≤ k, ({w} ∪BN(w)) ∩ Cm 6= ∅,

since labels in π and π′ may only differ for boxes in
⋃k
j=1Cj. Suppose w 6∈ Cm. Then there

exists n ∈ BN(w) ∩ Cm. Since w is a labelled box in π, w ∈ III ∩ (A4B) ⊆ L(A,B), so
because Cm is a connected component of L(A,B) and w is adjacent to n ∈ Cm, w ∈ Cm. By
contradiction, w ∈ Cm.

Then, if n is a box of π′ in BN(w), i.e., n ∈ BN(w) ∩ (A ∪B), Lemma 4.2.9 implies that
n ∈ I− ∪ III. Suppose n ∈ I−. Then n ∈ I− ∩A ⊆ L(A,B), since B ⊆ II ∪ III, so because Cm
is a connected component of L(A,B) and n is adjacent to w ∈ Cm, n ∈ Cm ⊆ III ∩ (A4B),
a contradiction. It follows that n 6∈ I−, so n ∈ III. Additionally, suppose n ∈ A ∩ B.
Then, by Conditions 4.2.2, w ∈ A∩B, contradicting the fact that w ∈ Cm ⊆ III∩ (A4B), so
n ∈ III∩(A4B) ⊆ L(A,B). Therefore, since Cm is a connected component of L(A,B) and n
is adjacent to w ∈ Cm, n ∈ Cm. We deduce that, if Lm = 〈z1, z2, z3〉, then `′ = 〈z1, z2, z3〉w,
and all boxes n of π′ in BN(w) are labelled span {z11n + z22n + z33n + C · (1, 1, 1)n}, so
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S ′ = `′. Then S ′ is 1-dimensional, ruling out case (ii), and in case (i), we have `′ 6= S ′ = `′.
By contradiction, π satisfies Conditions 4.1.4, regardless of the values of `1, `2, . . . , `k. This
completes the proof that π(A,B) = π. �

Lemma 4.2.29. Let π ∈ PT-box. For any (A,B), (A′, B′) ∈ AB(π), L(A,B) = L(A′, B′).
Thus, the output of Algorithm 4.2.13 is the same for all elements of AB(π).

Proof. Suppose (A,B), (A′, B′) ∈ AB(π). Then A∪B = A′ ∪B′ is the set of boxes of π and
A ∩ B = A′ ∩ B′ is the set of unlabelled type III boxes of π. Suppose w ∈ I− ∩ A. Then,
since B′ ⊆ II ∪ III, w ∈ A ∪ B = A′ ∪ B′ and w 6∈ B′, so w ∈ I− ∩ A′. So I− ∩ A ⊆ I− ∩ A′,
and by the analogous argument, I− ∩A′ ⊆ I− ∩A, so I− ∩A = I− ∩A′. Suppose w ∈ II \B.
Then, since A ⊆ I− ∪ III, w 6∈ A ∪ B = A′ ∪ B′, so w ∈ II \ B′. So II \ B ⊆ II \ B′, and by
the analogous argument, II \B′ ⊆ II \B, so II \B = II \B′. Finally,

III ∩ (A4B) = III ∩ ((A ∪B) \ (A ∩B)) = III ∩ ((A′ ∪B′) \ (A′ ∩B′)) = III ∩ (A′4B′),

so L(A,B) = L(A′, B′). Since Algorithm 4.2.13 only depends on the connected components
of the labelling set, we conclude that the output of Algorithm 4.2.13 is the same for all
elements of AB(π). �

Corollary 4.2.30. Given (A,B) ∈ AB(π), π(A,B) = π.

Proof. Let (A′, B′) = ABbase(π). By Definition 4.2.22, Conditions 4.2.3.1, and the lemma,
π(A,B) = π(A′, B′). Then, by Lemma 4.2.28, we have

π(A,B) = π(A′, B′) = ψbase(A
′, B′) = ψbase (ABbase(π)) = ψbase (φbase(π)) = π,

as desired. �

Corollary 4.2.31. The sets AB(π), for π ∈ PT-box, are disjoint.

Proof. Suppose π1 and π2 are labelled box configurations such that (A,B) ∈ AB (π1) ∩
AB (π2). Then, by Corollary 4.2.30, we have π1 = π(A,B) = π2. �

Lemma 4.2.32. Let π ∈ PT-box. If there are k connected components of freely labelled type
III boxes in π, then χtop(π) = 2k.

Proof. Let (A,B) = ABbase(π). By Corollary 4.2.30, π = π(A,B). Suppose there are k
connected components of freely labelled type III boxes in π. Then there are k connected
components of freely labelled type III boxes in π(A,B). By Definition 4.2.22, the set of
freely labelled type III boxes in π(A,B) is III∩ (C1∪C2∪· · ·∪CK), where C1, C2, . . . , CK are
the connected components of L(A,B) that Algorithm 4.2.13 labels by freely chosen elements
of P1. For 1 ≤ m ≤ K, since Algorithm 4.2.13 labels Cm by a freely chosen element of P1,
Cm must contain no cells in I− ∪ II, so Cm ⊆ L(A,B) \ (I− ∪ II) ⊆ III ∩ (A4B) ⊆ III. Thus,
III∩ (C1∪C2∪· · ·∪CK) = C1∪C2∪· · ·∪CK , so the connected components of freely labelled
type III boxes in π(A,B) are the connected components of C1 ∪ C2 ∪ · · · ∪ CK , which are
precisely C1, C2, . . . , CK . In particular, by Definition 4.2.22, there are K = k independent,
freely chosen labels in π(A,B), one for each component C1, C2, . . . , CK = Ck. In other
words, the moduli space of labellings of π(A,B) is P1 × P1 × · · · × P1︸ ︷︷ ︸

k times

. The topological Euler

characteristic of this space is χ(P1)k = 2k, i.e., χtop(π) = χtop(π(A,B)) = 2k. �
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Lemma 4.2.33. Let π ∈ PT-box and (A,B) = ABbase(π). Also, let the connected compo-
nents of freely labelled type III boxes in π be denoted C1, C2, . . . , Ck, and let

C(π) = {Cj1 ∪ · · · ∪ Cjm | 1 ≤ j1 < · · · < jm ≤ k} .
Then

AB(π) = {(A′, B′) ∈ ABall | A′ = A \ S,B′ = B ∪ S for some S ∈ C(π)} .

Proof. Let

AB(π) = {(A′, B′) ∈ ABall | A′ = A \ S,B′ = B ∪ S for some S ∈ C(π)} .
Suppose (A′, B′) ∈ AB(π). Then A′ = A \ S and B′ = B ∪ S for some S ∈ C(π). Note that
S is a set of labelled type III boxes in π, so S ⊆ A\B. Then, to show that (A′, B′) ∈ AB(π),
we just observe that

A′ ∪B′ = (A \ S) ∪ (B ∪ S) = A ∪B
is the set of boxes in π, and

A′ ∩B′ = (A \ S) ∩ (B ∪ S) = A ∩B
is the set of unlabelled type III boxes in π.

Conversely, suppose (A′, B′) ∈ AB(π). To show that (A′, B′) ∈ AB(π), we must find a set
S ∈ C(π) such that A′ = A\S and B′ = B∪S. By Lemma 4.2.24, AB(π) = P−1(ABbase(π)),
so P (A′, B′) = (A,B), i.e., (A,B) is obtained from (A′, B′) by moving all multiplicity 1 type
III boxes into A′. In other words, A = A′ ∪ S and B = B′ \ S, where S = III ∩ (B′ \ A′).
Then A′ = A \ S and B′ = B ∪ S, so it just remains to show that S ∈ C(π).

Given w ∈ S, since (A′, B′) ∈ AB(π) and S ⊆ III∩(A′4B′) ⊆ L(A′, B′), w ∈ L(A′, B′) is a
labelled type III box in π. We claim that w ∈ C1∪C2∪· · ·∪Ck. For this, we must show that w
is freely labelled. Let ` denote the label of w in π, and let C(w) be the connected component
of L(A′, B′) containing w. By Lemma 4.2.29, L(A′, B′) = L(ABbase(π)) = L(A,B), so C(w)
is the connected component of L(A,B) containing w, and the output of Algorithm 4.2.13
is the same for (A′, B′) and ABbase(π) = (A,B). By Lemma 4.2.28, π = π(ABbase(π)) =
π(A,B). So, either Algorithm 4.2.13 labels C(w) by i ∈ {1, 2, 3} and the label of w in π
is ` = span{iw + C · (1, 1, 1)w}, or Algorithm 4.2.13 labels C(w) by a freely chosen element
〈z1, z2, z3〉 of P1 and the label of w in π is the same freely chosen element ` = 〈z1, z2, z3〉w of
P1
w.
Suppose Algorithm 4.2.13 labels C(w) by i ∈ {1, 2, 3}. Then there is a cell n ∈ C(w) ∩

(Cyl−i ∪IĪi). Since C(w) is connected, there is a sequence of adjacent cells w := p0, p1, . . . , pr :=
n, each of which is an element of C(w) ⊆ L(A,B). Without loss of generality, assume that n
is the only cell in the sequence in Cyl−i ∪ IĪi. Then, since (A,B) is a labelled AB configura-
tion, C(w) contains no cells in Cyl−j ∪IIj̄, for j 6= i, so for 0 ≤ s < r, ps ∈ L(A,B)\(I−∪II) ⊆
III ∩ (A4B). Since (A,B) = ABbase(π) ∈ AB(π) and (A′, B′) ∈ AB(π),

III ∩ (A4B) = III ∩ ((A ∪B) \ (A ∩B)) = III ∩ ((A′ ∪B′) \ (A′ ∩B′)) = III ∩ (A′4B′),
so for 0 ≤ s < r, ps ∈ III ∩ (A′4B′).

Suppose n ∈ Cyl−i . Then n ∈ I− ∩ L(A,B) ⊆ I− ∩ A, so n ∈ A ∪ B = A′ ∪ B′. However,
B′ ⊆ II ∪ III, so pr = n ∈ A′ \ B′. Since w ∈ S, w ∈ B′ \ A′. Therefore, there exists
0 ≤ s < r such that ps ∈ B′ \ A′ and ps+1 ∈ A′ \ B′. Then ps ∈ III is adjacent to
ps+1 ∈ I− ∪ III, so ps ∈ BN (ps+1) or ps+1 ∈ BN (ps). In the first case, since ps ∈ III ⊆ Z3

≥0,
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ps+1 ∈ Z3
≥0 ∩

(
I− ∪ III

)
⊆ III ⊆ II ∪ III. It is easy to see that these statements contradict

Conditions 4.2.2 in both cases.
Otherwise, n ∈ IĪi. Then n ∈ II ∩ L(A,B) ⊆ II \ B, and since A ⊆ I− ∪ III, n 6∈ A ∪ B =

A′ ∪ B′. By Lemma 4.2.9, n 6∈ BN (pr−1), but pr−1 and n are adjacent, so we must have
pr−1 ∈ BN (n). Then, by Conditions 4.2.2, we deduce that pr−1 6∈ B′, so pr−1 ∈ A′ \ B′.
Since w ∈ B′ \A′, there exists 0 ≤ s < r− 1 such that ps ∈ B′ \A′ and ps+1 ∈ A′ \B′. Then
ps ∈ III is adjacent to ps+1 ∈ III, so ps ∈ BN (ps+1) or ps+1 ∈ BN (ps). Again, it is easy to
see that these statements contradict Conditions 4.2.2 in both cases.

In all cases, we arrived at a contradiction. We conclude that ` is freely chosen and, as
a result, w ∈ C1 ∪ C2 ∪ · · · ∪ Ck. So, S ⊆ C1 ∪ C2 ∪ · · · ∪ Ck. Moreover, w is in exactly
one of the connected components Cw of freely labelled type III boxes in π. We claim that
Cw ⊆ S. Since Cw is connected and w ∈ Cw ∩ S, it suffices to show that if w′, w′′ ∈ Cw are
adjacent and w′ ∈ S, then w′′ ∈ S. Suppose w′, w′′ ∈ Cw are adjacent and w′ ∈ S. Then
w′, w′′ are freely labelled type III boxes in π. Furthermore, since w′ ∈ S, w′ ∈ B′ \A′. Since
w′ and w′′ are adjacent, w′ ∈ BN (w′′) or w′′ ∈ BN (w′). Additionally, since w′′ ∈ A′ ∪ B′
is labelled, w′′ 6∈ A′ ∩ B′, so w′′ ∈ A′4B′. However, by Conditions 4.2.2, w′ ∈ BN (w′′)
implies that w′′ ∈ B′, while w′′ ∈ BN (w′) implies that w′′ 6∈ A′, so in either case, we must
have w′′ 6∈ A′ \ B′. It follows that w′′ ∈ B′ \ A′, so w′′ ∈ III ∩ (B′ \ A′) = S, as desired.
Consequently, Cw ⊆ S, so

S =
⋃
w∈S

Cw ∈ C(π).

This completes the proof. �

Corollary 4.2.34. Let N(π) be the number of connected components of freely labelled type
III boxes in π. Then |AB(π)| = 2N(π) = χtop(π).

Proof. Suppose S ∈ C(π). Let (A′, B′) = (A \S,B ∪S). We claim that (A′, B′) ∈ ABall. As
we observed in the proof of the lemma, S ⊆ III and S ⊆ A \ B. Since A is a finite subset of
I−∪III, so is A′. Since S ⊆ III and B ⊆ II∪III, B′ = B∪S ⊆ II∪III. Also, II∪III ⊆ [0,M−1]3,
so II ∪ III is finite and, thus, B′ is finite.

Next, suppose w ∈ I− ∪ III and n ∈ BN(w) ∩ A′. Since A′ ⊆ A and (A,B) is an AB
configuration, w ∈ A. Suppose w ∈ S. Then w ∈ Cj ⊆ S for some 1 ≤ j ≤ k, and
w ∈ III ∩ (A \ B) ⊆ III ∩ (A4B) ⊆ L(A,B). Then, by Conditions 4.2.2, n 6∈ B. By
Lemma 4.2.9, n ∈ I− ∪ III, and since n ∈ A′ ⊆ A, we have

n ∈ (I− ∩ A) ∪ (III ∩ (A \B)) ⊆ (I− ∩ A) ∪ (III ∩ (A4B)) ⊆ L(A,B).

As shown in the proof of Lemma 4.2.32, C1, C2, . . . , Ck are connected components of L(A,B).
So, since w and n are adjacent, n ∈ Cj ⊆ S, contradicting the fact that n ∈ A′ = A \ S. We
deduce that w 6∈ S, so w ∈ A \ S = A′.

Now, suppose w ∈ II ∪ III and n ∈ BN(w) ∩ B′ = BN(w) ∩ (B ∪ S). If n ∈ B, then
w ∈ B ⊆ B′, since (A,B) is an AB configuration. Otherwise, n ∈ S, so n ∈ Cj ⊆ S for
some 1 ≤ j ≤ k, and n ∈ III ∩ (A \ B) ⊆ III ∩ (A4B) ⊆ L(A,B). If w ∈ B, then w ∈ B′.
Otherwise, w 6∈ B. Then w ∈ II \ B or w ∈ III, in which case, by Conditions 4.2.2, since
n ∈ S ⊆ A \B, w ∈ III ∩ (A \B). That is,

w ∈ (II \B) ∪ (III ∩ (A \B)) ⊆ (II \B) ∪ (III ∩ (A4B)) ⊆ L(A,B).
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As discussed above, C1, C2, . . . , Ck are connected components of L(A,B). So, since w and n
are adjacent, w ∈ Cj ⊆ S ⊆ B′. In all cases, w ∈ B′.

These arguments show that (A′, B′) is an AB configuration, or in other words, (A′, B′) ∈
ABall. Then, by the lemma, (A′, B′) ∈ AB(π), so there is a well-defined surjective map
f : C(π)→ AB(π) given by

f(S) = (A \ S,B ∪ S).

We claim that f is also injective. Suppose that f(S1) = f(S2) for some S1, S2 ∈ C(π). Then
B ∪ S1 = B ∪ S2, and as discussed above, S1 ⊆ A \B, S2 ⊆ A \B, so

S1 = (B ∪ S1) \B = (B ∪ S2) \B = S2,

as desired. Thus, |C(π)| = |AB(π)|. Since C1, C2, . . . , Ck are disjoint, C(π) is in bijection
with the power set of {1, 2, . . . , k}, so

|AB(π)| = |C(π)| = 2k = 2N(π) = χtop(π),

the last equality holding by Lemma 4.2.32. �

Definition 4.2.35. Let

ZAB = ZAB(q) = q−|II|−2|III|
∑

(A,B)∈AB

q|A|+|B|.

Theorem 4.2.36.
ZAB = W (µ1, µ2, µ3)

Proof. By Lemma 4.2.24, Corollary 4.2.31, Conditions 4.2.3, and Corollary 4.2.34, we have

ZAB = q−|II|−2|III|
∑

(A,B)∈AB

q|A|+|B| = q−|II|−2|III|
∑

π∈PT-box

∑
(A,B)∈AB(π)

q|A|+|B|

= q−|II|−2|III|
∑

π∈PT-box

∑
(A,B)∈AB(π)

q|A∪B|+|A∩B|

= q−|II|−2|III|
∑

π∈PT-box

∑
(A,B)∈AB(π)

q|π|

= q−|II|−2|III|
∑

π∈PT-box

|AB(π)|q|π|

= q−|II|−2|III|
∑

π∈PT-box

χtop(π)q|π| = W (µ1, µ2, µ3).

�

4.3. PT theory and the labelled double-dimer model. The advantage of working
with AB configurations is that they are unlabelled, plane partition-like objects. In addition,
there is a relationship between AB and the tripartite double-dimer model, which we will
now explain. On an infinite graph, a double-dimer configuration is the union of two dimer
configurations.

Let (A,B) be an AB configuration. We consider A and B separately. Let R1 (resp. R2)
denote the subset of Z3 consisting of the cells that have at least one negative coordinate
(resp. at least two negative coordinates). For A, we view the surface A := R2 ∪ (I− ∪ III) \A
as a lozenge tiling of the plane. In other words, we take the surface R2 ∪ I− ∪ III, remove the
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boxes in A, and view the resulting surface as a lozenge tiling. Similarly, for B, we view the
surface B := R1 ∪ (II ∪ III) \B as a lozenge tiling of the plane. The fact that these surfaces
can be viewed as lozenge tilings of the plane follows from Lemma 4.3.3 below. The resulting
lozenge tilings are then equivalent to dimer configurations of the infinite honeycomb graph
H.

Figure 9. Converting an AB configuration to lozenge tilings of the plane.
Left two pictures: tilings corresponding to R1 and R2, respectively. Right two
pictures: an example of the surface (I−∪III)\A and the surface R2∪(I−∪III)\A.

Example 4.3.1. Recall the AB configuration from Example 4.2.21. The rightmost image
of Figure 9 shows the lozenge tiling corresponding to A = {(3,−1, 0), (3, 0, 0)}, i.e., corre-
sponding to the surface R2 ∪ (I− ∪ III) \ {(3,−1, 0), (3, 0, 0)}.

Let MA (resp. MB) denote the dimer configuration of H corresponding to the tiling ob-
tained from A (resp. B). Superimposing MA and MB so that the origin in Z3 corresponds
to the same face of H produces a double-dimer configuration D(A,B) on H.

2
*

†

1

Figure 10. First: The dimer configuration MA. Second: The dimer con-
figuration MB. Third: The superposition of MA and MB, a double-dimer
configuration on H. Fourth: The labelled double-dimer configuration.

Example 4.3.2. For the AB configuration from Example 4.2.21, the dimer configurations
MA and MB are shown in Figure 10. Their superposition, shown immediately to their right,
is a double-dimer configuration D(A,B) on H.
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Just as we label certain AB configurations, we label certain double-dimer configurations.
Note that each double-dimer configuration on H consists of doubled edges, loops, and infinite
paths. Before describing a labelling algorithm for the double-dimer configurations D(A,B),
we need the following lemmas.

Let ei be the ith standard unit vector.

Lemma 4.3.3. Let S ∈ {A,B} and q ∈ Z3
≥0. If p 6∈ S, then p + q 6∈ S. Conversely, if

p ∈ S, then p− q ∈ S.

Proof. It suffices to establish this result for q = ei. Suppose p + ei ∈ S. Then p + ei ∈
(I−∪ III)\A or p+ei has at least two negative coordinates if S = A, and p+ei ∈ (II∪ III)\B
or p + ei has at least one negative coordinate if S = B. We will show that p ∈ S. In the
first case, if p has at least two negative coordinates, p ∈ R2 ⊆ S. Otherwise, since p + ei
having at least two negative coordinates implies that p has at least two negative coordinates,
we deduce from Lemmas 4.2.6 and 4.2.9 that p ∈ I− ∪ III, and by Conditions 4.2.2.1, p 6∈ A.
Thus, p ∈ (I− ∪ III) \ A, so p ∈ S, as desired. In the second case, if p has at least one
negative coordinate, p ∈ R1 ⊆ S. Otherwise, p ∈ Z3

≥0, and since p + ei having at least
one negative coordinate implies that p has at least one negative coordinate, we deduce from
Lemma 4.2.6 that p ∈ II ∪ III. Then, by Conditions 4.2.2.2, p 6∈ B, so p ∈ (II ∪ III) \ B, and
p ∈ S. These arguments establish the first statement of the lemma. The second statement
can be established from the first by replacing p with p− q and taking the contrapositive of
the result. �

Remark 4.3.4. In what follows, we often consider H(N) as a subgraph of H. When doing
so and some face f of H corresponds to the origin in Z3, H(N) always denotes the N×N×N
honeycomb graph centered at f .

Lemma 4.3.5. Let (A,B) ∈ ABall. If a dimer in D(A,B) covers vertices in two different
sectors,2 then those vertices must lie in the subgraph H(M) ⊆ H.

Proof. Suppose a dimer e in D(A,B) covers vertices in two different sectors. Either e ∈ MA

or e ∈ MB. If e ∈ MA, let S = A, and otherwise, let S = B. Then e must correspond
to a facet f of a cell w ∈ S having coordinates (a, a, a) + hei for some a ∈ Z, h ∈ Z≥0,
i ∈ {1, 2, 3}, such that w + ei 6∈ S. From this, we see that if w ∈ R2, then w + ei ∈ R2,
and if w ∈ R1, then w + ei ∈ R1, so considering the definitions of A and B, we must have
w ∈ (I− ∪ III) \ A or w ∈ (II ∪ III) \ B. In particular, w ∈ I− ∪ II ∪ III, so a ≥ 0. Then
w ∈ II∪ III, and II∪ III is contained in the cube [0,M ]3. Projecting this cube onto the plane
x1 + x2 + x3 = 0 produces an M ×M ×M hexagonal region that must contain f , so e must
be an edge of H(M). The result follows. �

Corollary 4.3.6. Let (A,B) ∈ ABall. Every path in D(A,B) moves between sectors finitely
many times.

Definition 4.3.7. Given an end E of a path in D(A,B), we say that sector i contains E if,
when moving along the path toward E , there is a point after which every dimer in the path
is contained in sector i.

2When we refer to “sectors” in this section, we mean the sectors defined in the right-hand side of Figure 1.
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Remark 4.3.8. Corollary 4.3.6 implies that each end E of every path in D(A,B) is contained
in sector i for some i.

We also recall some facts about height functions.

Definition 4.3.9. Given any dimer cover M0 of H and a face f0 of H, we can associate to
M0 a height function hM0 , called the absolute height function of M0, that assigns to each
face of H a real number as follows. Let hM0(f0) = 0. Then, for any other face f of H,
take a path f0, f1, f2, . . . , fr = f in the dual graph H∨ of H from f0 to f , and let hM0(f)
be the sum of the following contributions from each of the corresponding edges e1, e2, . . . , er
of H: assuming the left vertex of es is white (resp. black), if es ∈ M0, its contribution is
2/3 (resp. −2/3), and otherwise, its contribution is −1/3 (resp. 1/3). (Here, left and right
should be interpreted from the perspective of one traversing the path from f0 to f .)

The fact that hM0 is well-defined follows from the observation that such contributions sum
to 0 around any face of H∨.

Given two dimer covers M1 and M2 of H, we call the difference hM1 − hM2 the relative
height function of M1 relative to M2. Actually, when considering the lozenge tiling that
corresponds to M0 as a surface, hM0 gives the height above the plane x1 + x2 + x3 = 0,
divided by

√
3, up to a constant. Thus, hM1 − hM2 gives the height difference, divided by√

3, up to a constant, between the surfaces corresponding to M1 and M2.
Given an AB configuration (A,B), let hA = hMA

and hB = hMB
. In what follows, we

consider the relative height function h(A,B) := hB−hA, where both absolute height functions
are based on the face f0 corresponding to the cell (0, 0,M). Note that II ∪ III ⊆ [0,M − 1]3,
so A and B have the same height above the plane x1 + x2 + x3 = 0 at f0. Therefore, h(A,B)

is precisely the height difference, divided by
√

3, between A and B. This difference remains
constant, except upon crossing an edge e ∈ MA4MB, when it must increase or decrease by
2/3 − (−1/3) = 1/3 − (−2/3) = 1. In other words, the loops and paths in D(A,B) are the
contour lines for h(A,B). Moreover, orienting the edges in MB from white to black and those
in MA from black to white produces orientations on the loops and paths so that crossing a
loop or path oriented from left to right causes h(A,B) to increase by 1, while crossing a loop
or path oriented from right to left causes h(A,B) to decrease by 1.

Lemma 4.3.10. If p ∈ L(A,B), and p corresponds to f ∈ F , then p ∈ A4B and h(A,B)(f) 6=
0.

Proof. Suppose p ∈ L(A,B), and p corresponds to f ∈ F . If p ∈ I−∩A, then p 6∈ (I−∪III)\A
and p does not have at least two negative coordinates (it has exactly one negative coordinate),
so p 6∈ A. Since p has at least one negative coordinate, p ∈ B. It follows that h(A,B)(f) > 0.
If p ∈ II \ B, then p 6∈ (I− ∪ III) \ A and p ∈ Z3

≥0 does not have at least two negative
coordinates, so p 6∈ A. Since p ∈ (II ∪ III) \ B, p ∈ B. It follows that h(A,B)(f) > 0.
Otherwise, p ∈ III∩ (A4B). If p ∈ III∩ (A \B), then p 6∈ (I− ∪ III) \A and p ∈ Z3

≥0 does not
have at least two negative coordinates, so p 6∈ A. Additionally, p ∈ (II ∪ III) \ B, so p ∈ B,
implying that h(A,B)(f) > 0. Finally, if p ∈ III∩ (B \A), then p ∈ (I−∪ III)\A, so p ∈ A. On
the other hand, p 6∈ (II∪ III) \B and p ∈ Z3

≥0 does not have at least one negative coordinate,
so p 6∈ B, and we find that h(A,B)(f) < 0. This completes the proof. �

Let F be the set of faces of H, and let U(A,B) = h−1
(A,B)(0) ⊆ F . Consider the subgraph

H∨(A,B) of H∨ induced by F \ U(A,B). Then, given f ∈ F such that h(A,B)(f) 6= 0, denote by
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C(A,B)(f) the connected component of H∨(A,B) containing f . Also, we say that a face f ∈ F is
contained in sector i if the vertices of H incident to f are all in sector i. Finally, we say that
a connected component of H∨(A,B) is almost contained in sector i if it contains only finitely
many faces that are not contained in sector i. Note that any infinite connected component
of H∨(A,B) is almost contained in at most one sector.

We can now describe the labelling algorithm for the double-dimer configurations D(A,B).
Fix an AB configuration (A,B).

Algorithm 4.3.11. (1) If there is a connected component C of H∨(A,B) so that, given
any i, C is not almost contained in sector i, terminate with failure.

(2) For each infinite connected component of H∨(A,B), there must be exactly one sector i
almost containing it. Label the faces it contains by i.

(3) Label each finite connected component of H∨(A,B) by a single freely chosen element of

P1.

Example 4.3.12. If we label the double-dimer configuration from Figure 10, we obtain
the labelled double-dimer configuration shown in Figure 10. Observe that the paths in the
double-dimer configuration from Figure 10 are “rainbow-like.” In other words, the paths are
nested and start and end in the same sector.

We will first prove that this algorithm is, in some sense, equivalent to Algorithm 4.2.13,
and then we will describe the connection between this algorithm and the double-dimer con-
figuration D(A,B).

4.4. Proofs of the equivalence of the labelling algorithms.

Lemma 4.4.1. Suppose f and f ′ are faces that belong to the same connected component of
H∨(A,B). Then there is a sequence of adjacent faces in F \ U(A,B), beginning at f and ending

at f ′, such that no pair of consecutive faces are separated by an edge in MA ∩MB.

Proof. Since f and f ′ belong to the same connected component of H∨(A,B), there is a sequence

of adjacent faces f := f0, f1, . . . , fr := f ′ in F \ U(A,B). Suppose the edge separating fs and
fs+1 is in MA∩MB. Then, since MA and MB are dimer configurations, the two faces adjacent
to both fs and fs+1 are separated from fs and fs+1 by edges that are not in MA ∪ MB.
Therefore, for either such face g, we have h(A,B)(fs) = h(A,B)(g) = h(A,B)(fs+1), and we may
insert g into the sequence f0, f1, . . . , fr between fs and fs+1 to produce a new sequence of
adjacent faces in F \ U(A,B). We may continue in this way until we obtain a sequence with
the desired properties. �

Lemma 4.4.2. Suppose f0, f1, . . . , fr is a sequence of adjacent faces in F \U(A,B) such that
no pair of consecutive faces are separated by an edge in MA ∩MB. Suppose p0 ∈ A4B is a
cell that corresponds to f0. Then there exist integers ks and cells ps+1 for 0 ≤ s < r so that
for any i, j, k such that {i, j, k} = {1, 2, 3}, the following is a sequence of adjacent cells in
A4B, such that ps corresponds to fs for 0 ≤ s ≤ r:

p0, p0 + sgn(k0)ei, p0 + sgn(k0)(ei + ej), p0 + sgn(k0)(ei + ej + ek),

p0 + sgn(k0)(2ei + ej + ek), . . . , p0 + (k0ei + k0ej + k0ek),

p1, p1 + sgn(k1)ei, p1 + sgn(k1)(ei + ej), p1 + sgn(k1)(ei + ej + ek), . . . , pr.

Here, sgn(ks) = 1 if ks > 0, sgn(ks) = 0 if ks = 0, and sgn(ks) = −1 if ks < 0.
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Proof. Assume that we have specified the desired sequence up to ps for some 0 ≤ s < r.
Each pair of consecutive faces fs, fs+1 determines a direction in Z3. More precisely, there
exist unique ε ∈ {±1} and i ∈ {1, 2, 3} such that ps + εei corresponds to fs+1. Since
h(A,B)(fs+1) 6= 0, there exists an integer ks such that ps + εei + (ks, ks, ks) ∈ A4B. If
ε = −1, assume that ks is the least such integer, and if ε = 1, assume that ks is the greatest
such integer. Define ps+1 := ps + εei + (ks, ks, ks).

We claim that ps + (ks, ks, ks) ∈ A4B. Suppose not. Of A and B, let L be the one such
that ps + εei + (ks, ks, ks) 6∈ L and let U be the other (i.e., the one such that ps + εei +
(ks, ks, ks) ∈ U). Let ML and MU , respectively, be the corresponding dimer configurations.
By Lemma 4.3.3, if ε = −1, then ps + (ks, ks, ks) 6∈ L, so ps + (ks, ks, ks) 6∈ U, and if ε = 1,
then ps+ (ks, ks, ks) ∈ U, so ps+ (ks, ks, ks) ∈ L. In the first case, U separates ps+ (ks, ks, ks)
from ps + εei + (ks, ks, ks), and in the second case, L separates those two cells. In the
first case, the edge e separating fs and fs+1 must be in MU , and in the second case, e
must be in ML. The sequence f0, f1, . . . , fr is such that e 6∈ MA ∩MB = ML ∩MU , so in
either case, e ∈ ML4MU = MA4MB. As a result, h(A,B) differs by ±1 at fs and fs+1. If
ε = −1, U must lie at ps + εei + (ks + 1, ks + 1, ks + 1), while ks is the least integer such that
ps+εei+(ks, ks, ks) ∈ L4U, so L lies at ps+εei+(ks, ks, ks). It follows that h(A,B)(fs+1) = ±1.
Similarly, if ε = 1, L must lie at ps + εei + (ks, ks, ks), while ks is the greatest integer
such that ps + εei + (ks, ks, ks) ∈ L4U, so U lies at ps + εei + (ks + 1, ks + 1, ks + 1).
So, in this case, too, h(A,B)(fs+1) = ±1. Then h(A,B)(fs) = h(A,B)(fs+1) ± 1 = ±2, since
h(A,B)(fs) 6= 0. Additionally, this shows that h(A,B) has the same sign at fs and fs+1, so L
lies below U at fs. Consequently, if ε = −1, U must lie at ps + (ks, ks, ks) and L must lie at
ps+(ks−2, ks−2, ks−2). On the other hand, if ε = 1, L must lie at ps+(ks+1, ks+1, ks+1)
and U must lie at ps + (ks + 3, ks + 3, ks + 3). Then, by Lemma 4.3.3, in the first case,

ps + εei + (ks − 1, ks − 1, ks − 1) = ps + (ks − 2, ks − 2, ks − 2) + εei + (1, 1, 1) 6∈ L,

contradicting the fact that L lies at ps + εei + (ks, ks, ks). In the second case,

ps + εei + (ks + 1, ks + 1, ks + 1) = ps + (ks + 2, ks + 2, ks + 2) + εei − (1, 1, 1) ∈ U,

contradicting the fact that U lies at ps + εei + (ks + 1, ks + 1, ks + 1). By contradic-
tion, ps + (ks, ks, ks) ∈ A4B. Since ps ∈ A4B, by Lemma 4.3.3, we conclude that
ps + sgn(ks)(m1,m2,m3) ∈ A4B for any m1,m2,m3 such that 0 ≤ m1,m2,m3 ≤ |ks|.
This completes the proof. �

Lemma 4.4.3. Suppose a cell w corresponds to f0 ∈ F . If w ∈ (Cyl−` ∩A)∪(II¯̀\B) for some
integer `, or Algorithm 4.2.13 labels w by an integer `, then C(A,B)(f0) contains infinitely
many faces contained in sector `. If Algorithm 4.2.13 labels w by `, and ` is not an integer,
then C(A,B)(f0) is finite.

Proof. We consider first case (i): w ∈ (Cyl−` ∩ A) ∪ (II¯̀ \ B) for some integer `, or Algo-
rithm 4.2.13 labels w by an integer `, and then case (ii): Algorithm 4.2.13 labels w by `, and
` is not an integer.

Case (i): Observe that w must be an element of a connected component C of L(A,B) con-
taining a cell n ∈ Cyl−` ∪II¯̀. Then there is a sequence of adjacent cells w := p0, p1, . . . , pr := n,
each of which is an element of C ⊆ L(A,B). Furthermore, pr = n ∈ L(A,B) ∩ (I− ∪ II) ⊆
(I−∩A)∪ (II\B). By Lemma 4.3.10, assuming the cells p1, p2, . . . , pr correspond to the faces
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f1, f2, . . . , fr of H, we can deduce that h(A,B)(fs) 6= 0 for 0 ≤ s ≤ r. Since ps is adjacent to
ps+1, fs is adjacent to fs+1 in H∨ for 0 ≤ s < r. Moreover, since h(A,B)(fs) 6= 0 for 0 ≤ s ≤ r,
C(A,B)(f0) = C(A,B)(fr).

Now, if pr ∈ I− ∩ A, let p be any cell obtained by translating pr by k > 0 units in the xi-
directions, for each i 6= `. Let f(k) be the corresponding face of H. Note that pr ∈ Cyl−` , so
the `th coordinate of p is negative, and the other coordinates of p are nonnegative. Suppose
h(A,B)(f(k)) = 0. Considering the definitions of A and B, this implies that either f(k) lies
along one of the nonnegative coordinate axes, f(k) corresponds to a cell p′ ∈ I− \ A whose
single negative coordinate has the value −1, or f(k) corresponds to a cell p′ ∈ III \A. Since
the `th coordinate of p is negative, while the other coordinates of p are nonnegative, f(k)
cannot lie along any of the nonnegative coordinate axes, so one of the latter cases must
hold. Then, in either case, every cell above p′ is in Z3

≥0, so we conclude that p = p′ or p
is below p′. Thus, the only coordinate of p′ that may be negative is the `th coordinate, so
if p′ ∈ I−, then p′ ∈ Cyl−` . Additionally, if p 6∈ Cyl−` , then p′ 6∈ Cyl`. However, in this
case, p′ 6∈ I− ∪ III, which is a contradiction, so we must have p′ ∈ Cyl` and p ∈ Cyl−` . By
Lemmas 4.2.6 and 4.2.9, there is a sequence of back neighbors in I− ∪ III leading from p′ to
p to pr. By repeatedly applying Conditions 4.2.2.1, since pr ∈ A, it follows that p′ ∈ A. By
contradiction, h(A,B)(f(k)) 6= 0. Finally, observe that f(k) is also the face corresponding to
the cell obtained by translating pr by −k units in the x`-direction. Therefore, since k > 0
was arbitrary, h(A,B) must be nonzero at any face f(k) obtained from fr by translating in
the negative x`-direction. This shows that C(A,B)(f0) = C(A,B)(fr) contains infinitely many
faces contained in sector `, since for large enough k, f(k) is contained in sector `.

On the other hand, if pr ∈ II \ B, let p be any cell obtained by translating pr by k < 0
units in the x`-direction. Let f(k) be the corresponding face of H. Note that pr ∈ II¯̀, so
pr 6∈ Cyl` and p 6∈ Cyl`. By Lemma 4.2.6, though, if p ∈ Z3

≥0, then p ∈ II¯̀. In fact, in
this case, there is a sequence of back neighbors in II¯̀ leading from pr to p, so by repeatedly
applying Conditions 4.2.2.2, we find that p 6∈ B. Then p ∈ II \ B ⊆ R1 ∪ (II ∪ III) \ B = B
and p 6∈ R2 ∪ (I− ∪ III) \ A = A, so h(A,B)(f(k)) > 0. Otherwise, the `th coordinate of p is
negative, while the other coordinates of p are nonnegative. Since p 6∈ Cyl`, p 6∈ A. Further-
more, p ∈ R1, so p ∈ B. Thus, in this case, too, h(A,B)(f(k)) > 0. Consequently, since k < 0
was arbitrary, h(A,B) must be nonzero at any face f(k) obtained from fr by translating in
the negative x`-direction. Again, this shows that C(A,B)(f0) = C(A,B)(fr) contains infinitely
many faces contained in sector `.

Case (ii): Let w := p0. Since ` is not an integer, w must be labelled in step 3 of Algo-
rithm 4.2.13, so w ∈ III ∩ (A4B). If w ∈ III ∩ A \ B, then w 6∈ A, while w ∈ B. Otherwise,
w ∈ III ∩B \ A, in which case, w 6∈ B, while w ∈ A. In either case, h(A,B)(f0) 6= 0.

So, consider C(A,B)(f0). Suppose this connected component is infinite. Then, since L(A,B)
is finite, there must be a face f ∈ C(A,B)(f0) that doesn’t correspond to any cell in L(A,B).
By Lemma 4.4.1, there is a sequence f0, f1, . . . , fr := f of adjacent faces in F \ U(A,B) such
that no pair of consecutive faces are separated by an edge in MA ∩MB. The height function
h(A,B) can only differ by 0 or ±1 at adjacent faces, and h(A,B) is nonzero at each face in the
sequence f0, f1, . . . , fr, so h(A,B) has the same sign at all of these faces.

By Lemma 4.4.2, there is a sequence of adjacent cells

p0, p0 + sgn(k0)(1, 0, 0), p0 + sgn(k0)(1, 1, 0), p0 + sgn(k0)(1, 1, 1),
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p0 + sgn(k0)(2, 1, 1), . . . , p0 + (k0, k0, k0), p1, p1 + sgn(k1)(1, 0, 0), . . . , pr,

all of which are in A4B, such that ps corresponds to fs for 0 ≤ s ≤ r. Recall that
fr = f does not correspond to any cell in L(A,B), so pr 6∈ L(A,B). However, p0 = w ∈
III ∩ (A4B) ⊆ L(A,B). So, consider the first cell p′ in the above sequence that is not an
element of the labelling set, and let p be the previous cell in the sequence. We claim that
p ∈ I− ∪ II. Suppose not. Then p ∈ L(A,B) \ (I− ∪ II) = III ∩ (A4B). Furthermore, p is
adjacent to p′, so p ∈ BN(p′) or p′ ∈ BN(p). If p ∈ BN(p′), then since p ∈ III, we have
p′ ∈ Cyl1 ∪ Cyl2 ∪ Cyl3, and since p ∈ III ⊆ Z3

≥0, p′ ∈ Z3
≥0, implying that p′ ∈ I+ ∪ II ∪ III.

But elements of I+ are not in I− ∪ II ∪ III, nor do they have any negative coordinates, so
such elements are not in A ∪B. Since p′ ∈ A4B, it must be the case that p′ ∈ II ∪ III. If
p′ ∈ BN(p), then by Lemma 4.2.9, p′ ∈ I−∪ III. So, in either case, p′ ∈ I−∪ II∪ III. If p′ ∈ I−,
then p′ ∈ B, so p′ 6∈ A, in which case, p′ ∈ A. But this means that p′ ∈ I− ∩ A ⊆ L(A,B).
So, p′ 6∈ I−. Similarly, if p′ ∈ II, then p′ 6∈ A, so p′ ∈ B, in which case, p′ 6∈ B. This
means that p′ ∈ II \ B ⊆ L(A,B), so p′ 6∈ II. Thus, p′ ∈ III. If p′ 6∈ A and p′ ∈ B,
then p′ ∈ III ∩ A \ B ⊆ III ∩ (A4B) ⊆ L(A,B). Otherwise, if p′ 6∈ B and p′ ∈ A, then
p′ ∈ III∩B \A ⊆ III∩ (A4B) ⊆ L(A,B). By contradiction, p ∈ I−∪ II. Let q be the first cell
preceding p′ in the above sequence that is in I− ∪ II. Since p′ is the first cell in the sequence
that’s not in L(A,B), q ∈ L(A,B), so q ∈ (I− ∩ A) ∪ (II \ B). Therefore, q is labelled
by an integer `(q) in step 2 of Algorithm 4.2.13. All of the cells w = p0 := q0, q1, . . . , qt
preceding q in the above sequence (written here in the same order as written in the above
sequence) also precede p′, so they are elements of the labelling set and not in I− ∪ II, i.e.,
they are all elements of III∩ (A4B). Since q0, q1, . . . , qt, q is a sequence of adjacent cells, we
see that {q0, q1, . . . , qt, q} is contained in a single connected component of L(A,B), which is
labelled in step 2 of Algorithm 4.2.13 by `(q). In particular, w = q0 is labelled in step 2 of
Algorithm 4.2.13 by an integer `(q), contradicting the fact that ` is not an integer. As a
result, C(A,B)(f0) is finite. �

Lemma 4.4.4. If f ∈ F \ U(A,B) lies along one of the nonnegative coordinate axes, then f
corresponds to a cell p ∈ L(A,B) and all cells corresponding to f that are in A4B must be
in L(A,B).

Proof. Since f ∈ F \U(A,B), there exists a cell p ∈ A4B corresponding to f . The result will
follow if we can show that any cell q ∈ A4B corresponding to f is in L(A,B). Since f lies
along one of the nonnegative coordinate axes, q = k1ei + (k2, k2, k2) for some i ∈ {1, 2, 3},
k1 ∈ Z≥0, and k2 ∈ Z. If k2 < 0, then q has at least two negative coordinates, so q ∈ A∩B,
which is a contradiction. Thus, k2 ≥ 0, so q ∈ Z3

≥0, and since q is an element of exactly one of

A and B, we conclude that q ∈ ((I−∪III)\A)4((II∪III)\B). If q ∈ ((I−∪III)\A)\((II∪III)\B),
then q 6∈ I−, since q ∈ Z3

≥0, so we have q ∈ III ∩ B \ A ⊆ L(A,B). Otherwise, q ∈
((II ∪ III) \B) \ ((I− ∪ III) \ A), so q ∈ (II \B) ∪ (III ∩ A \B) ⊆ L(A,B). �

Lemma 4.4.5. If a cell p ∈ L(A,B) is adjacent to a cell p′ 6∈ L(A,B), and p′ ∈ A4B, then
p′ 6∈ Z3

≥0 ∪ I− ∪ II ∪ III and p ∈ (I− ∩ A) ∪ (II \B).

Proof. Suppose p′ ∈ Z3
≥0. Then, by the argument given in the proof of Lemma 4.4.4, p′ ∈

L(A,B). So, by contradiction, p′ has at least one negative coordinate, which means that
p′ ∈ B. Then we must have p′ 6∈ A, so the other coordinates of p′ must be nonnegative.
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Furthermore, suppose p′ ∈ I−. Then, since p′ 6∈ L(A,B), p′ 6∈ A, so p′ ∈ (I− ∪ III) \ A,
contradicting the fact that p′ 6∈ A. By contradiction, p′ 6∈ I−. Since p′ 6∈ Z3

≥0, p′ 6∈ II ∪ III.
Either p ∈ BN(p′) or p′ ∈ BN(p). If p ∈ BN(p′), then since p′ 6∈ Z3

≥0, p has a negative

coordinate, so p ∈ I− ∩ A. Otherwise, p′ ∈ BN(p), so by Lemma 4.2.9, p 6∈ III, since
p′ 6∈ I− ∪ III. Then p ∈ (I− ∩ A) ∪ (II \B). In either case, p ∈ (I− ∩ A) ∪ (II \B). �

Lemma 4.4.6. Given any i ∈ {1, 2, 3}, there exists N ∈ Z≥0 such that each face contained
in sector i that isn’t a face of the subgraph H(N) ⊆ H is in F \ U(A,B).

Proof. As noted in the proof of Lemma 4.4.3, if f ∈ U(A,B), then either f lies along one of
the nonnegative coordinate axes, f corresponds to a cell p ∈ I− \ A whose single negative
coordinate has the value −1, or f corresponds to a cell p ∈ III\A. Since the set of cells in I−

whose single negative coordinate has the value −1 is finite, and III is finite, the corresponding
faces form a finite set. In other words, U(A,B) is contained in the union of faces lying along
one of the nonnegative coordinate axes with finitely many other faces. In particular, since
faces lying along one of the nonnegative coordinate axes are not contained in any of the
sectors, finitely many faces in U(A,B) are contained in sector i. This implies the result. �

Lemma 4.4.7. Suppose C is a connected component of H∨(A,B) that contains infinitely many

faces contained in sector i. If p ∈ L(A,B) corresponds to f ∈ C, then there exists p′ ∈
(Cyl−i ∩ A) ∪ (IĪi \B) corresponding to f ′ ∈ C.

Proof. Suppose p ∈ L(A,B) corresponds to f ∈ C. By Lemma 4.4.6, there exists N1 ∈ Z≥0

such that each face contained in sector i that isn’t a face of the subgraph H(N1) ⊆ H is in
F \ U(A,B).

Consider a face g contained in sector i such that the face g′ obtained from g by translating
1 unit in the negative xi-direction is separated from g by an edge e ∈ MA. Since g is
contained in sector i, if q is a cell corresponding to g, then its ith coordinate qi is strictly
less than each of its other coordinates. Since g′ is obtained from g by translating 1 unit in
the negative xi-direction, when crossing e ∈MA from g to g′, the left vertex of e is white, so
hA increases by 2/3. That is, if q is the cell corresponding to g such that A lies at q, then
A lies at the cell q − ei + (1, 1, 1), which corresponds to g′. So, q 6∈ (I− ∪ III) \ A and q has
fewer than two negative coordinates, but q − ei ∈ A, so q − ei ∈ (I− ∪ III) \ A or q − ei has
at least two negative coordinates. However, the ith coordinate of q is less than each of its
other coordinates, so if q− ei has at least two negative coordinates, then so does q, which is
a contradiction. Consequently, q − ei ∈ (I− ∪ III) \ A. Then, since the ith coordinate of q is
its least coordinate, the same is true of q − ei, so q − ei ∈ Cyli. This means that q ∈ Cyli.
Additionally, if q has one negative coordinate, it must be qi, in which case q ∈ Cyl−i ⊆ I−,
implying that q ∈ A. Otherwise, each of the coordinates of q is nonnegative and less than
M , since q ∈ Cyli. Therefore, since A is finite, there are finitely many possibilities for q, so
there are finitely many possibilities for g. So, there exists N2 ∈ Z≥0 such that each face g
contained in sector i that isn’t a face of the subgraph H(N2) ⊆ H is separated by an edge
e 6∈MA from the face g′ obtained from g by translating 1 unit in the negative xi-direction.

Let N = max{N1, N2}. Since C contains infinitely many faces contained in sector i, it
must contain a face f0 contained in sector i that isn’t a face of H(N). Consider the sequence
of faces f0, f1, f2, . . ., where fs+1 is obtained from fs by translating 1 unit in the negative xi-
direction. Since f0 is contained in sector i and not a face of H(N), so is fs, for 0 ≤ s. Then,
from the above discussions, we know that fs ∈ F \ U(A,B) and fs is separated by an edge
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e 6∈ MA from fs+1 for 0 ≤ s. In addition, by Lemma 4.4.1, there is a sequence of adjacent
faces f := f ′0, f

′
1, . . . , f

′
r := f0 in F \U(A,B) such that no pair of consecutive faces are separated

by an edge in MA ∩MB. So, we have a sequence of adjacent faces f ′0, f
′
1, . . . , f

′
r, f1, f2, . . . in

F \ U(A,B) such that no pair of consecutive faces are separated by an edge in MA ∩MB.
Since fs is contained in sector i for 0 ≤ s, either (i): every face in the sequence

f ′0, f
′
1, . . . , f

′
r, f1, f2, . . . is contained in sector i or (ii): there exists 0 ≤ t < r such that f ′t

is not contained in sector i and f ′s is contained in sector i for all t < s ≤ r. In case (i),
let t = 0, and let p′0 = p. In case (ii), since f ′t is adjacent to f ′t+1, which is contained in
sector i, f ′t must lie along one of the nonnegative coordinate axes. Since f ′t ∈ F \ U(A,B), by
Lemma 4.4.4, there is a cell p′t ∈ L(A,B) corresponding to f ′t .

In both case (i) and case (ii), p′t ∈ L(A,B) corresponds to f ′t . Also, since L(A,B) ⊆
A ∪ II ∪ III is finite and the faces f1, f2, . . . are all distinct, there must be a face in the
sequence f ′0, f

′
1, . . . , f

′
r, f1, f2, . . . that does not correspond to any cell in L(A,B) and that

is preceded by f ′t . Let g′′ be the first such face in the sequence and let g′ be the previous
face. Either g′ corresponds to a cell q′ ∈ L(A,B) or g′ is not preceded by f ′t , in which case,
g′ = f ′t corresponds to q′ := p′t ∈ L(A,B). Then, by Lemmas 4.3.10 and 4.4.2, there exist an
integer k′ and a cell q′′ so that for any j, k such that {j, k} = {1, 2, 3} \ {i}, the following
are sequences of adjacent cells in A4B, such that q′′ corresponds to g′′:

q′, q′ + sgn(k′)ei, q
′ + sgn(k′)(ei + ej), q

′ + sgn(k′)(ei + ej + ek),

q′ + sgn(k′)(2ei + ej + ek), . . . , q
′ + (k′ei + k′ej + k′ek), q

′′,

q′, q′ + sgn(k′)ek, q
′ + sgn(k′)(ek + ej), q

′ + sgn(k′)(ek + ej + ei),

q′ + sgn(k′)(2ek + ej + ei), . . . , q
′ + (k′ek + k′ej + k′ei), q

′′.

If k′ < 0, we will consider the first sequence, and if k′ ≥ 0, we will consider the second
sequence. Since g′′ does not correspond to any cell in L(A,B), q′′ 6∈ L(A,B). On the other
hand, q′ ∈ L(A,B), so let p′′ be the first cell in the sequence that is not in L(A,B) and let
p′ be the previous cell. Then p′ ∈ L(A,B). Let f ′ be the face corresponding to p′ and let f ′′

be the face corresponding to p′′. We must show that p′ ∈ (Cyl−i ∩A) ∪ (IĪi \B) and f ′ ∈ C.
Since p′′ ∈ (A4B) \ L(A,B), we have f ′′ ∈ F \ U(A,B) and by Lemma 4.4.4, f ′′ does

not lie along one of the nonnegative coordinate axes. However, g′ is adjacent to g′′, which
is preceded by f ′t in the sequence f ′0, f

′
1, . . . , f

′
r, f1, f2, . . . and, thus, is contained in sector

i. As a result, g′ is contained in sector i or g′ lies along one of the nonnegative coordinate
axes. More precisely, g′ corresponds to a cell whose ith coordinate is zero and whose other
coordinates are nonnegative, or to put it another way, the ith coordinate of q′ is less than
or equal to its other coordinates. If k′ < 0, let g1 be the face corresponding to q′ + sgn(k′)ei
and let g2 be the face corresponding to q′ + sgn(k′)(ei + ej). If k′ ≥ 0, let g1 be the face
corresponding to q′ + sgn(k′)ek and let g2 be the face corresponding to q′ + sgn(k′)(ek + ej).
Note that every cell in the sequence corresponds to one of the faces g′, g1, g2, or g′′. We
claim that g1 is contained in sector i or g1 lies along one of the nonnegative coordinate axes,
and the same holds for g2. If k′ < 0, then g1 corresponds to q′ − ei and g2 corresponds to
q′ − ei − ej. Since the ith coordinate of q′ is less than or equal to its other coordinates, the
same is true of q′ − ei and q′ − ei − ej, so the claim holds for both g1 and g2. Otherwise, if
k′ ≥ 0, then g1 corresponds to q′ or q′+ ek, while g2 corresponds to q′ or q′+ ek + ej. Again,
since the ith coordinate of q′ is less than or equal to its other coordinates, the same is true
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of q′ + ek and q′ + ek + ej, so the claim holds for both g1 and g2. In fact, we saw above that
the claim also holds for both g′ and g′′, and since every cell in the sequence, including p′′,
corresponds to one of the faces g′, g1, g2, or g′′, the claim holds for f ′′. Since f ′′ does not lie
along one of the nonnegative coordinate axes, we conclude that f ′′ is contained in sector i.
It follows that the ith coordinate p′′i of p′′ is strictly less than its other coordinates.

Recall that p′ ∈ L(A,B) is adjacent to p′′ 6∈ L(A,B), but p′′ ∈ A4B. By Lemma 4.4.5,
p′′ 6∈ Z3

≥0 ∪ I− ∪ II ∪ III and p′ ∈ (I− ∩ A) ∪ (II \ B). Since the ith coordinate of p′′ is less

than its other coordinates, p′′i < 0. This implies that p′′ 6∈ Cyli. If p′ ∈ I− ∩ A, suppose the
ith coordinate p′i of p′ is nonnegative. Then, since the ith coordinate of p′′ is negative, while
the others are nonnegative, we must have p′ = p′′ + ei. Therefore, the other coordinates of
p′ are the same as those of p′′, so they are also nonnegative and p′ ∈ Z3

≥0. By contradiction,

p′i < 0, so p′ ∈ Cyl−i ∩ A. On the other hand, if p′ ∈ II \ B, then p′ ∈ Z3
≥0, so p′ = p′′ + ei.

Suppose p′ ∈ Cyli. Then p′′ = p′−ei ∈ Cyli, so p′′ ∈ Cyl−i ⊆ I−. By contradiction, p′ 6∈ Cyli,
so p′ ∈ IĪi \B. Consequently, p′ ∈ (Cyl−i ∩ A) ∪ (IĪi \B).

It remains to show that f ′ ∈ C. Since f ′ corresponds to p′, f ′ is equal to g′, g1, g2, or
g′′, so it suffices to show that g′, g1, g2, g

′′ ∈ C. Since g′ and g′′ are faces in the sequence
f ′0, f

′
1, . . . , f

′
r, f1, f2, . . ., which is a sequence of adjacent faces in F \ U(A,B), we have g′, g′′ ∈

C(A,B)(f
′
0) = C(A,B)(f) = C. To see that g1, g2 ∈ C, observe that g1 and g2 are adjacent to

g′ or equal to g′, and according to their definitions, they correspond to cells in A4B. So
g1, g2 ∈ F \ U(A,B), and we have g1, g2 ∈ C(A,B)(g

′) = C. This completes the proof. �

Lemma 4.4.8. If p and p′ are cells in A4B, corresponding to faces f and f ′, respectively,
which belong to the same connected component of H∨(A,B), then there is a sequence of adjacent

cells in A4B, beginning at p and ending at p′.

Proof. By Lemmas 4.4.1 and 4.4.2, there is a sequence of adjacent cells in A4B, beginning
at p and ending at a cell p′′ that corresponds to f ′. Since p′ and p′′ both correspond to f ′,
p′′ = p′ + (k′, k′, k′) for some k′ ∈ Z. By Lemma 4.3.3, p′ + sgn(k′)(m1,m2,m3) ∈ A4B for
any m1,m2,m3 such that 0 ≤ m1,m2,m3 ≤ |k′|. That is,

p′′ = p′ + (k′, k′, k′), p′ + sgn(k′)(|k′| − 1, |k′|, |k′|),
p′ + sgn(k′)(|k′| − 1, |k′| − 1, |k′|), . . . , p′

is a sequence of adjacent cells in A4B. Therefore, by concatenating the aforementioned
sequences, we get a sequence of adjacent cells in A4B, beginning at p and ending at p′. �

Lemma 4.4.9. Suppose C is a connected component of H∨(A,B) so that, given any i, C is not
almost contained in sector i. Then there exist distinct i and j such that C contains infinitely
many faces contained in sector i and C contains infinitely many faces contained in sector j.

Proof. By assumption, given any i, C contains infinitely many faces that are not contained in
sector i. Observe that, for N ≥M , the cell Nei ∈ Z3

≥0 cannot be in Cylj, for each j 6= i. Thus

Nei has no negative coordinates, Nei 6∈ (I−∪III)\A, and Nei 6∈ (II∪III)\B, so Nei 6∈ A∪B.
Moreover, Nei − (1, 1, 1) has at least two negative coordinates, so Nei − (1, 1, 1) ∈ A ∩B,
which shows that A and B both lie at Nei. So, if fi(N) ∈ F is the face corresponding to
Nei, then h(A,B)(fi(N)) = 0. Since this holds for all i and all N ≥M , there are finitely many
faces in F \U(A,B) that lie along one of the nonnegative coordinate axes. Since C ⊆ F \U(A,B)

and since any face either lies along one of the nonnegative coordinate axes or is contained
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in one of the sectors, we deduce that, for some distinct i and j, C contains infinitely many
faces contained in sector i and C contains infinitely many faces contained in sector j. �

Theorem 4.4.10. Algorithm 4.3.11 succeeds if and only if (A,B) ∈ AB.

Proof. Suppose (A,B) 6∈ AB. By Theorem 4.2.26 and Remark 4.2.18, there is a connected
component C of L(A,B) such that N (C) > 1. So, there exist w,w′ ∈ C ∩ (I− ∪ II) such
that `(w) 6= `(w′). Then w ∈ Cyl−`(w) ∪ II`(w) and w′ ∈ Cyl−`(w′) ∪ II`(w′), and since w,w′ ∈
C∩ (I−∪ II) ⊆ L(A,B)∩ (I−∪ II) = (I−∩A)∪ (II\B), we have w ∈ (Cyl−`(w)∩A)∪ (II`(w) \B)

and w′ ∈ (Cyl−`(w′) ∩ A) ∪ (II`(w′) \ B). Let f ∈ F and f ′ ∈ F be the faces corresponding to

w and w′, respectively. By Lemma 4.4.3, C(A,B)(f) contains infinitely many faces contained
in sector `(w), and C(A,B)(f

′) contains infinitely many faces contained in sector `(w′). Since
w,w′ ∈ C and C is a connected component of L(A,B), there is a sequence of adjacent cells
w := p0, p1, . . . , pr := w′ in L(A,B). Then, assuming ps corresponds to the face fs ∈ F , we
obtain a sequence of adjacent faces f = f0, f1, . . . , fr = f ′. By Lemma 4.3.10, h(A,B)(fs) 6= 0,
so C(A,B)(f) = C(A,B)(f

′). Since `(w) 6= `(w′), this means that a connected component of
H∨(A,B) contains infinitely many faces contained in distinct sectors. It is impossible for such
a connected component to be almost contained in any sector, so Algorithm 4.3.11 fails.

Conversely, suppose Algorithm 4.3.11 fails. Then there must be a connected component
C of H∨(A,B) so that, given any i, C is not almost contained in sector i. By Lemma 4.4.9, for
some distinct i and j, C contains infinitely many faces contained in sector i and C contains
infinitely many faces contained in sector j.

Let f ∈ C be a face contained in sector i and f ′ ∈ C be a face contained in sector j.
Since C is a connected component of H∨(A,B), there is a sequence of adjacent faces f :=

f0, f1, . . . , fr := f ′ in F \ U(A,B). Since f is contained in sector i, while f ′ is contained
in sector j, there must exist 0 < t < r such that ft lies along one of the nonnegative
coordinate axes. Then, by Lemma 4.4.4, ft corresponds to a cell pt ∈ L(A,B). Since
ft ∈ C, by Lemma 4.4.7, there exist p ∈ (Cyl−i ∩ A) ∪ (IĪi \ B) corresponding to g ∈ C and
p′ ∈ (Cyl−j ∩A)∪ (IIj̄ \B) corresponding to g′ ∈ C. Then, by Lemmas 4.3.10 and 4.4.8, there
is a sequence of adjacent cells in A4B, beginning at p and ending at p′. Let q be the last
cell in this sequence that is in (Cyl−i ∩A)∪(IĪi\B), and let q′ be the first cell in this sequence
that is preceded by q and in (Cyl−k ∩ A) ∪ (IIk̄ \ B) for some k ∈ {1, 2, 3} \ {i}. Consider
the part of the sequence beginning at q and ending at q′, denoted q := q0, q1, . . . , qr′ := q′.
Each of these cells is an element of A4B, and according to the definitions of q and q′,
qs 6∈

⋃
l∈{1,2,3}(Cyl−l ∩ A) ∪ (IIl̄ \B) = (I− ∩ A) ∪ (II \B) for 0 < s < r′.

We claim that qs ∈ L(A,B) for 0 ≤ s ≤ r′. Suppose qt′ 6∈ L(A,B) for some 0 ≤ t′ ≤ r′.
Since q, q′ ∈ (I− ∩ A) ∪ (II \ B) ⊆ L(A,B), 0 < t′ < r′. Then, by Lemma 4.4.5, t′ − 1 = 0
or qt′−1 6∈ L(A,B), and t′ + 1 = r′ or qt′+1 6∈ L(A,B). In fact, by repeating this argument,
we see that qs 6∈ L(A,B) for 0 < s < r′. By the same lemma, q1, qr′−1 6∈ Z3

≥0 ∪ I− ∪ II ∪ III,
so q1, qr′−1 6∈ Cyl1 ∪ Cyl2 ∪ Cyl3. Since q1, qr′−1 ∈ A4B, neither q1 nor qr′−1 has at least
two negative coordinates, but q1, qr′−1 6∈ Z3

≥0, so q1 and qr′−1 each have exactly one negative

coordinate. Furthermore, q ∈ Cyl−i ∪ IĪi is adjacent to q1, and q′ ∈ Cyl−k ∪ IIk̄ is adjacent to
qr′−1. If q ∈ Cyl−i , then since q1 6∈ Cyli, q1 6= q ± ei, so the ith coordinate of q1 is the same
as that of q. In particular, the ith coordinate of q1 is negative. Otherwise, q ∈ IĪi ⊆ Z3

≥0.
Since q1 6∈ Z3

≥0, this implies that q 6∈ BN(q1), so q1 ∈ BN(q). Since q1 6∈ Cyl1 ∪ Cyl2 ∪ Cyl3
and q ∈ Cyll for l ∈ {1, 2, 3} \ {i}, q1 6= q − el ∈ Cyll for l ∈ {1, 2, 3} \ {i}. It follows that
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q1 = q − ei, and since q1 6∈ Z3
≥0, while q ∈ Z3

≥0, the ith coordinate of q1 must be negative.
In both cases, the ith coordinate of q1 is negative, and since q1 has exactly one negative
coordinate, the other coordinates of q1 must be nonnegative. A similar argument shows that
the kth coordinate of qr′−1 is negative, while the other coordinates of qr′−1 are nonnegative.
Thus, denoting by gs the face corresponding to the cell qs, for 0 ≤ s ≤ r′, we conclude that
g1 and gr′−1 are contained in sector i and contained in sector k, respectively.

Since qs is adjacent to qs+1, gs is adjacent to gs+1, for 0 ≤ s < r′. As a result, since k 6= i,
there must exist 1 < t′′ < r′ − 1 such that gt′′ lies along one of the nonnegative coordinate
axes. Consequently, since qt′′ ∈ A4B, we have gt′′ ∈ F \ U(A,B), and by Lemma 4.4.4,
qt′′ ∈ L(A,B). This contradicts our previous conclusion that qs 6∈ L(A,B) for 0 < s < r′.
By contradiction, qs ∈ L(A,B) for 0 ≤ s ≤ r′. So, there is a connected component C ′ of
L(A,B) such that qs ∈ C ′ for 0 ≤ s ≤ r′, and we have N (C ′) ≥ |{`(q), `(q′)}| = |{i, k}| = 2.
By Remark 4.2.18 and Theorem 4.2.26, (A,B) 6∈ AB. �

Theorem 4.4.11. If (A,B) ∈ AB, and Algorithm 4.2.13 labels some cell by `, then Algo-
rithm 4.3.11 labels the corresponding face by `.

Proof. Suppose (A,B) ∈ AB (so, by Theorem 4.4.10, Algorithm 4.3.11 succeeds), and Al-
gorithm 4.2.13 labels a cell w by `. Let f ∈ F be the corresponding face. By Lemma 4.4.3,
if ` is an integer, then C(A,B)(f) contains infinitely many faces contained in sector `, and
otherwise, C(A,B)(f) is finite. In the first case, there must be exactly one sector i almost
containing C(A,B)(f), and Algorithm 4.3.11 labels the faces in C(A,B)(f) by i. Then C(A,B)(f)
contains only finitely many faces that are not contained in sector i, and since faces contained
in sector k are not contained in sector i if k 6= i, we must have ` = i. So Algorithm 4.3.11
labels the faces in C(A,B)(f), including f , by `. In the second case, Algorithm 4.3.11 labels
the faces in C(A,B)(f), including f , by a single freely chosen element of P1. In this case, we
must establish two statements: (i) each cell given the label ` by Algorithm 4.2.13 corresponds
to a face in C(A,B)(f) and (ii) each cell given a freely chosen label `′ 6= ` by Algorithm 4.2.13
corresponds to a face not in C(A,B)(f).

Suppose w′ is a cell given the label ` by Algorithm 4.2.13 and f ′ ∈ F is the corresponding
face. Since ` is not an integer, w and w′ must be in a single connected component of L(A,B)
labelled in step 3 of Algorithm 4.2.13. So, there must be a sequence of adjacent cells in
L(A,B), beginning at w and ending at w′. Then, by Lemma 4.3.10, the corresponding faces
form a sequence of adjacent faces, each of which is in F \ U(A,B). This sequence begins at f
and ends at f ′, so f ′ ∈ C(A,B)(f).

Suppose w′ is a cell given a freely chosen label `′ by Algorithm 4.2.13 and f ′ ∈ F is the
corresponding face. We will show that if f ′ ∈ C(A,B)(f), then `′ = `. Suppose f ′ ∈ C(A,B)(f).
Then, by Lemmas 4.3.10 and 4.4.8, w,w′ ∈ L(A,B) and there is a sequence of adjacent cells
w := w0, w1, . . . , wr := w′ in A4B. We claim that ws ∈ L(A,B) for 0 ≤ s ≤ r. Suppose
not. Let 0 ≤ t ≤ r be such that wt is the first cell in the sequence that is not in L(A,B).
Then ws ∈ L(A,B) for 0 ≤ s < t and, by Lemma 4.4.5, wt−1 ∈ (I− ∩A)∪ (II \B). Note that
wt−1 gets labelled by an integer j in step 2 of Algorithm 4.2.13. Since w0, w1, . . . , wt−1 is a
sequence of adjacent cells, we see that {w0, w1, . . . , wt−1} is contained in a single connected
component of L(A,B), which is labelled in step 2 of Algorithm 4.2.13 by j. In particular,
w = w0 is labelled in step 2 of Algorithm 4.2.13 by an integer j, contradicting the fact that
` is not an integer. By contradiction, ws ∈ L(A,B) for 0 ≤ s ≤ r. It follows that w and w′

belong to a single connected component of L(A,B), so ` = `′, as desired. �
38



As promised, we will now describe the connection between Algorithm 4.3.11 and the
double-dimer configuration D(A,B).

Theorem 4.4.12. (A,B) ∈ AB if and only if for each path in D(A,B), there exists i ∈
{1, 2, 3} such that both ends of the path are contained in sector i.

Proof. Suppose there exists a path in D(A,B) whose ends are not contained in the same sector.
Then, by Remark 4.3.8, one end Ei is contained in sector i, the other end Ej is contained
in sector j, and i 6= j. Let e be any edge in the path, and consider a face f ∈ F \ U(A,B)

incident to e, which exists because h(A,B) must increase or decrease upon crossing e from one
side of the path to the other.

The following argument now holds for k ∈ {i, j}. Consider the sequence of edges e :=
e0, e1, e2, . . . obtained by beginning at e and moving along the path toward Ek. Each edge
es in this sequence is incident to a unique face fs on the same side of the path as f . In
particular, f0 = f . In fact, since es is adjacent to es+1, fs is equal to or adjacent to fs+1

for 0 ≤ s. Moreover, if fs and fs+1 are adjacent, then since es, es+1 ∈ MA ∪MB, fs and
fs+1 are separated by an edge that is in neither MA nor MB. Thus, we have a sequence
of equal or adjacent faces f = f0, f1, f2, . . ., and h(A,B)(fs) = h(A,B)(f) 6= 0 for 0 ≤ s. It
follows that fs ∈ C(A,B)(f) for 0 ≤ s. Also, since Ek is contained in sector k, there exists
t ≥ 0 such that es is contained in sector k for s > t. Then, if l ∈ {1, 2, 3} \ {k}, fs is not
contained in sector l for s > t. Finally, since every face is incident to six edges and each edge
appears in the sequence e0, e1, e2, . . . at most once, any given face can appear in the sequence
f0, f1, f2, . . . at most six times. In other words, {ft+1, ft+2, ft+3, . . .} ⊆ C(A,B)(f) is an infinite
set, so if l ∈ {1, 2, 3} \ {k}, C(A,B)(f) contains infinitely many faces that are not contained
in sector l. As a result, if l ∈ {1, 2, 3} \ {k}, C(A,B)(f) is not almost contained in sector l.
Since this argument holds for k ∈ {i, j}, and ({1, 2, 3} \ {i}) ∪ ({1, 2, 3} \ {j}) = {1, 2, 3},
C(A,B)(f) is not almost contained in any sector. Consequently, Algorithm 4.3.11 fails, so by
Theorem 4.4.10, (A,B) 6∈ AB.

Conversely, suppose (A,B) 6∈ AB. By Theorem 4.4.10, Algorithm 4.3.11 fails, so there is
a connected component C of H∨(A,B) that is not almost contained in any sector. Then, by
Lemmas 4.4.9 and 4.4.6, there exist distinct i and j such that C contains infinitely many
faces contained in sector i and C contains infinitely many faces contained in sector j, there
exists Ni ∈ Z≥0 such that each face contained in sector i that isn’t a face of the subgraph
H(Ni) ⊆ H is in F \ U(A,B), and there exists Nj ∈ Z≥0 such that each face contained in
sector j that isn’t a face of the subgraph H(Nj) ⊆ H is in F \ U(A,B). So, C contains a face
fi contained in sector i that isn’t a face of H(Ni), and C contains a face fj contained in
sector j that isn’t a face of H(Nj).

The following holds for l ∈ {i, j}. Let k ∈ {1, 2, 3} satisfy {k} = {1, 2, 3} \ {i, j}. Observe
that the set Fl of faces contained in sector l that are not faces of H(Nl) induces a connected
subgraph of H∨. In addition, Fl ⊆ F \ U(A,B), so Fl actually induces a connected subgraph
of H∨(A,B). Since C is a connected component of H∨(A,B) and fl ∈ C ∩Fl, we have Fl ⊆ C. For

0 < s, let fl(Nl+s) be the face corresponding to the cell (Nl+s)ek+em, where m ∈ {1, 2, 3}
satisfies {m} = {i, j} \ {l}. Since the lth coordinate of (Nl + s)ek + em is strictly less than
its other coordinates, fl(Nl + s) ∈ Fl ⊆ C for 0 < s.

Since C is a connected component ofH∨(A,B), there is a sequence fi(Ni+1) := g0, g1, . . . , gr :=

fj(Nj + 1) of adjacent faces in C. Let N = max{Ni, Nj,M}. As discussed in the proof of
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Lemma 4.4.9, if 0 ≤ s, then h(A,B)(fk(N + s)) = 0, where fk(N + s) is the face corre-
sponding to the cell (N + s)ek. Also, for 0 < s, fk(N + s) is adjacent to fl(N + s) and
to fl(N + s + 1). Let el(s) be the edge separating fk(N + s) and fl(N + s), and let e′l(s)
be the edge separating fk(N + s) and fl(N + s + 1). Since fl(N + s) ∈ C ⊆ F \ U(A,B),
h(A,B)(fl(N + s)) 6= 0 for 0 < s, implying that el(s), e

′
l(s) ∈ MA4MB. So, the sequence of

adjacent edges ei(1), e′i(1), ei(2), e′i(2), . . . constitutes one end Ei of a path γ in D(A,B), and
Ei is contained in sector i.

Consider the other end E of γ. Note that γ separates U(A,B) from F \ U(A,B), so γ cannot
separate two adjacent faces in the sequence

. . . , fi(Ni + 2), fi(Ni + 1), g1, g2, . . . , gr−1, fj(Nj + 1), fj(Nj + 2), . . . ,

since each of them is in C and, thus, in F \ U(A,B). On the other hand, this is a sequence of
adjacent faces, so we conclude that γ must be contained in {el(s), e′l(s) | l ∈ {i, j}, 0 < s}∪E0

for some finite set E0. Therefore, since ej(s) and e′j(s) are contained in sector j, E must be
contained in sector j. That is, γ is a path in D(A,B) whose ends are contained in distinct
sectors. This completes the proof. �

Next, in order to apply the double-dimer analogue of Kuo’s graphical condensation (see
Theorem 4.5.1), we must truncate double-dimer configurations on H to obtain double-dimer
configurations with nodes on H(N).

Definition 4.4.13. Let G = (V1, V2, E) be a finite, edge-weighted, bipartite planar graph
embedded in the plane with |V1| = |V2|. Let N denote a set of special vertices called nodes
on the outer face of G. A double-dimer configuration on (G,N) is a multiset of the edges
of G with the property that each internal vertex is the endpoint of exactly two edges, and
each vertex in N is the endpoint of exactly one edge.

The edge-weight of a double-dimer configuration with nodes is the product of its edge-
weights. The weight of such a configuration is its edge-weight times 2k, where k is the
number of loops in the configuration.

Lemma 4.4.14. For any N ≥ M , no edge in MB is incident to a vertex in H(N) and a
vertex not in H(N).

Proof. Suppose N ≥ M , an edge e ∈ MB is incident to vertices u and v of H, and u is not
in H(N). We will show that v is not in H(N). Consider the two faces f, f ′ ∈ F that are
incident to e. Since e ∈ MB, hB increases or decreases by 2/3 between f and f ′. Without
loss of generality, hB(f) = hB(f ′)+2/3, so when crossing e from f ′ to f , the left vertex of e is
white, implying that f is obtained from f ′ by translating 1 unit in the negative xi-direction
for some i ∈ {1, 2, 3}. Let p (resp. p′) be the cell corresponding to f (resp. f ′) such that B
lies at p (resp. p′). Then p = p′−ei+(k, k, k) for some k ∈ Z, and since hB(f) = hB(f ′)+2/3,
k = 1. Note that p′−ei = p−(1, 1, 1) ∈ B, so p−(1, 1, 1) ∈ (II∪ III)\B or p′−ei has at least
one negative coordinate. In the first case, p− (1, 1, 1) ∈ II ∪ III ⊆ [0,M − 1]3, so f is a face
of H(M) and, thus, of H(N), contradicting the fact that u is not in H(N). In the second
case, since B lies at p′, p′ has no negative coordinates, so the ith coordinate of p′ must be
0, while the other coordinates of p′ are nonnegative. It follows that the ith coordinate of
p = p′ − ei + (1, 1, 1) is 0, while the other coordinates of p are positive, so f is contained in
sector i. Furthermore, since f is obtained from f ′ by translating in the negative xi-direction,
e must be perpendicular to the xi-axis. Any edge contained in sector i and perpendicular to
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the xi-axis is incident to vertices that are both in H(N) or both not in H(N), so since u is
not in H(N), v is not in H(N). �

The significance of this lemma is that, if N ≥ M , MB can be truncated to a perfect
matching MB(N) of H(N). On the other hand, MA can be truncated to a partial matching
MA(N) of H(N). So, D(A,B) can be truncated to a double-dimer configuration with nodes,
denoted by D(A,B)(N), on H(N). In this case, the nodes are the vertices of H(N) covered
by dimers in MA that are not edges of H(N). Such vertices must not only be on the outer
face of H(N), but they must be labelled by half integers, as in Figure 1, so they must be in
sector i+ or sector i− for some i ∈ {1, 2, 3}.

Each double-dimer configuration with nodes is associated with a planar pairing of the
nodes. On a finite graph, the notion that the paths are “rainbow-like” means that the
pairing is tripartite.

Definition 4.4.15. A planar pairing σ is tripartite if the nodes can be divided into three
circularly contiguous sets R, G, and B so that no node is paired with a node in the same
set. We often color the nodes in the sets red, green, and blue, in which case σ is the unique
planar pairing in which like colors are not paired.

Figure 11. A double-dimer configuration with nodes on H(5), obtained by
truncating the double-dimer configuration from Figure 10.

Example 4.4.16. Truncating the double-dimer configuration from Figure 10 to a double-
dimer configuration on H(5) produces the tripartite double-dimer configuration shown in
Figure 11.

We now show that if (A,B) ∈ AB andN ≥M , thenD(A,B)(N) is a tripartite double-dimer
configuration.

Theorem 4.4.17. Suppose (A,B) is an AB configuration. Then (A,B) ∈ AB if and only
if, for all N ≥M , each path in D(A,B)(N) begins and ends in the same sector.

Proof. Suppose N ≥ M . Consider a node u of D(A,B)(N) in sector i, so u is a vertex of
H(N) covered by a dimer e ∈MA that is not an edge of H(N). Then e must be incident to
another vertex v that is not a vertex of H(N). By Lemma 4.4.14, e ∈MA \MB ⊆MA4MB.
In other words, e is a dimer in a loop or path γ in D(A,B).
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Consider the sequence of vertices u, v := v0, v1, v2, . . . obtained by moving along γ, begin-
ning at u, moving to v, and then continuing along γ. We claim that this sequence never
returns to a vertex of H(N) (i.e., vs is not a vertex of H(N) for s ≥ 0) and never leaves
sector i. By Lemma 4.3.5, v is in sector i, and if the sequence leaves sector i thereafter, it
must first return to a vertex of H(N), so it suffices to show that the sequence never returns
to a vertex of H(N).

Suppose vs is a vertex of H(N) for some s ≥ 0. Let r ≥ 0 be the least index such that
vr is a vertex of H(N). Note that r > 0, since v is not a vertex of H(N). Also, vr−1 is
not a vertex of H(N), so by Lemma 4.4.14, {vr−1, vr} 6∈ MB, so {vr−1, vr} ∈ MA. Since
e ∈ MA and γ must alternate between MA and MB, we deduce that r is even. Therefore,
r > 1, and if u is white, then vr is black, and vice versa. As a result, the projection of the
xi-axis lies between u and vr. However, if 0 ≤ s < r − 1 is even, then {vs, vs+1} ∈ MB, so
by Lemma 4.4.14, since neither vs nor vs+1 is a vertex of H(N), vs and vs+1 must both be
vertices of H(N ′) and not vertices of H(N ′ − 1) for some N ′ > N . In fact, as discussed in
the proof of Lemma 4.4.14, each such dimer {vs, vs+1} must be perpendicular to the xi-axis.
Since consecutive dimers in any loop or path in D(A,B) cannot both be perpendicular to the
xi-axis, this implies that the dimers {u, v} and {vs, vs+1}, where 0 < s < r is odd, cannot be
perpendicular to the xi-axis. Since the projection of the xi-axis lies between u and vr, some
dimer in γ between u and vr must cross the projection of the xi-axis from the side on which
u lies to the side on which vr lies. Such a dimer must be perpendicular to the xi-axis, so it
must be of the form {vt, vt+1}, where 0 ≤ t < r− 1 is even. Then vt lies on the same side of
the projection of the xi-axis as u, so u and vt are vertices of the same color. Since t is even,
this means that u and v0 = v are vertices of the same color, which is a contradiction. This
completes the proof of the claim. We conclude that γ is a path in D(A,B), and one end of γ
is contained in sector i. That is, if N ≥M , then each node of D(A,B)(N) in sector i must be
covered by a path in D(A,B), one of whose ends is contained in sector i.

Suppose for some N ≥ M , there is a path γ′ in D(A,B)(N) that begins and ends in two
different sectors. Then the above discussion shows that there is a path γ in D(A,B) whose
ends are contained in two different sectors. By Theorem 4.4.12, (A,B) 6∈ AB. Conversely,
suppose (A,B) 6∈ AB. By Theorem 4.4.12, there is a path γ in D(A,B), one of whose ends
is contained in sector i and the other of whose ends is contained in sector j, where i 6= j.
Then γ consists of a sequence of dimers . . . , e−2, e−1, e0, e1, e2, . . ., and there exist r, t ∈ Z
such that e−s is contained in sector i for s > r and es is contained in sector j for s > t. Since
consecutive dimers cannot be contained in different sectors, −r ≤ t. Let N ′ ∈ Z≥0 be such
that all of the dimers e−r, e−r+1, . . . , et−1, et are edges of H(N ′), and let N = max{N ′,M}.
Then N ≥ M and all of the dimers e−r, e−r+1, . . . , et−1, et are edges of H(N), so they form
part of a path γ′ in D(A,B)(N). More precisely, γ′ must consist of the sequence of dimers
e−r′ , e−r′+1, . . . , et′−1, et′ for some r′ ≥ r and some t′ ≥ t. Let u be the node covered by
e−r′ and let v be the node covered by et′ . Since r′ + 1 > r′ ≥ r and t′ + 1 > t′ ≥ t, e−r′−1

is contained in sector i and et′+1 is contained in sector j. But e−r′−1 also covers u and
et′+1 also covers v, so u is contained in sector i and v is contained in sector j. Thus, there
exists N ≥ M so that there is a path γ′ in D(A,B)(N) that begins and ends in two different
sectors. �

Corollary 4.4.18. Suppose (A,B) is an AB configuration. Then (A,B) ∈ AB if and only
if, for some N ≥M , each path in D(A,B)(N) begins and ends in the same sector.
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Proof. Suppose N ≥M and there is a path γ in D(A,B)(M) that begins in sector i and ends
in sector j, where i 6= j. Then, by the claim established in the first three paragraphs of the
proof of the theorem, γ must be a subpath of a path γ′ in D(A,B)(N) that begins in sector i
and ends in sector j. So, if there exists N ≥M such that each path in D(A,B)(N) begins and
ends in the same sector, then each path in D(A,B)(M) begins and ends in the same sector.

Now suppose N ′ ≥ M and each path in D(A,B)(M) begins and ends in the same sector.
Consider a path γ in D(A,B)(N

′) that begins in sector i. If γ leaves sector i, then by
Lemma 4.3.5, it must first enter H(M). Since γ enters H(M) in sector i and each path
in D(A,B)(M) begins and ends in the same sector, γ must exit H(M) in sector i. In other
words, if γ leaves sector i, it must first enter H(M) and must return to sector i before
exiting H(M). As a result, γ must end in sector i. So, by the theorem, (A,B) ∈ AB. This
completes the proof. �

We can be even more precise about the pairing of the nodes N. Suppose there are 2r
nodes in sector i. The nodes in sector i are vertices on the outer face of H(N), and we can
number them consecutively in clockwise order. If r > 0, we then refer to the pairing

((1, 2r), (2, 2r − 1), . . . , (r, r + 1))

as the rainbow pairing of the nodes in sector i. If r = 0, we refer to the empty pairing as
the rainbow pairing of the nodes in sector i. Furthermore, if the nodes in sector i are paired
according to the rainbow pairing in sector i, for each i ∈ {1, 2, 3}, then we call the resulting
pairing of N the rainbow pairing of N.

Theorem 4.4.19. Suppose (A,B) is an AB configuration. Then (A,B) ∈ AB if and only
if, for all N ≥M , the nodes of D(A,B)(N) are paired according to the rainbow pairing.

Proof. By Theorem 4.4.17, it suffices to show, for N ≥ M , that each path in D(A,B)(N)
begins and ends in the same sector if and only if the nodes of D(A,B)(N) are paired according
to the rainbow pairing. So, assume N ≥M , and let σ denote the pairing of the nodes N of
D(A,B)(N).

Suppose each path in D(A,B)(N) begins and ends in the same sector. Consider the nodes
in sector i. Each must be paired with exactly one other node in sector i, so there are 2r such
nodes, for some r ∈ Z≥0. Number them consecutively in clockwise order. Then, considering
the structure of H(N) and the fact that each node must be incident to an edge of H that is
not an edge of H(N), we see that the white nodes precede the black nodes. That is, given a
white node numbered mw and a black node numbered mb, we have mw < mb. For 1 ≤ j ≤ 2r,
let γj be the path in D(A,B)(N) beginning at node j. To show that σ is the rainbow pairing,
we must show that γj = γ2r−j+1. First, since each node in sector i must be paired with
exactly one other such node, γj = γk for some 1 ≤ k ≤ 2r such that j 6= k. Also, since
MB(N) is a perfect matching of H(N), each path in D(A,B)(N) must begin and end with
dimers in MB(N), so γj = γk consists of an odd number of dimers. Consequently, if node
j is white, then node k must be black, and vice versa. This implies that there are equally
many white and black nodes in sector i, so nodes 1 through r are white and nodes r + 1
through 2r are black. Therefore, if j ≤ r, then k > r, and if j > r, then k ≤ r. Moreover,
since σ is planar, there can be no crossings, i.e., no four nodes m1 < m2 < m3 < m4 such
that γm1 = γm3 and γm2 = γm4 . In particular, if γ1 = γk, where k < 2r, then k > r and
γ2r = γl, where 1 < l ≤ r, so we have a crossing. So, γ1 = γ2r. By similar arguments, we
then find that γ2 = γ2r−1, and so on, until we find that γr = γr+1.
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Conversely, suppose σ is the rainbow pairing, and consider a path γ in D(A,B)(N). Since
the rainbow pairing only pairs nodes in the same sector, and γ is a path between two nodes
u and σ(u), γ begins and ends in the same sector. �

Corollary 4.4.20. Suppose (A,B) is an AB configuration. Then (A,B) ∈ AB if and only
if, for some N ≥M , the nodes of D(A,B)(N) are paired according to the rainbow pairing.

Proof. This is a direct consequence of Corollary 4.4.18. �

Finally, we can explicitly describe the nodes of D(A,B)(N). The set of nodes N and the
coloring of these nodes is determined by the partitions µ1, µ2, and µ3. Let Si be the Maya
diagram of µi. We refer to the labelling of the graph H(N) shown in the right-hand side of
Figure 1. Given N ∈ Z≥0, let N+

i (N) (resp. N−i (N)) be the set of vertices on the outer face
of H(N), in sector i+ (resp. sector i−), that are not labelled by any of the elements of S+

i

(resp. S−i ). Then let Nµ(N) =
3⋃
i=1

N+
i (N) ∪N−i (N).

Lemma 4.4.21. Suppose (A,B) is an AB configuration and N ≥ M is such that each box
in A ∪B corresponds to a face of H(N). Then the set of nodes N of D(A,B)(N) is Nµ(N).

Proof. Consider a node u of D(A,B)(N) in sector i+ (resp. sector i−). Then u is a vertex
of H(N) covered by a dimer e ∈ MA that is not an edge of H(N). We must show that
u ∈ N+

i (N) (resp. u ∈ N−i (N)). That is, we must show that u is not labelled by any of
the elements of S+

i (resp. S−i ). Let m(u) denote the label associated to u, and let v be the
vertex in sector i labelled by m(u)− 1 (resp. m(u) + 1). There is a unique face f ∈ F such
that e and v are both incident to f . Note that f is contained in sector i. Also, since e is not
an edge of H(N), f is not a face of H(N). Let w be the cell corresponding to f such that A
lies at w. Then the ith coordinate of w is strictly less than the other coordinates of w, and
by assumption, f does not correspond to any box in A ∪ B, so w 6∈ A ∪ B. Since A lies at
w, w has at most one negative coordinate and w 6∈ (I− ∪ III) \A. It follows that w 6∈ I− ∪ III.

Suppose w ∈ Cyli. Then, since w 6∈ I− ∪ III, we have w ∈ Cyl+i . Since the ith coordinate
of w is the least coordinate of w, we deduce that w ∈ [0,M − 1]3. Then f must be a face of
H(M) ⊆ H(N). By contradiction, w 6∈ Cyli.

Now consider the cell w − ej, where j ∈ {1, 2, 3} and j ≡ i − 1 (mod 3) (resp. j ≡ i + 1
(mod 3)). Let f ′ ∈ F be the face corresponding to w− ej. Observe that f ′ is the other face
of H to which e is incident, and when crossing e from f to f ′, the left vertex of e is white.
Since e ∈MA, we see that hA increases by 2/3 between f and f ′, i.e., hA(f ′) = hA(f) + 2/3.
Thus, A must lie at w − ej + (1, 1, 1). In particular, w − ej ∈ A, so w − ej has at least two
negative coordinates, or w− ej ∈ (I− ∪ III) \A. In the first case, since the ith coordinate wi
of w is its least coordinate and w has at most one negative coordinate, the other coordinates
of w must be nonnegative, so wi < 0 and the jth coordinate wj of w must be 0. In this case,
we conclude that (µ′i)wk+1 = 0, where k ∈ {1, 2, 3} is such that {k} = {1, 2, 3} \ {i, j}, so
wk + 1 > (µi)1 = (µi)wj+1 (resp. (µi)wk+1 = 0 = wj). In the second case, w − ej ∈ I− ∪ III,
and the ith coordinate of w is strictly less than the other coordinates of w, so the ith
coordinate of w − ej is the least coordinate of w − ej. In this case, we conclude that
w − ej ∈ Cyli. Since w 6∈ Cyli, we once again determine that (µ′i)wk+1 = wj, and wj > 0, so
(µi)wj ≥ wk + 1 > (µi)wj+1 (resp. (µi)wk+1 = wj).
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As a consequence of our choices made in defining w, u is labelled by m(u) = 1/2+wk−wj
(resp. m(u) = −1/2 + wj − wk). Therefore, we have

(µi)wj+1 − (wj + 1) + 1/2 = (µi)wj+1 − 1− wj + 1/2 < wk − wj + 1/2 = m(u)

and (in the case that wj 6= 0)

m(u) = wk − wj + 1/2 ≤ (µi)wj − 1− wj + 1/2 < (µi)wj − wj + 1/2

(resp. m(u) = −1/2 + wj − wk = −1/2 + (µi)wk+1 − wk = (µi)wk+1 − (wk + 1) + 1/2). Since
the sequence (µi)t − t+ 1/2 is a strictly decreasing sequence, m(u) 6= (µi)t − t+ 1/2 for any
t > 0, i.e., m(u) 6∈ Si (resp. m(u) ∈ Si). So, m(u) 6∈ S+

i (resp. m(u) 6∈ S−i ), as desired.
Conversely, consider u ∈ N+

i (N) (resp. u ∈ N−i (N)). Then u is a vertex on the outer face
of H(N), in sector i+ (resp. sector i−), and it is not labelled by any of the elements of S+

i

(resp. S−i ). We must show that u is a node of D(A,B)(N), i.e., that u is covered by a dimer
in MA that is not an edge of H(N). As above, let m(u) denote the label associated to u,
and let v be the vertex in sector i labelled by m(u)− 1 (resp. m(u) + 1). There is a unique
edge e of H that covers u and is not an edge of H(N), and there is a unique face f ∈ F such
that e and v are both incident to f . Note that f is contained in sector i and is not a face
of H(N). We will show that e ∈MA. Let w be the cell corresponding to f such that A lies
at w. In addition, let j ∈ {1, 2, 3} such that j ≡ i − 1 (mod 3) (resp. j ≡ i + 1 (mod 3)),
let k ∈ {1, 2, 3} such that {k} = {1, 2, 3} \ {i, j}, and let f ′ ∈ F be the face corresponding
to w− ej. Then the ith coordinate of w is strictly less than the other coordinates of w, and
by assumption, f does not correspond to any box in A ∪ B, so w 6∈ A ∪ B. Since A lies at
w, w has at most one negative coordinate and w 6∈ (I− ∪ III) \A. It follows that w 6∈ I− ∪ III
and wj, wk ≥ 0. Furthermore, w − (1, 1, 1) ∈ A, so (i) w − (1, 1, 1) has at least two negative
coordinates or (ii) w−(1, 1, 1) ∈ (I−∪ III)\A. In case (i), wj and wk cannot both be positive,
so wj = 0 or wk = 0. In case (ii), the ith coordinate of w − (1, 1, 1) is strictly less than the
other coordinates of w − (1, 1, 1), so if w − (1, 1, 1) ∈ I−, then w − (1, 1, 1) ∈ Cyl−i ⊆ Cyli.
Thus, w − (1, 1, 1) ∈ Cyli, so (µi)wj ≥ wk (resp. (µi)wk ≥ wj).

As discussed above, m(u) = 1/2+wk−wj (resp. m(u) = −1/2+wj−wk). By assumption,
0 < m(u) 6∈ S+

i (resp. 0 > m(u) 6∈ S−i ). Consequently, m(u) 6∈ Si (resp. m(u) ∈ Si), so
m(u) 6= (µi)t − t+ 1/2 for any t > 0 (resp. m(u) = (µi)t0 − t0 + 1/2 for some t0 > 0). Then
0 ≤ wk − wj 6= (µi)t − t for any t > 0 (resp. 0 > wj − wk − 1 = (µi)t0 − t0).

Suppose wj 6= 0 and w − ej 6∈ Cyli. Then (µ′i)wk+1 < wj, implying that (µi)wj ≤ wk
(resp. (µi)wk+1 < wj). We have (µi)wj − wj ≤ wk − wj 6= (µi)t − t for any t > 0, so
(µi)wj − wj < wk − wj, which means that (µi)wj < wk (resp. (µi)wk+1 − (wk + 1) < wj −
(wk + 1) = (µi)t0 − t0, so t0 < wk + 1, since the sequence (µi)t − t is strictly decreasing).
In case (i), since wj 6= 0, wk = 0, so (µi)wj < 0, which is a contradiction (resp. t0 < 1, so
t0 ≤ 0, which is a contradiction). In case (ii), we have (µi)wj ≥ wk > (µi)wj , a contradiction
(resp. (µi)wk − wk > (µi)wk − wk − 1 ≥ wj − wk − 1 = (µi)t0 − t0, so because the sequence
(µi)t − t is strictly decreasing, wk < t0 < wk + 1, a contradiction). We conclude that wj = 0
or w − ej ∈ Cyli.

If wj = 0, then since wi < wj, w−ej has at least two negative coordinates, so w−ej ∈ A.
Otherwise, w − ej ∈ Cyli. Observe that f ′ is the other face of H to which e is incident and
is not a face of H(N). Suppose w−ej ∈ Cyl+i . Since the ith coordinate of w is less than the
other coordinates of w, the ith coordinate of w − ej is the least coordinate of w − ej. We
deduce that w− ej ∈ [0,M − 1]3, so f ′ must be a face of H(M) ⊆ H(N). By contradiction,
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w−ej 6∈ Cyl+i , so w−ej ∈ Cyl−i ⊆ I−∪ III. Moreover, by assumption, f ′ does not correspond
to any box in A∪B, so w−ej 6∈ A∪B. So, w−ej ∈ (I−∪ III) \A, showing that w−ej ∈ A.
In either case, w− ej ∈ A, so A lies at or above w + ei + ek, which corresponds to f ′. Since
A lies at w, which corresponds to f , hA must increase by at least 2/3 between f and f ′, i.e.,
hA(f ′) ≥ hA(f) + 2/3. According to the definition of hA, since e separates f and f ′, e ∈MA,
as desired. �

Corollary 4.4.22. The set of nodes of D(A,B)(N) in sector i is Ni := N+
i (N) ∪N−i (N).

We color the nodes as follows. Recall that when given a Maya diagram, by holes, we mean
elements of Z + 1

2
\ S, and by beads, we mean elements of S.

• In sector 1, the blue nodes are the holes of S1 with positive coordinates and the red
nodes are the beads of S1 with negative coordinates.
• In sector 2, the red nodes are the holes of S2 with positive coordinates and the green

nodes are the beads of S2 with negative coordinates.
• In sector 3, the green nodes are the holes of S3 with positive coordinates and the blue

nodes are the beads of S3 with negative coordinates.

Since |S+
i | = |S−i | for i ∈ {1, 2, 3}, there are an equal number of nodes in sector i with

positive coordinates and negative coordinates. So, the rainbow pairing of Nµ(N) pairs blue
nodes in sector 1 with red nodes in sector 1, red nodes in sector 2 with green nodes in sector
2, and green nodes in sector 3 with blue nodes in sector 3. This shows that the rainbow
pairing is tripartite.

Let Dσ(G,N) be the set of all double-dimer configurations on G with nodes N paired ac-
cording to σ, and let ZDD

σ (G,N) denote the weighted sum of the double-dimer configurations
in Dσ(G,N). We can now explain the relationship between ZAB and ZDD

σ (H(N),Nµ(N)),
where σ is the rainbow pairing. Note that

∣∣N+
i (N)

∣∣ =
∣∣N−i (N)

∣∣, since
∣∣S+

i

∣∣ =
∣∣S−i ∣∣, so it

makes sense to consider the rainbow pairing of Nµ(N).
Given a nonempty AB configuration, removing a box whose back neighbors are not boxes

produces another AB configuration, so between any two AB configurations (A,B) and
(A′, B′), there always exists at least one sequence (A,B) := (A1, B1), (A2, B2), . . . , (Ar, Br) :=
(A′, B′) of AB configurations such that consecutive AB configurations differ by the removal
or addition of a single box. Furthermore, if (As+1, Bs+1) is obtained from (As, Bs) by remov-
ing a box from As or Bs, then MAs+1 or MBs+1 is obtained from MAs or MBs , respectively, by
performing a local move as shown in Figure 12. Similarly, if (As+1, Bs+1) is obtained from

−→

Figure 12. A local move corresponding to the removal of a box.

(As, Bs) by adding a box to As or Bs, then MAs+1 or MBs+1 is obtained from MAs or MBs ,
respectively, by performing a local move as shown in Figure 13.
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−→

Figure 13. A local move corresponding to the addition of a box.

Recall the edge weights specified in Definition 2.0.4. Assuming that all of the boxes in
A ∪ B and all of the boxes in A′ ∪ B′ correspond to faces of H(N), the above discussion
applies just as well to MAs(N) and MBs(N). Then, one consequence of the chosen edge
weights is that removing a box increases the edge-weight by a factor of q, and adding a box
decreases the edge-weight by a factor of q. Therefore, the edge-weight qw(A,B)(N) of D(A,B)(N)

is related to the edge-weight qw(A′,B′)(N) of D(A′,B′)(N) by the following equation:

q|A|+|B|+w(A,B)(N) = q|A
′|+|B′|+w(A′,B′)(N).

In particular, if (A′, B′) = (III, II ∪ III) and N ≥M , then we have

|A|+ |B|+ w(A,B)(N) = |II|+ 2|III|+ w(III,II∪III)(N).

Observe that (III, II∪III) ∈ AB(π) ⊆ AB, where π is the labelled box configuration consisting
of the boxes II ∪ III, all of which are unlabelled. So, by Theorem 4.4.19 and Lemma 4.4.21,
if N ≥M , D(III,II∪III)(N) ∈ Dσ(H(N),Nµ(N)).

Definition 4.4.23. The double-dimer configuration D(III,II∪III)(N) on (H(N),Nµ(N)) will

be called the baseµ double-dimer configuration and its edge-weight will be denoted qwbase(µ).

In other words, wbase(µ) = w(III,II∪III)(N). Also, if |A| + |B| ≤ N −M , and w ∈ A ∪ B,
then w ∈ Cyl−i for some i ∈ {1, 2, 3} or w ∈ II ∪ III. In the first case, w ∈ A, so by
Conditions 4.2.2, w + sei ∈ A for 0 ≤ s < −wi. It follows that −wi ≤ |A| ≤ |A| + |B| ≤
N −M . Since the coordinates of w other than the ith coordinate are in [0,M − 1], we must
have w−wi(1, 1, 1) ∈ [0,M − 1 +N −M ]3 = [0, N − 1]3, so w−wi(1, 1, 1) corresponds to a
face of H(N) and, thus, so does w. In the second case, w ∈ II∪III ⊆ [0,M−1]3 ⊆ [0, N−1]3,
so w corresponds to a face of H(N). If, in addition, (A,B) ∈ AB, then by Theorem 4.4.19
and Lemma 4.4.21, D(A,B)(N) ∈ Dσ(H(N),Nµ(N)).

Consequently, assuming N ≥M , by Definition 4.2.35, we have

ZAB(q−1) = q|II|+2|III|
∑

(A,B)∈AB

q−|A|−|B|

= q|II|+2|III|
∑

(A,B)∈AB
|A|+|B|≤N−M

q−|A|−|B| + q|II|+2|III|
∑

(A,B)∈AB
|A|+|B|>N−M

q−|A|−|B|

= q−wbase(µ)
∑

(A,B)∈AB
|A|+|B|≤N−M

qw(A,B)(N) + q|II|+2|III|
∑

(A,B)∈AB
|A|+|B|>N−M

q−|A|−|B|.

Let D ∈ Dσ(H(N),Nµ(N)). Since the nodes Nµ(N) are paired according to the rainbow
pairing and

∣∣N+
i (N)

∣∣ =
∣∣N−i (N)

∣∣, each path in D pairs a black node in N+
i (N) with a
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white node in N−i (N), for some i ∈ {1, 2, 3}. Thus, each path has odd length. If there
are k(D) loops in D, this implies that there are 2k(D) ways to decompose D into a perfect
matching M1 of H(N) \ Nµ(N) and a perfect matching M2 of H(N). These matchings
then correspond to lozenge tilings, and since the nodes Nµ(N) are paired according to the
rainbow pairing, these tilings extend uniquely to tilings of the plane that can be interpreted
as surfaces A = R2 ∪ (I− ∪ III) \ A and B = R1 ∪ (II ∪ III) \ B, respectively, for some AB
configuration (A,B). Then MA(N) = M1 and MB(N) = M2, so D(A,B)(N) = D.

To be more precise, we must check that the penultimate statement from the previous
paragraph holds for an AB configuration (A,B) associated with the partitions µ and not
some other partitions. The fact that the nodes of D are Nµ(N) ensures that the tiling
corresponding to M1 can be extended so that A = R2 ∪ (I−(ν) ∪ III(ν)) \ A, where A ⊆
I−(ν) ∪ III(ν), for any partitions ν such that µi ⊆ νi for i ∈ {1, 2, 3}. It’s not clear, though,
that the tiling corresponding toM2 can be extended so that B = R1∪(II(µ)∪III(µ))\B, where
B ⊆ II(µ)∪III(µ). All we can say is that it can be extended so that B = R1∪(II(ν)∪III(ν))\B,
where B ⊆ II(ν) ∪ III(ν), for some partitions ν such that µi ⊆ νi for i ∈ {1, 2, 3}. Suppose
this statement does not hold for ν = µ. Then there exists a cell w ∈ B\(R1∪II(µ)∪III(µ)) ⊆
(II(ν) ∪ III(ν)) \ (B ∪ II(µ) ∪ III(µ)).

If w ∈ II(ν), then since w 6∈ II(µ) ∪ III(µ), there exist i, j ∈ {1, 2, 3} such that i 6= j and
w 6∈ Cylj(µ) ∪ Cyli(ν). Since w ∈ B, by Lemma 4.3.3, w − sej ∈ B for 0 ≤ s ≤ wj + 1.
On the other hand, since w 6∈ Cylj(µ), w − sej 6∈ Cylj(µ) for 0 ≤ s ≤ wj + 1. Moreover,
the jth coordinate of w − (wj + 1)ej is −1, while the other coordinates are nonnegative, so
w− (wj +1)ej ∈ Cyl−j (ν)\ I−(µ). This implies that w−sej 6∈ R2∪ (I−(µ)∪ III(µ)) and, thus,
w − sej 6∈ A for 0 ≤ s ≤ wj + 1. Consequently, {w − sej | 0 ≤ s ≤ wj + 1} ⊆ L(A,B) is a
connected set of cells containing w ∈ IĪi(ν) and w−(wj+1)ej ∈ Cyl−j (ν). By Theorem 4.2.26,
(A,B) 6∈ AB, so by Corollary 4.4.20, the nodes of D(A,B)(N) are not paired according to the
rainbow pairing. This contradicts the fact that D(A,B)(N) = D ∈ Dσ(H(N),Nµ(N)).

Otherwise, w ∈ III(ν), and since w 6∈ II(µ)∪III(µ), there exist i, j ∈ {1, 2, 3} such that i 6= j
and w 6∈ Cyli(µ) ∪ Cylj(µ). Since w ∈ B, by Lemma 4.3.3, w − sei ∈ B for 0 ≤ s ≤ wi + 1
and w− tej ∈ B for 0 ≤ t ≤ wj +1. On the other hand, since w 6∈ Cyli(µ), w−sei 6∈ Cyli(µ)
for 0 ≤ s ≤ wi + 1. Similarly, since w 6∈ Cylj(µ), w− tej 6∈ Cylj(µ) for 0 ≤ t ≤ wj + 1. Also,
the ith coordinate of w − (wi + 1)ei is −1, while the other coordinates are nonnegative, so
w − (wi + 1)ei ∈ Cyl−i (ν) \ I−(µ). Similarly, the jth coordinate of w − (wj + 1)ej is −1,
while the other coordinates are nonnegative, so w− (wj + 1)ej ∈ Cyl−j (ν)\ I−(µ). Therefore,

w − sei 6∈ R2 ∪ (I−(µ) ∪ III(µ)) and, thus, w − sei 6∈ A for 0 ≤ s ≤ wi + 1. Similarly,
w − tej 6∈ R2 ∪ (I−(µ) ∪ III(µ)) and, thus, w − tej 6∈ A for 0 ≤ t ≤ wj + 1. Consequently,
{w− sei | 0 ≤ s ≤ wi + 1} ∪ {w− tej | 0 ≤ t ≤ wj + 1} ⊆ L(A,B) is a connected set of cells
containing w − (wi + 1)ei ∈ Cyl−i (ν) and w − (wj + 1)ej ∈ Cyl−j (ν). By Theorem 4.2.26,
(A,B) 6∈ AB, so by Corollary 4.4.20, the nodes of D(A,B)(N) are not paired according to the
rainbow pairing. Again, this contradicts the fact that D(A,B)(N) = D ∈ Dσ(H(N),Nµ(N)).
So we can, in fact, extend the tiling corresponding to M2 so that B = R1∪(II(µ)∪III(µ))\B,
where B ⊆ II(µ) ∪ III(µ).

Now, if D(H(N)) denotes the set of all double-dimer configurations with nodes on H(N),
and τ : ABall → D(H(N)) is the map (A,B) 7→ D(A,B)(N), then (A,B) ∈ τ−1(D). We

conclude that |τ−1(D)| = 2k(D). Finally, given any (A,B) ∈ τ−1(Dσ(H(N),Nµ(N))), the
nodes of D(A,B)(N) are Nµ(N), so all boxes in A∪B must correspond to faces of H(N), and
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we deduce that |A| + |B| + w(A,B)(N) = |II| + 2|III| + wbase(µ). Also, by Corollary 4.4.20,
τ−1(Dσ(H(N),Nµ(N))) ⊆ AB.

As a result,

q−wbase(µ)ZDD
σ (H(N),Nµ(N))

= q−wbase(µ)
∑

D∈Dσ(H(N),Nµ(N))

w(D)

= q−wbase(µ)
∑

D∈Dσ(H(N),Nµ(N))

∑
(A,B)∈τ−1(D)

w(D)

2k(D)

= q−wbase(µ)
∑

D∈Dσ(H(N),Nµ(N))

∑
(A,B)∈τ−1(D)

qw(A,B)(N)

= q−wbase(µ)
∑

(A,B)∈τ−1(Dσ(H(N),Nµ(N)))

qw(A,B)(N)

= q−wbase(µ)
∑

(A,B)∈AB
|A|+|B|≤N−M

qw(A,B)(N) + q|II|+2|III|
∑

(A,B)∈τ−1(Dσ(H(N),Nµ(N)))
|A|+|B|>N−M

q−|A|−|B|.

This discussion, along with Theorem 4.2.36, leads to the following result.

Theorem 4.4.24. As N → ∞, Z̃DD
σ (H(N),Nµ(N)) := q−wbase(µ)ZDD

σ (H(N),Nµ(N)) con-
verges to ZAB(q−1) = W (µ1, µ2, µ3; q−1).

4.5. The condensation recurrence in PT theory. In [2], the first author showed that
when σ is tripartite, ZDD

σ (G,N) satisfies the condensation recurrence.

Theorem 4.5.1. [2, Theorem 2.1.1] Let G = (V1, V2, E) be a finite edge-weighted planar
bipartite graph with a set of nodes N. Divide the nodes into three circularly contiguous sets
R, G, and B such that |R|, |G| and |B| satisfy the triangle inequality and let σ be the
corresponding tripartite pairing.3 Let a, b, c, d be nodes appearing in a cyclic order such that
a, c ∈ V1 and b, d ∈ V2.4 Then

ZDD
σ (G,N)ZDD

σabcd
(G,N− {a, b, c, d}) = ZDD

σab
(G,N− {a, b})ZDD

σcd
(G,N− {c, d})(6)

+ ZDD
σad

(G,N− {a, d})ZDD
σbc

(G,N− {b, c})
where σabcd is the unique planar pairing on N− {a, b, c, d} in which like RGB colors are not
paired together, and for i, j ∈ {a, b, c, d}, σij is the unique planar pairing on N − {i, j} in
which like RGB colors are not paired together.

We apply this recurrence with G = H(N), N = Nµrc1 ,µ
rc
2 ,µ3

(N), and the RGB coloring
defined in Section 4.4. We choose the four nodes a, b, c, and d as follows: Let Si be the
Maya diagram of µi, and let a and b be the nodes in sector 1 labelled by maxS−1 and
minS+

1 , respectively. Similarly, we let c and d be the nodes in sector 2 labelled by maxS−2
and minS+

2 . Note that these nodes have the same coordinates as the vertices specified in
Section 3.3 but the coordinate system is different (see Figure 1). We remark that a is a red

3If |R|, |G|, and |B| do not satisfy the triangle inequality, there is no corresponding tripartite pairing σ.
4Additionally, {a, b, c, d} must contain at least one node of each RGB color. In our applications of this

theorem, this assumption is always satisfied.
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node in sector 1, b is a blue node in sector 1, c is a green node in sector 2, and d is a red
node in sector 2. So a, b, c, and d appear in cyclic order, alternating black and white.

As in DT theory (see Section 3.3),

• the set of nodes N− {a, b, c, d} corresponds to the partitions µ1, µ2, µ3,
• the set of nodes N corresponds to the partitions µrc1 , µrc2 , µ3,
• the set of nodes N− {a, b} corresponds to the partitions µ1, µrc2 , µ3,
• the set of nodes N− {c, d} corresponds to the partitions µrc1 , µ2, µ3,
• the set of nodes N− {a, d} corresponds to the partitions µr1, µc2, µ3, and
• the set of nodes N− {b, c} corresponds to the partitions µc1, µr2, µ3.

In Lemma 5.3.1, we compute the edge-weight of the baseµ double-dimer configuration on
(H(N),Nµ(N)) = (H(N),Nµrc1 ,µ

rc
2 ,µ3

(N) − {a, b, c, d}). We can also apply Lemma 5.3.1 to
obtain the edge-weights of the base double-dimer configurations on (H(N),Nµrc1 ,µ

rc
2 ,µ3

(N)),
(H(N),Nµrc1 ,µ

rc
2 ,µ3

(N)−{a, b}) = (H(N),Nµ1,µrc2 ,µ3
(N)), and (H(N),Nµrc1 ,µ

rc
2 ,µ3

(N)−{c, d}) =
(H(N),Nµrc1 ,µ2,µ3

(N)). To do so, we simply modify the partitions in the lemma statement
appropriately.

For double-dimer configurations on H(N) with nodes N−{a, d} or N−{b, c}, more care
is required. This is because N−{a, d} 6= Nµr1,µ

c
2,µ3

(N) and N−{b, c} 6= Nµc1,µ
r
2,µ3

(N). In the
first case, N − {a, d} = Nµ(N) ∪ {b, c}, so we have added b and c (a blue node in sector 1
and a green node in sector 2) to the node set Nµ(N). So, the unique planar pairing σad on
N−{a, d} has one more blue-green path (going from a blue node in sector 1 to a green node
in sector 2) than σabcd. We remark that it is no longer the case that all blue-green paths
begin and end in sector 3. Similarly, the pairing σbc has one more red-green and one more
red-blue path than σabcd, and one fewer blue-green path. We illustrate this with an example.

Example 4.5.2. Let N = 5 and let µ1 = (3, 2), µ2 = (2, 2), and µ3 = ∅. Then the node sets
N− {a, b, c, d}, N− {a, d}, and N− {b, c} are as shown below.

When we add b and c, we have µr1 = (4) and µc2 = (1, 1, 1), as shown below. Note that the
double-dimer configuration shown has a blue-green path from sector 1 to sector 2.
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When we add a and d, we have µc1 = (2, 1, 1) and µr2 = (3), as shown below.

As illustrated in the example, when the node set is N − {a, d}, the base double-dimer
configuration arises from an AB configuration (A,B) (associated with partitions µr1, µc2, and
µ3). But, as we can see from the presence of a blue-green path from sector 1 to sector 2,
this double-dimer configuration is not the result of the truncation procedure described in
Section 4.3, i.e., it is not equal to D(A,B)(N). Instead, the tilings and corresponding dimer
configurations are shifted up by one unit prior to truncation. We will refer to this double-
dimer configuration as the baseup double-dimer configuration. We use the notation baseup
rather than baseµr1,µc2,µ3 , because baseµr1,µc2,µ3 refers to a double-dimer configuration described
in Definition 4.4.23, which is truncated in the usual way.

Similarly, when the node set is N−{b, c}, the base double-dimer configuration arises from
an AB configuration (associated with partitions µc1, µ

r
2, and µ3). However, the tilings and

corresponding dimer configurations are shifted down by one unit prior to truncation. We
will refer to this double-dimer configuration as the basedown double-dimer configuration.

Let qwup be the edge-weight of the baseup double-dimer configuration, and let qwdown be the
edge-weight of the basedown double-dimer configuration. We compute both of these quantities
in Section 5.3.1 (see Lemmas 5.3.3 and 5.3.4). Then let

Z̃DD
σ (H(N),Nµrc1 ,µ

rc
2 ,µ3

(N)) = q−wbase(µ
rc
1 ,µ

rc
2 ,µ3)ZDD

σ (H(N),Nµrc1 ,µ
rc
2 ,µ3

(N)),

Z̃DD
σabcd

(H(N),Nµ1,µ2,µ3(N)) = q−wbase(µ1,µ2,µ3)ZDD
σabcd

(H(N),Nµ1,µ2,µ3(N)),

Z̃DD
σab

(H(N),Nµ1,µrc2 ,µ3
(N)) = q−wbase(µ1,µ

rc
2 ,µ3)ZDD

σab
(H(N),Nµ1,µrc2 ,µ3

(N)),
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Z̃DD
σcd

(H(N),Nµrc1 ,µ2,µ3
(N)) = q−wbase(µ

rc
1 ,µ2,µ3)ZDD

σcd
(H(N),Nµrc1 ,µ2,µ3

(N)),

Z̃DD
σad

(H(N),Nµrc1 ,µ
rc
2 ,µ3

(N)− {a, d}) = q−wupZDD
σad

(H(N),Nµrc1 ,µ
rc
2 ,µ3

(N)− {a, d}), and

Z̃DD
σbc

(H(N),Nµrc1 ,µ
rc
2 ,µ3

(N)− {b, c}) = q−wdownZDD
σbc

(H(N),Nµrc1 ,µ
rc
2 ,µ3

(N)− {b, c}).

Let

A = wbase(µ
rc
1 , µ

rc
2 , µ3) + wbase(µ1, µ2, µ3),

B = wbase(µ1, µ
rc
2 , µ3) + wbase(µ

rc
1 , µ2, µ3), and

C = wup + wdown.

From the condensation recurrence (6) and the preceding remarks, we have

qAZ̃DD
σ (H(N),Nµrc1 ,µ

rc
2 ,µ3

(N))Z̃DD
σabcd

(H(N),Nµ1,µ2,µ3(N))(7)

= qBZ̃DD
σab

(H(N),Nµ1,µrc2 ,µ3
(N))Z̃DD

σcd
(H(N),Nµrc1 ,µ2,µ3

(N))

+ qCZ̃DD
σad

(H(N),Nµrc1 ,µ
rc
2 ,µ3

(N)− {a, d})Z̃DD
σbc

(H(N),Nµrc1 ,µ
rc
2 ,µ3

(N)− {b, c}).

From Lemma 5.3.1, we see that A = B, and we multiply equation (7) by q−A. In Section 5.3.2,
we show that C−A = K, which does not depend on N . So, we can take N →∞, and each of

the Laurent series Z̃DD converges to an instance ofW , with different partitions as parameters.

The convergence of Z̃DD
σ (H(N),Nµrc1 ,µ

rc
2 ,µ3

(N)) to W (µrc1 , µ
rc
2 , µ3; q−1) follows from Theo-

rem 4.4.24. By the same theorem, Z̃DD
σabcd

(H(N),Nµ1,µ2,µ3(N)) converges toW (µ1, µ2, µ3; q−1),

Z̃DD
σab

(H(N),Nµ1,µrc2 ,µ3
(N)) converges to W (µ1, µ

rc
2 , µ3; q−1), and Z̃DD

σcd
(H(N),Nµrc1 ,µ2,µ3

(N))

converges to W (µrc1 , µ2, µ3; q−1). For the term Z̃DD
σad

(H(N),Nµrc1 ,µ
rc
2 ,µ3

(N)−{a, d}), we remark
that since we take N →∞, the fact that the tilings and corresponding dimer configurations
are shifted before truncation does not matter, and we get convergence to W (µr1, µ

c
2, µ3; q−1).

A similar argument implies convergence of Z̃DD
σbc

(H(N),Nµrc1 ,µ
rc
2 ,µ3

(N)−{b, c}) toW (µc1, µ
r
2, µ3; q−1).

So, we get

W (µrc1 , µ
rc
2 , µ3; q−1)W (µ1, µ2, µ3; q−1) = W (µ1, µ

rc
2 , µ3; q−1)W (µrc1 , µ2, µ3; q−1)

+ qKW (µr1, µ
c
2, µ3; q−1)W (µc1, µ

r
2, µ3; q−1).

Substituting q for q−1 and multiplying by qK , we conclude that W satisfies equation (2), as
desired.

4.6. Example. We list all of the double-dimer configurations that correspond, via our maps,
to the examples in Example 4.1.7 (the same example as that in [11, Section 5.4], with the
same numbering). The double-dimer configurations corresponding to these configurations
appear in Figure 14.

5. Weights

5.1. Modifying the partition µ. In this section, we collect facts about partitions that we
will need to compute the DT and PT weights.
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Length (i) (ii) (iii) (iv) (v) (vi)

0

1

2

3

Figure 14. Double-dimer configurations corresponding to the labelled box
configurations in [11, Section 5.4].

5.1.1. The diagonal of µ.

Remark 5.1.1. Let d(µ) denote the length of the diagonal of µ. Then d(µ) is the largest
integer i such that µi ≥ i. This is immediate from the observation that µi ≥ i if and only if
(i, i) is a cell in the Young diagram of µ.

Remark 5.1.2. It is immediate from Remark 5.1.1 that µd(µ)+1 ≤ d(µ). For if µd(µ)+1 > d(µ),
then µd(µ)+1 ≥ d(µ) + 1, contradicting that d(µ) is the length of the diagonal.

In many of the computations we will make use of the fact that d(µ) is the largest integer
i with µi ≥ i. We will sometimes also need to know the largest integer i with µi ≥ i− 1.

Example 5.1.3. • If µ = (4, 4, 4, 3, 1), then d(µ) = 3 and the largest integer i with
µi ≥ i− 1 is 4, as µ4 = 3 ≥ 4− 1 and for i > 4, µi ≤ µ4 = 3 < 4 ≤ i− 1.
• If µ = (8, 8, 7, 5, 3, 2, 1, 1, 1), then d(µ) = 4 and 4 is the largest integer i with µi ≥ i−1,

since µ4 = 5 ≥ 4− 1 and for i > 4, µi ≤ µ5 = 3 < 4 ≤ i− 1.

The preceding example illustrates the following facts.

Lemma 5.1.4. Let ds(µ) be the largest integer i such that µi ≥ i − 1. There are two
possibilities: either ds(µ) = d(µ) or ds(µ) = d(µ) + 1.

Proof. Since µ is a partition, µi−i+1 is a strictly decreasing sequence, so ds(µ) is equivalently
the unique integer i such that µi ≥ i − 1 and µi+1 < i. If µi ≥ i, then µi ≥ i − 1, so
ds(µ) ≥ d(µ). And since

d(µ) + 1 > d(µ) ≥ µd(µ)+1 ≥ µd(µ)+2 = µd(µ)+1+1,
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so ds(µ) ≤ d(µ) + 1. �

Lemma 5.1.5. Let µ be a partition. Then

ds(µ) = d(µ) + 1⇔ µd(µ)+1 = d(µ).

Proof. If µd(µ)+1 = d(µ) = (d(µ) + 1) − 1, then ds(µ) = d(µ) + 1. If ds(µ) = d(µ) + 1, then
µd(µ)+1 ≥ d(µ). Since µd(µ)+1 < d(µ) + 1, we are done. �

Remark 5.1.6. By Lemmas 5.1.4 and 5.1.5,

ds(µ) = d(µ)⇔ µd(µ)+1 < d(µ).

5.1.2. The partitions µr and µc. To compute the weights in DT and PT, we will find it useful
to have explicit descriptions of µr and µc, where

• µr is the partition associated to the charge −1 Maya diagram S(µ) \ {minS+(µ)},
and
• µc is the partition associated to the charge 1 Maya diagram S(µ) ∪ {maxS−(µ)}.

Additionally, µrc denotes the partition associated to the Maya diagram (S(µ)∪{maxS−(µ)})\
{minS+(µ)}. Note that none of the partitions µr, µc, µrc are defined if µ = ∅, so in what
follows, when we refer to any of these partitions, we implicitly assume that µ 6= ∅.
Remark 5.1.7. We will use the following expressions for the charge 0 Maya diagrams of µr

and µc.

• µr has charge 0 Maya diagram S(µr) = {s+ 1 : s ∈ S(µ) \ {minS+(µ)}}
• µc has charge 0 Maya diagram S(µc) = {s− 1 : s ∈ S(µ) ∪ {maxS−(µ)}}

Example 5.1.8. Let µ = (4, 4, 4, 3, 1). Then S(µ) = {7
2
, 5

2
, 3

2
,−1

2
,−7

2
,−11

2
,−13

2
, . . .}.

• Since minS+(µ) = 3
2
, µr has charge −1 Maya diagram {7

2
, 5

2
,−1

2
,−7

2
,−11

2
,−13

2
, . . .}

and charge 0 Maya diagram {9
2
, 7

2
, 1

2
,−5

2
,−9

2
,−11

2
, . . .}.

• Since maxS−(µ) = −3
2
, µc has charge 1 Maya diagram {7

2
, 5

2
, 3

2
,−1

2
,−3

2
,−7

2
,−11

2
,−13

2
, . . .}

and charge 0 Maya diagram {5
2
, 3

2
, 1

2
,−3

2
,−5

2
,−9

2
,−13

2
,−15

2
, . . .}.

We begin with an explicit description of µr and a few facts that follow from this description.

Lemma 5.1.9. Let µ be a partition. Then

µri =

{
µi + 1 if i < d(µ)

µi+1 if i ≥ d(µ).

That is, we obtain µr from µ by removing µd(µ) and adding 1 to the jth part of the partition
for all j < d(µ).

Proof. For convenience, we write S := S(µ). By definition, µr is the partition associated to
the charge −1 Maya diagram S \{minS+}, i.e., S(µr) = {s+1 : s ∈ S \{minS+}}. Observe
that minS+ is the least half integer µt − t + 1

2
such that µt − t + 1

2
> 0. Equivalently, it is

the least half integer µt − t+ 1
2

such that µt ≥ t, i.e., minS+ = µd(µ) − d(µ) + 1
2
. So,

S \ {minS+} =

{
µt − t+

1

2
: 1 ≤ t < d(µ)

}
∪
{
µt − t+

1

2
: d(µ) < t

}
=

{
µt − t+

1

2
: 1 ≤ t < d(µ)

}
∪
{
µt+1 − t− 1 +

1

2
: d(µ) ≤ t

}
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and

S(µr) =

{
µt + 1− t+

1

2
: 1 ≤ t < d(µ)

}
∪
{
µt+1 − t+

1

2
: d(µ) ≤ t

}
=

{
µrt − t+

1

2
: 1 ≤ t < d(µ)

}
∪
{
µrt − t+

1

2
: d(µ) ≤ t

}
.

This shows that µrt = µt + 1 for t < d(µ) and µrt = µt+1 for t ≥ d(µ). �

Example 5.1.10.

• Let µ = (4, 4, 4, 3, 1). Then d(µ) = 3 and µd(µ) = 4. So µr = (5, 5, 3, 1).
• Let µ = (8, 8, 7, 5, 3, 2, 1, 1, 1). Then d(µ) = 4 and µd(µ) = 5. So µr = (9, 9, 8, 3, 2, 1, 1, 1).

Remark 5.1.11. The following observations are immediate consequences of Lemma 5.1.9.

• |µr| = |µ|+ d(µ)− 1− µd(µ) ≤ |µ|+ d(µ)− 1− d(µ) = |µ| − 1
• d(µ)−1 ≤ d(µr) ≤ d(µ), since by the construction of µr, if (i, i) is a cell in the Young

diagram of µ and i < d(µ), it is a cell in the Young diagram of µr.
• µd(µ)+1 = µrd(µ), and therefore µd(µ)+1 = d(µ) if and only if µrd(µ) = d(µ). Also,

µd(µ)+1 < d(µ) if and only if µrd(µ) < d(µ).

Remark 5.1.12. `(µr) = `(µ)− 1

Lemma 5.1.13. For any partition µ, d(µr) = d(µ) if and only if µd(µ)+1 = d(µ).

Proof. First assume that d(µr) = d(µ). We see that

µd(µ)+1 = µrd(µ) = µrd(µr) ≥ d(µr) = d(µ)

and since µd(µ)+1 ≤ d(µ), µd(µ)+1 = d(µ).
Now suppose µd(µ)+1 = d(µ). This means that µrd(µ) = d(µ), so (d(µ), d(µ)) is a cell in the

Young diagram of µr, so d(µr) ≥ d(µ). By Remark 5.1.11, d(µr) = d(µ). �

Lemma 5.1.14. For any partition µ, d(µr) = d(µ)− 1 if and only if µd(µ)+1 < d(µ).

Proof. If d(µr) = d(µ)− 1, (d(µ), d(µ)) is not a cell in the Young diagram of µr, so µrd(µ) <

d(µ). Since µrd(µ) = µd(µ)+1 by Remark 5.1.11, this shows that µd(µ)+1 < d(µ).

If µd(µ)+1 < d(µ), (d(µ), d(µ)) is not a cell in the Young diagram of µr. However, (d(µ)−
1, d(µ)− 1) is a cell in the Young diagram of µr, by construction. So d(µr) = d(µ)− 1. �

Example 5.1.15. Continuing Example 5.1.10, when µ = (4, 4, 4, 3, 1), d(µ) = 3, and
µd(µ)+1 = d(µ). As expected, µr = (5, 5, 3, 1) has d(µr) = 3.

When µ = (8, 8, 7, 5, 3, 2, 1, 1, 1), d(µ) = 4 and µd(µ)+1 < d(µ). As expected, µr =
(9, 9, 8, 3, 2, 1, 1, 1) has d(µr) = 3.

Lemma 5.1.16. If there exists a positive integer i such that µri > i+1, then the largest such
integer is d(µ)− 1. In other words, the set of positive integers i satisfying µri > i+ 1 is equal
to the set of positive integers i satisfying i ≤ d(µ)− 1.

Proof. Since µr is a partition, the sequence µri − i − 1 is strictly decreasing, so it suffices
to show that d(µ) − 1 > 0, µrd(µ)−1 > d(µ) and µrd(µ) ≤ d(µ) + 1. Assuming there exists a
positive integer i such that µri > i+ 1, we must have µr1 > 1 + 1 = 2. Thus, by Lemma 5.1.9,
if d(µ) = 1, then µ2 > 2, so d(µ) ≥ 2. By contradiction, d(µ) > 1. Also, by Lemma 5.1.9,
µrd(µ)−1 = µd(µ)−1 + 1 ≥ d(µ) + 1 > d(µ). And µrd(µ) = µd(µ)+1 ≤ d(µ) < d(µ) + 1. �

55



Next we will give an explicit description of µc.

Lemma 5.1.17. Let µ be a partition. Let id be the largest integer i with µi ≥ d(µ). Then

µci =


µi − 1 if i ≤ id
d(µ)− 1 if i = id + 1

µi−1 if i > id + 1.

That is, to construct µc we first add a part of size d(µ)− 1 to µ to obtain µ̃. Then µc is the
partition obtained from µ̃ by subtracting 1 from each part µ̃j such that µj ≥ d(µ).

Proof. Let S be the Maya diagram of µ. By definition, µc is the partition associated to the
charge 1 Maya diagram S ∪ {maxS−}, i.e., S(µc) = {s− 1 : s ∈ S ∪ {maxS−}}. Note that
maxS− is the greatest half integer h < 0 such that h 6= µt − t + 1

2
for all t ≥ 1. We claim

that

maxS− = d(µ)− id −
1

2
.

In the case that id = d(µ), suppose −1
2

= µt − t + 1
2

for some t ≥ 1. Then µt = t − 1,
so t > d(µ) = id, which means that d(µ) > µt = t − 1 > id − 1 = d(µ) − 1. This is a
contradiction. Therefore, maxS− = −1

2
= d(µ)− id − 1

2
, as claimed.

Otherwise, id > d(µ). In this case, for all d(µ) < t ≤ id, we have d(µ) ≤ µid ≤ µt ≤
µd(µ)+1 < d(µ)+1, so µt = d(µ). Then µt−t+ 1

2
= d(µ)−t+ 1

2
, so −1

2
,−3

2
, . . . , d(µ)−id+ 1

2
∈ S

and we deduce that maxS− ≤ d(µ)− id − 1
2
< 0. On the other hand, µid+1 − (id + 1) + 1

2
=

µid+1− id− 1
2
< d(µ)− id− 1

2
. Since the sequence µt− t+ 1

2
is strictly decreasing, this implies

that d(µ)− id − 1
2
6∈ S, so maxS− ≥ d(µ)− id − 1

2
. Then maxS− = d(µ)− id − 1

2
, proving

the claim.
So,

S ∪ {maxS−} =

{
µt − t+

1

2
: 1 ≤ t ≤ id

}
∪
{
d(µ)− (id + 1) +

1

2

}
∪
{
µt − t+

1

2
: id < t

}
=

{
µt − t+

1

2
: 1 ≤ t ≤ id

}
∪
{
d(µ)− (id + 1) +

1

2

}
∪
{
µt−1 − t+

3

2
: id + 1 < t

}
and

S(µc) =

{
µt − 1− t+

1

2
: 1 ≤ t ≤ id

}
∪
{
d(µ)− 1− (id + 1) +

1

2

}
∪
{
µt−1 − t+

1

2
: id + 1 < t

}
=

{
µct − t+

1

2
: 1 ≤ t ≤ id

}
∪
{
µcid+1 − (id + 1) +

1

2

}
∪
{
µct − t+

1

2
: id + 1 < t

}
.
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This shows that µct = µt − 1 for t ≤ id, µ
c
id+1 = d(µ)− 1, and µct = µt−1 for t > id + 1. �

Example 5.1.18. • If µ = (1), then d(µ) = 1 and id = 1, so µc = ∅.
• If µ = (2), d(µ) = 1 and id = 1, so µc = (1).
• If µ = (4, 4, 3, 2), d(µ) = 3 and id = 3, so µc = (3, 3, 2, 2, 2).
• If µ = (4, 4, 4, 3, 1), d(µ) = 3 and id = 4. We get µc = (3, 3, 3, 2, 2, 1).
• If µ = (7, 7, 6, 1), d(µ) = 3 and id = 3, so µc = (6, 6, 5, 2, 1).

Remark 5.1.19.

• If d(µ) > 1, then `(µc) = `(µ) + 1.
• If d(µ) = 1 and µ1 > 1, `(µc) = 1.
• If d(µ) = 1 and µ1 = 1, `(µc) = 0.

Remark 5.1.20. Let id be the largest integer with µi ≥ d(µ). Then id = µ′d(µ).

Remark 5.1.21. By Lemma 5.1.17, µcd(µ)+1 = d(µ)−1. Because if id = d(µ), then µcd(µ)+1 =

µcid+1 = d(µ)− 1. And if id > d(µ), then µd(µ)+1 = d(µ), so µcd(µ)+1 = d(µ)− 1.

Remark 5.1.22. We note that µcd(µ) = d(µ)−1 if and only if µd(µ) = d(µ). Also, d(µc) = d(µ)

if and only if µd(µ) > d(µ), and d(µc) = d(µ)− 1 if and only if µd(µ) = d(µ).

Lemma 5.1.23. Let ds(µ
c) be the maximum positive integer i such that µci ≥ i − 1. Then

ds(µ
c) = d(µ). In other words, the set of positive integers i satisfying µci ≥ i− 1 is equal to

the set of positive integers i satisfying i ≤ d(µ).

Proof. Since µc is a partition, the sequence µci − i + 1 is strictly decreasing, so it suffices to
show that µcd(µ) ≥ d(µ)−1 and µcd(µ)+1 < d(µ). By Lemma 5.1.17, µcd(µ) = µd(µ)−1 ≥ d(µ)−1

and µcd(µ)+1 = d(µ)− 1 < d(µ). �

We will also take advantage of the following relationship between µc and µr.

Lemma 5.1.24. Let µ be a partition.

(1) (µc)′ = (µ′)r, and
(2) (µr)′ = (µ′)c.

The expression (2) follows from (1) by substituting µ′ for µ. Before we proceed to the
proof, we make a useful observation.

Lemma 5.1.25. Let µ be a partition.

(1) S+(µ′) = −S−(µ), and
(2) S−(µ′) = −S+(µ).

Proof. Let Lµ be the contour of µ, which is obtained from the Maya diagram of µ by placing
a line segment of slope −1 where there is a hole and a line segment of slope 1 where there is
a bead (this is standard, see for instance [13]). Then the claim follows from the observation
that we obtain µ′ from µ by reflecting Lµ across the line x = 0. �

Example 5.1.26. Let µ = (6, 6, 5, 5, 5, 3, 1). Then

• S(µ) = {11
2
, 9

2
, 5

2
, 3

2
, 1

2
,−5

2
,−11

2
,−15

2
,−17

2
, . . .},

• S+(µ) = {11
2
, 9

2
, 5

2
, 3

2
, 1

2
}, and

• S−(µ) = {−1
2
,−3

2
,−7

2
,−9

2
,−13

2
}.
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We see that maxS−(µ) = −1
2
. Noting that µc = (5, 5, 4, 4, 4, 4, 3, 1), we see that

S(µc) =

{
9

2
,
7

2
,
3

2
,
1

2
,−1

2
,−3

2
,−7

2
,−13

2
,−17

2
,−19

2
, . . .

}
= {s− 1 : s ∈ S(µ) ∪ {maxS−(µ)}}.

So

S+(µc) =

{
9

2
,
7

2
,
3

2
,
1

2

}
=

{
s− 1 : s ∈ S+(µ) \

{
1

2

}}
, and

S−(µc) =

{
−5

2
,−9

2
,−11

2
,−15

2

}
= {s− 1 : s ∈ S−(µ) \ {maxS−(µ)}}.

We next note that (µc)′ = (8, 7, 7, 6, 2),

S+((µc)′) =

{
15

2
,
11

2
,
9

2
,
5

2

}
= −S−(µc) = {−s+ 1 : s ∈ S−(µ) \ {maxS−(µ)}}, and

S−((µc)′) =

{
−1

2
,−3

2
,−7

2
,−9

2

}
= −S+(µc) =

{
−s+ 1 : s ∈ S+(µ) \

{
1

2

}}
.

Since µ = (6, 6, 5, 5, 5, 3, 1), µ′ = (7, 6, 6, 5, 5, 2). So

S+(µ′) =

{
13

2
,
9

2
,
7

2
,
3

2
,
1

2

}
= −S−(µ) and

S−(µ′) =

{
−1

2
,−3

2
,−5

2
,−9

2
,−11

2

}
= −S+(µ).

Then

S+((µ′)r) =

{
15

2
,
11

2
,
9

2
,
5

2

}
= {s+ 1 : s ∈ S+(µ′) \ {minS+(µ′)}}

= {s+ 1 : s ∈ −S−(µ) \ {min(−S−(µ))}}
= {−s+ 1 : s ∈ S−(µ) \ {maxS−(µ)}}

and

S−((µ′)r) =

{
−1

2
,−3

2
,−7

2
,−9

2

}
=

{
s+ 1 : s ∈ S−(µ′) \

{
−1

2

}}
=

{
s+ 1 : s ∈ −S+(µ) \

{
−1

2

}}
=

{
−s+ 1 : s ∈ S+(µ) \

{
1

2

}}
.

Proof of Lemma 5.1.24. We break into cases based on whether 1
2
∈ S.

First suppose 1
2
∈ S. By Remark 5.1.7,

S+(µc) =

{
s− 1 : s ∈ S+(µ) \

{
1

2

}}
, and

S−(µc) = {s− 1 : s ∈ S−(µ) \ {maxS−(µ)}}.
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Note that in the expression for S−(µc) we used the fact that 1
2
∈ S, so −1

2
is in S(µc) =

{s− 1 : s ∈ S(µ) ∪ {maxS−(µ)}} and therefore not in S−(µc). Now we see that

S+((µc)′) = −S−(µc) = {−s+ 1 : s ∈ S−(µ) \ {maxS−(µ)}}
= {s+ 1 : s ∈ −S−(µ) \ {min(−S−(µ))}}
= {s+ 1 : s ∈ S+(µ′) \ {minS+(µ′)}} = S+((µ′)r).

Similarly,

S−((µc)′) = −S+(µc) =

{
−s+ 1 : s ∈ S+(µ) \

{
1

2

}}
=

{
s+ 1 : s ∈ −S+(µ) \

{
−1

2

}}
=

{
s+ 1 : s ∈ S−(µ′) \

{
−1

2

}}
= S−((µ′)r).

Next we assume 1
2
/∈ S. As in the first case, we start by noting that

S+(µc) =
{
s− 1 : s ∈ S+(µ)

}
, and

S−(µc) = {s− 1 : s ∈ S−(µ) \ {maxS−(µ)}} ∪
{
−1

2

}
.

Note that in the expression for S−(µc) we used the fact that 1
2
/∈ S, so −1

2
is not in S(µc) =

{s−1 : s ∈ S(µ)∪{maxS−(µ)}} and therefore is in S−(µc). As in the first case, we proceed
by observing that

S+((µc)′) = −S−(µc) = {−s+ 1 : s ∈ S−(µ) \ {maxS−(µ)}} ∪
{

1

2

}
= {s+ 1 : s ∈ −S−(µ) \ {min(−S−(µ))}} ∪

{
1

2

}
= {s+ 1 : s ∈ S+(µ′) \ {minS+(µ′)}} ∪

{
1

2

}
= S+((µ′)r).

Similarly,

S−((µc)′) = −S+(µc) = {−s+ 1 : s ∈ S+(µ)}
= {s+ 1 : s ∈ −S+(µ)} = {s+ 1 : s ∈ S−(µ′)} = S−((µ′)r).

�

Remark 5.1.27. By Remark 5.1.11, |µr| = |µ| − µd(µ) + d(µ)− 1. By Lemma 5.1.24,

|µc| = |((µ′)r)′| = |(µ′)r| = |µ′| − µ′d(µ′) + d(µ′)− 1 = |µ| − µ′d(µ) + d(µ)− 1.

5.1.3. The partition µrc.

Remark 5.1.28. Let µ be a partition. Then µrc is the partition obtained by removing the
hook of (d(µ), d(µ)) from µ.

Lemma 5.1.29.
|µr| − |µ|+ |µc| − |µrc| = −1
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Proof. By Remark 5.1.27,

|µc| − |µrc| = |µ| − µ′d(µ) + d(µ)− 1− |µ|+ hµ(d(µ), d(µ)) = µd(µ) − d(µ),

where the last equality follows from the fact that

µd(µ) + µ′d(µ) − 1 = hµ(d(µ), d(µ)) + 2(d(µ)− 1).

Combining this with Remark 5.1.11, we have

|µr| − |µ|+ |µc| − |µrc| = −1.

�

Remark 5.1.30. Since the hook of (d(µ), d(µ)) in µ is the same as the hook of (d(µ′), d(µ′))
in µ′, (µ′)rc = (µrc)′.

Remark 5.1.31. Let id be the largest integer i with µi ≥ d(µ). Then it follows from
Remark 5.1.28 that

µrci =


µi if i < d(µ)

d(µ)− 1 if d(µ) ≤ i ≤ id
µi if i > id.

Remark 5.1.32. It is immediate from Remark 5.1.28 that d(µrc) = d(µ)− 1. Therefore by
Remark 5.1.22, d(µrc) = d(µc) if and only if µd(µ) = d(µ) and d(µrc) = d(µc)− 1 if and only
if µd(µ) > d(µ).

Lemma 5.1.33.

µrci =

{
µci + 1 if i ≤ d(µrc)

µci+1 if i > d(µrc)

Proof. If i ≤ d(µrc) = d(µ)− 1, then µrci = µi and µci = µi − 1, since i ≤ id.
If i > d(µrc) = d(µ)−1, then we consider two cases. If d(µ) ≤ i ≤ id, then µrci = d(µ)−1 =

µci+1. If i > id, then i+ 1 > id + 1, so µrci = µi = µci+1. �

Lemma 5.1.34. • d(µ) > 1 if and only if `(µrc) = `(µ), and
• d(µ) = 1 if and only if `(µrc) = 0.

Proof. This is immediate by the construction of µrc from µ. �

Corollary 5.1.35. If d(µ) > 1 or d(µ) = 1 and µ1 > 1, then `(µrc) = `(µc)− 1. If d(µ) = 1
and µ1 = 1, `(µrc) = `(µc) = 0.

5.2. DT weights. In this section we compute the constants A, B, and C from equation (4)
in Section 3.3. To that end, in Section 5.2.1 we compute the weights of the minimal dimer
configurations of the graphs

G = H(N ;µrc1 , µ
rc
2 , µ3), G− {a, b, c, d} = H(N ;µ1, µ2, µ3),

G− {a, b} = H(N ;µ1, µ
rc
2 , µ3), G− {c, d} = H(N ;µrc1 , µ2, µ3),

G− {a, d} = H(N ;µrc1 , µ
rc
2 , µ3)− {a, d}, G− {b, c} = H(N ;µrc1 , µ

rc
2 , µ3)− {b, c}.

As in previous sections, we assume N ≥M . The remaining work is to compute C −A; this
is done in Section 5.2.2.
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5.2.1. Weight of minimal configuration. We weight the edges of H(N) so that the weight of
the horizontal edges on a diagonal is q times the weight of the horizontal edges on the previous
diagonal, moving from right to left (see Definition 2.0.4). Recall the correspondence between
dimer configurations of H(N) and plane partitions described in Section 3.2. With the chosen
edge weights, when a box is added to a plane partition, the weight of the corresponding
dimer configuration increases by a factor of q. So, the minimal dimer configuration of H(N)

corresponds to the empty plane partition and has weight qN
2(N−1)/2. This expression is

simply the product of the weights of the N2 horizontal dimers that make up the “floor” of
the empty plane partition.

Now observe that the minimal dimer configuration of H(N ;µ1, µ2, µ3) differs from the
dimer configuration corresponding to a plane partition π(µ1, µ2, µ3) (with N(|µ1| + |µ2| +
|µ3|)−|II|−2|III| boxes) only near the boundary of H(N). The minimal dimer configuration of
H(N ;µ1, µ2, µ3) has extra horizontal dimers in sector 1 and sector 2, and has fewer horizontal
dimers in sector 3.

Specifically, in sector 1, if (µ′1)i ≥ i, the ith part of µ′1 contributes i− 1 horizontal dimers
of weight qN+(µ′1)i−i. If (µ′1)i < i, the ith part of µ′1 contributes (µ′1)i horizontal dimers of
weight qN+(µ′1)i−i. Therefore, in sector 1 the weight of the minimal dimer configuration of
H(N ;µ1, µ2, µ3) differs from that of the dimer configuration corresponding to π(µ1, µ2, µ3)
by a factor of ∏

i:(µ′1)i≥i≥1

q(i−1)(N+(µ′1)i−i)
∏

i:(µ′1)i<i≤`(µ′1)

q(µ′1)i(N+(µ1)′i−i).

In sector 2, if (µ2)i ≥ i, the ith part of µ2 contributes i− 1 horizontal dimers with weights
q(µ2)i−i+1, q(µ2)i−i+2, . . . , q(µ2)i−1. The total weight of these dimers is∏

i:(µ2)i≥i≥1

i−1∏
j=1

q(µ2)i−i+j =
∏

i:(µ2)i≥i≥1

q(i−1)((µ2)i−i)q(i−1)i/2 =
∏

i:(µ2)i≥i≥1

q(i−1)((µ2)i−i/2).

If (µ2)i < i, the ith part of µ2 contributes (µ2)i horizontal dimers with weights q0, q1, . . . , q(µ2)i−1.
The total weight of these dimers is∏

i:(µ2)i<i≤`(µ2)

(µ2)i−1∏
j=0

qj =
∏

i:(µ2)i<i≤`(µ2)

q((µ2)i−1)(µ2)i/2.

In sector 3, the dimers in the dimer configuration corresponding to π(µ1, µ2, µ3) that are
not in the minimal dimer configuration of H(N ;µ1, µ2, µ3) have weight

`(µ3)∏
i=1

q(2N−i)(µ3)i .

Since the dimer configuration corresponding to the plane partition π(µ1, µ2, µ3) has weight

qN
2(N−1)/2+N(|µ1|+|µ2|+|µ3|)−|II|−2|III|, we combine these remarks to arrive at the following.

Lemma 5.2.1. The weight of the minimal dimer configuration of H(N ;µ1, µ2, µ3) is qwmin(µ1,µ2,µ3) =
qw̃min(µ1,µ2,µ3)−|II(µ1,µ2,µ3)|−2|III(µ1,µ2,µ3)|, where

w̃min(µ1, µ2, µ3) =
N2(N − 1)

2
+N(|µ1|+ |µ2|+ |µ3|) +

`(µ3)∑
i=1

(−2N + i)(µ3)i
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+
∑

i:1≤i≤(µ′1)i

(i− 1)(N + (µ′1)i − i) +
∑

i:(µ′1)i<i≤`((µ′1))

(µ′1)i(N + (µ′1)i − i)

+
∑

i:1≤i≤(µ2)i

(i− 1)

(
(µ2)i −

i

2

)
+

∑
i:(µ2)i<i≤`(µ2)

((µ2)i − 1)
(µ2)i

2
.

Lemma 5.2.1 is sufficient to analyze the first four factors in the condensation recurrence
(3). For the remaining two factors, more work is needed, since they are associated with Maya
diagrams of nonzero charge. However, we omit the proofs of the necessary lemmas, because
they are very similar to that of Lemma 5.2.1.

Lemma 5.2.2. The weight of the minimal dimer configuration of H(N ;µrc1 , µ
rc
2 , µ3)−{a, d}

is qw
u
min = qw̃

u
min−|II(µ

r
1,µ

c
2,µ3)|−2|III(µr1,µc2,µ3)|, where

w̃umin =
N(N2 + 2N − 1)

2
+ (N + 1) (|µr1|+ |µc2|) +N + (N − 1) |µ3|+

`(µ3)∑
i=1

(−2N + i)(µ3)i

+
∑

i:1≤i≤(µr1)′i+1

(i− 2)(N + (µr1)′i − (i− 1))

+
∑

i:(µr1)′i+1<i≤`((µr1)′)

(µr1)′i(N + (µr1)′i − (i− 1))

+
∑

i:1≤i≤(µc2)i+1

(i− 2)

(
(µc2)i −

i− 1

2

)
+

∑
i:(µc2)i+1<i≤`(µc2)

(µc2)i((µ
c
2)i − 1)

2
.

Lemma 5.2.3. The weight of the minimal dimer configuration of H(N ;µrc1 , µ
rc
2 , µ3)−{b, c}

is qw
d
min = qw̃

d
min−|II(µ

c
1,µ

r
2,µ3)|−2|III(µc1,µr2,µ3)|, where

w̃dmin =
(N − 1)2(N − 2)

2
+ (N − 1) (|µc1|+ |µr2|) + (N + 1) |µ3|+

`(µ3)∑
i=1

(−2N + i)(µ3)i

+
∑

i:1≤i≤(µc1)′i

i(N + (µc1)′i − i− 1) +
∑

i:(µc1)′i<i≤`((µc1)′)

(µc1)′i(N + (µc1)′i − i− 1)

+
∑

i:1≤i≤(µr2)i

i

(
(µr2)i −

i+ 1

2

)
+

∑
i:(µr2)i<i≤`(µr2)

(µr2)i((µ
r
2)i − 1)

2
.

5.2.2. Algebraic simplification. Since A = w̃min(µ1, µ2, µ3) + w̃min(µrc1 , µ
rc
2 , µ3) and

B = w̃min(µrc1 , µ2, µ3) + w̃min(µ1, µ
rc
2 , µ3), we see that A = B. In addition, C = w̃umin + w̃dmin.

To compute C − A, we split the algebra into two pieces: we first simplify the summands
involving N , and next simplify the summands that do not involve N .

By Lemma 5.2.1, the terms in A that involve N are

N2(N − 1) +N(|µ1|+ |µrc1 |+ |µ2|+ |µrc2 |+ 2|µ3|) + 2

`(µ3)∑
i=1

(−2N + i)(µ3)i

+
∑

i:1≤i≤(µ1)′i

N(i− 1) +
∑

i:(µ1)′i<i≤`((µ1)′)

N(µ1)′i +
∑

i:1≤i≤(µrc1 )′i

N(i− 1)
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+
∑

i:(µrc1 )′i<i≤`((µrc1 )′)

N(µrc1 )′i.

Since λi ≥ i precisely when i ≤ d(λ), we can write∑
i:1≤i≤λi

N(i− 1) =
Nd(λ)(d(λ)− 1)

2
.

So, the above can be written as

N2(N − 1) +N(|µ1|+ |µrc1 |+ |µ2|+ |µrc2 |+ 2|µ3|) + 2

`(µ3)∑
i=1

(−2N + i)(µ3)i(8)

+
Nd(µ′1)(d(µ′1)− 1)

2
+N

∑
i:d(µ′1)+1≤i≤`(µ′1)

(µ′1)i +
Nd((µrc1 )′)(d((µrc1 )′)− 1)

2

+N
∑

i:d((µrc1 )′)+1≤i≤`((µrc1 )′)

(µrc1 )′i.

Now we consider the terms in C that involve N . By Lemmas 5.2.2 and 5.2.3, those terms
are

N(N2 + 2N − 1)

2
+N (|µr1|+ |µc2|+ |µ3|) +N + 2

`(µ3)∑
i=1

(−2N + i)(µ3)i

+
∑

i:1≤i≤(µr1)′i+1

N(i− 2) +
∑

i:(µr1)′i+1<i≤`((µr1)′)

N(µr1)′i +
(N − 1)2(N − 2)

2

+N (|µc1|+ |µr2|+ |µ3|) +
∑

i:1≤i≤(µc1)′i

Ni+
∑

i:(µc1)′i<i≤`((µc1)′)

N(µc1)′i.

As above, we can write

∑
i:1≤i≤(µc1)′i

Ni = N

d((µc1)′)∑
i=1

i =
Nd((µc1)′)(d((µc1)′) + 1)

2
.

Recall from Lemma 5.1.4 that ds((µ
r
1)′) denotes the largest integer i such that i ≤ (µr1)′i+1.

There are two possibilities, either ds := ds((µ
r
1)′) is equal to d := d((µr1)′), or ds = d + 1.

First assume that ds = d. Then we have

• N
∑

i:1≤i≤(µr1)′i+1

(i− 2) = N
∑

i:1≤i≤d((µr1)′)

(i− 2) = N
(

(d((µr1)′)−2)(d((µr1)′)−1)

2
− 1
)

, and

• N
∑

i:(µr1)′i+1<i≤`((µr1)′)

(µr1)′i = N
∑

i:d((µr1)′)<i≤`((µr1)′)

(µr1)′i.

If instead ds = d+ 1, then

N
∑

1≤i≤(µr1)′i+1

(i− 2) = N

 ∑
1≤i≤d((µr1)′)

(i− 2) + d((µr1)′)− 1

 .
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Since (µr1)′d(µr1)+1 = d((µr1)′) by Lemma 5.1.5,

N

 ∑
i:1≤i≤(µr1)′i+1

(i− 2) +
∑

i:(µr1)′i+1<i≤`((µr1)′)

(µr1)′i


= N

 ∑
i:1≤i≤d((µr1)′)

(i− 2) + d((µr1)′)− 1 +
∑

i:d((µr1)′)+1<i≤`((µr1)′)

(µr1)′i


= N

 ∑
i:1≤i≤d((µr1)′)

(i− 2)− 1 +
∑

i:d((µr1)′)<i≤`((µr1)′)

(µr1)′i

 .

So the terms in C that involve N can be written as

N2(N − 1) + 3N − 1 +N (|µr1|+ |µc1|+ |µr2|+ |µc2|+ 2 |µ3|) + 2

`(µ3)∑
i=1

(−2N + i)(µ3)i(9)

+N

−2 + 1ds=d +
(d((µr1)′)− 2)(d((µr1)′)− 1)

2
+

∑
i:d((µr1)′)<i≤`((µr1)′)

(µr1)′i


+
Nd((µc1)′)(d((µc1)′) + 1)

2
+N

∑
i:(µc1)′i<i≤`((µc1)′)

(µc1)′i.

Before we subtract the terms in A that involve N from the terms in C that involve N , we
make some remarks which will help us simplify the following sums:

N
∑

i:(µc1)′i<i≤`((µc1)′)

(µc1)′i, N
∑

i:d((µr1)′)<i≤`((µr1)′)

(µr1)′i,

N
∑

i:d(µ′1)+1≤i≤`(µ′1)

(µ′1)i, and N
∑

i:d((µrc1 )′)+1≤i≤`((µrc1 )′)

(µrc1 )′i.

Remark 5.2.4. Let

er(µ) =
∑

i:d(µ)<i≤`(µ)

µi −
∑

i:d(µr)<i≤`(µr)

µri .

There are two cases to consider. If d(µ) = d(µr), then by Lemma 5.1.13, µd(µ)+1 = d(µ). So,
applying Lemma 5.1.9,

er(µ) =
∑

i:d(µ)<i≤`(µ)

µi −
∑

i:d(µ)<i≤`(µr)

µi+1

=
∑

i:d(µ)<i≤`(µ)

µi −
∑

i:d(µ)+1<i≤`(µr)+1

µi = µd(µ)+1 = d(µ).

If instead d(µr) = d(µ)− 1, then

er(µ) =
∑

i:d(µ)<i≤`(µ)

µi −
∑

i:d(µ)−1<i≤`(µr)

µi+1 = 0.
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We have shown

er(µ) =

{
d(µ) if d(µ) = d(µr)

0 otherwise.

Remark 5.2.5. Let

erc(µ) =
∑

i:d(µc)<i≤`(µc)

µci −
∑

i:d(µrc)<i≤`(µrc)

µrci .

As in the previous remark, we split into cases based on whether d(µc) = d(µrc) or d(µc) =
d(µrc) + 1. Applying Lemma 5.1.33, we get

erc(µ) =

{
µcd(µc)+1 if d(µc) = d(µrc)

0 otherwise.

By Remarks 5.1.32 and 5.1.22, if d(µc) = d(µrc), then µcd(µc)+1 = d(µ)− 1, so

erc(µ) =

{
d(µ)− 1 if d(µc) = d(µrc)

0 otherwise.

Remark 5.2.6. We note that

d((µc1)′)(d((µc1)′) + 1)

2
− d(µ′1)(d(µ′1)− 1)

2
=

{
d(µ′1) if d((µc1)′) = d(µ′1)

0 otherwise.

So, applying Remark 5.2.4 and using the fact that (µc1)′ = (µ′1)r, we have

d((µc1)′)(d((µc1)′) + 1)

2
− d(µ′1)(d(µ′1)− 1)

2
− er(µ′1) = 0.

Remark 5.2.7. Note that

(d((µr1)′)− 2)(d((µr1)′)− 1)

2
− d((µrc1 )′)(d((µrc1 )′)− 1)

2

=

{
−(d((µr1)′)− 1) if d((µr1)′) = d((µrc1 )′)

0 otherwise.

When d((µr1)′) = d((µrc1 )′), −(d((µr1)′) − 1) = −(d(µ′1) − 2). Also, the condition d((µr1)′) =
d((µrc1 )′) is equivalent to ds((µ

r
1)′) = d((µr1)′)+1. This is because ds((µ

r
1)′) = d((µr1)′)+1 if and

only if d(µ′1) = d((µr1)′)+1 (by Lemma 5.1.23) which holds if and only if d(µ′1)−1 = d((µr1)′),
which is equivalent to d((µ′1)rc) = d((µr1)′). So, by Remark 5.2.5, if ds := ds((µ

r
1)′) and

d := d((µr1)′), then

(d((µr1)′)− 2)(d((µr1)′)− 1)

2
− d((µrc1 )′)(d((µrc1 )′)− 1)

2
+ erc(µ′1) = 1ds 6=d.

Now we subtract the terms in A that involve N (see equation (8)) from the terms in C
that involve N (see equation (9)). Each term that cancels with another term is marked with
c. Each term that is modified between one side of an equation and the other is underlined
and the relevant lemma or remark is indicated.
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N2(N − 1)︸ ︷︷ ︸
c

+3N − 1 +N

(
|µr1|+ |µc1|+ |µr2|+ |µc2|+ 2 |µ3|︸ ︷︷ ︸

c

)
+ 2

`(µ3)∑
i=1

(−2N + i)(µ3)i︸ ︷︷ ︸
c

+N

(
− 1− 1ds 6=d +

(d((µr1)′)− 2)(d((µr1)′)− 1)

2
+

∑
d((µr1)′)<i≤`((µr1)′)

(µr1)′i︸ ︷︷ ︸
Lemma 5.1.24

+
d((µc1)′)(d((µc1)′) + 1)

2
+

∑
(µc1)′i<i≤`((µc1)′)

(µc1)′i︸ ︷︷ ︸
Lemma 5.1.24

)

−

(
N2(N − 1)︸ ︷︷ ︸

c

+N

(
|µ1|+ |µrc1 |+ |µ2|+ |µrc2 |+ 2|µ3|︸︷︷︸

c

)
+ 2

`(µ3)∑
i=1

(−2N + i)(µ3)i︸ ︷︷ ︸
c

+N

(
d(µ′1)(d(µ′1)− 1)

2
+

∑
i:d(µ′1)+1≤i≤`(µ′1)

(µ1)′i +
d((µrc1 )′)(d((µrc1 )′)− 1)

2

+
∑

i:d((µrc1 )′)+1≤i≤`((µrc1 )′)

(µrc1 )′i

))

= 3N − 1 +N

(
|µr1| − |µ1|+ |µc1| − |µrc1 |+ |µr2| − |µ2|+ |µc2| − |µrc2 |︸ ︷︷ ︸

Lemma 5.1.29

)

+N

(
− 1− 1ds 6=d +

(d((µr1)′)− 2)(d((µr1)′)− 1)

2
+

∑
d((µ′1)c)<i≤`((µ′1)c)

(µ′1)ci︸ ︷︷ ︸
Remark 5.2.5

+
d((µc1)′)(d((µc1)′) + 1)

2
+

∑
d((µ′1)r)<i≤`((µ′1)r)

(µ′1)ri︸ ︷︷ ︸
Remark 5.2.4

−d(µ′1)(d(µ′1)− 1)

2

−
∑

i:d(µ′1)<i≤`(µ′1)

(µ′1)i︸ ︷︷ ︸
Remark 5.2.4

−d((µrc1 )′)(d((µrc1 )′)− 1)

2
−

∑
i:d((µ′1)rc)<i≤`((µ′1)rc)

(µ′1)rci︸ ︷︷ ︸
Remark 5.2.5

)

= 3N − 1− 2N −N −N · 1d 6=ds

+N

(
d((µc1)′)(d((µc1)′) + 1)

2
− d(µ′1)(d(µ′1)− 1)

2
− er(µ′1)︸ ︷︷ ︸

Remark 5.2.6
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+ erc(µ′1) +
(d((µr1)′)− 2)(d((µr1)′)− 1)

2
− d((µrc1 )′)(d((µrc1 )′)− 1)

2︸ ︷︷ ︸
Remark 5.2.7

)
= −1.

We have thus shown that the terms involving N simplify to −1.
Now we consider the terms that do not involve N . In A, we have∑

1≤i≤d(µ1)

(i− 1)((µ′1)i − i) +
∑

d(µ1)<i≤`(µ′1)

(µ′1)i((µ
′
1)i − i) +

∑
1≤i≤d(µ2)

(i− 1)

(
(µ2)i −

i

2

)

+
∑

d(µ2)<i≤`(µ2)

((µ2)i − 1)
(µ2)i

2
+

∑
1≤i≤d(µrc1 )

(i− 1)((µrc1 )′i − i)

+
∑

d(µrc1 )<i≤`((µrc1 )′)

(µrc1 )′i((µ
rc
1 )′i − i) +

∑
1≤i≤d(µrc2 )

(i− 1)

(
(µrc2 )i −

i

2

)

+
∑

d(µrc2 )<i≤`(µrc2 )

((µrc2 )i − 1)
(µrc2 )i

2
.

We remark that in Lemma 5.2.1, the first sum is over i such that 1 ≤ i ≤ (µ′1)i, but this is
equivalent to writing 1 ≤ i ≤ d(µ1). We have made similar replacements in the other sums.

In C, we have

|µr1|+ |µc2| − |µ3| − |µc1| − |µr2|+ |µ3|+
∑

i:1≤i≤(µr1)′i+1

(i− 2)((µr1)′i − (i− 1))(10)

+
∑

i:(µr1)′i+1<i≤`((µr1)′)

(µr1)′i((µ
r
1)′i − (i− 1)) +

∑
i:1≤i≤(µc2)i+1

(i− 2)

(
(µc2)i −

i− 1

2

)

+
∑

i:(µc2)i+1<i≤`(µc2)

(µc2)i((µ
c
2)i − 1)

2
+

∑
1≤i≤d(µc1)

i((µc1)′i − i− 1)

+
∑

d(µc1)<i≤`((µc1)′)

(µc1)′i((µ
c
1)′i − i− 1) +

∑
1≤i≤d(µr2)

i

(
(µr2)i −

i+ 1

2

)

+
∑

d(µr2)<i≤`(µr2)

(µr2)i((µ
r
2)i − 1)

2
.

Like we did for A, we replaced i : 1 ≤ i ≤ (µc1)′i in the fifth sum with 1 ≤ i ≤ d(µc1), and
similarly for the sixth, seventh, and eighth sums.

Remark 5.2.8. As in Remark 5.1.4, we let ds(µ) be the maximum positive integer i such
that i ≤ µi + 1. Then we can write the first four sums in equation (10) as∑

1≤i≤ds((µr1)′)

(i− 2)((µr1)′i − (i− 1)) +
∑

ds((µr1)′)<i≤`((µr1)′)

(µr1)′i((µ
r
1)′i − (i− 1))

+
∑

1≤i≤ds(µc2)

(i− 2)

(
(µc2)i −

i− 1

2

)
+

∑
ds(µc2)<i≤`(µc2)

(µc2)i((µ
c
2)i − 1)

2
.
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Recall from Lemma 5.1.4 that for any partition µ, either ds(µ) = d(µ) or ds(µ) = d(µ) + 1.
If ds((µ

r
1)′) = d((µr1)′) (resp. ds(µ

c
2) = d(µc2)), then we can replace every instance of ds((µ

r
1)′)

(resp. ds(µ
c
2)) in the sums above with d(µr1) (resp. d(µc2)). Otherwise, we can use the fact

that by Lemma 5.1.5, ds(µ) = d(µ) + 1 if and only if µd(µ)+1 = d(µ) to see that when
ds((µ

r
1)′) = d((µr1)′) + 1,∑

1≤i≤ds((µr1)′)

(i− 2)((µr1)′i − (i− 1))

=
∑

1≤i≤d((µr1)′)+1

(i− 2)((µr1)′i − (i− 1))

=
∑

1≤i≤d((µr1)′)

(i− 2)((µr1)′i − (i− 1)) + (d((µr1)′)− 1) (d((µr1)′)− d((µr1)′))

=
∑

1≤i≤d((µr1)′)

(i− 2)((µr1)′i − (i− 1)) + (µr1)′d((µr1)′)+1((µr1)′d((µr1)′)+1 − (d((µr1)′) + 1− 1))

and when ds(µ
c
2) = d(µc2) + 1,∑

1≤i≤ds(µc2)

(i− 2)

(
(µc2)i −

i− 1

2

)

=
∑

1≤i≤d(µc2)+1

(i− 2)

(
(µc2)i −

i− 1

2

)

=
∑

1≤i≤d(µc2)

(i− 2)

(
(µc2)i −

i− 1

2

)
+ (d(µc2)− 1)

(
d(µc2)

2

)

=
∑

1≤i≤d(µc2)

(i− 2)

(
(µc2)i −

i− 1

2

)
+

(µc2)d(µc2)+1((µc2)d(µc2)+1 − 1)

2
.

Therefore, we can write∑
1≤i≤ds((µr1)′)

(i− 2)((µr1)′i − (i− 1)) +
∑

ds((µr1)′)<i≤`((µr1)′)

(µr1)′i((µ
r
1)′i − (i− 1))

+
∑

1≤i≤ds(µc2)

(i− 2)

(
(µc2)i −

i− 1

2

)
+

∑
ds(µc2)<i≤`(µc2)

(µc2)i((µ
c
2)i − 1)

2

=
∑

1≤i≤d((µr1)′)

(i− 2)((µr1)′i − (i− 1)) +
∑

d((µr1)′)<i≤`((µr1)′)

(µr1)′i((µ
r
1)′i − (i− 1))

+
∑

1≤i≤d(µc2)

(i− 2)

(
(µc2)i −

i− 1

2

)
+

∑
d(µc2)<i≤`(µc2)

(µc2)i((µ
c
2)i − 1)

2
.

When we subtract the sums in A from the sums in C, we will pair each sum in A with a
sum in C. Many terms cancel, but this is not obvious and requires the following lemmas.
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Lemma 5.2.9.∑
d((µr1)′)<i≤`((µr1)′)

(µr1)′i((µ
r
1)′i − (i− 1))−

∑
d(µrc1 )<i≤`((µrc1 )′)

(µrc1 )′i((µ
rc
1 )′i − i) = 0

Proof. Recall from Lemma 5.1.24 that (µr1)′ = (µ′1)c. Then we can rewrite the difference of
sums as ∑

d((µ′1)c)<i≤`((µ′1)c)

(µ′1)ci((µ
′
1)ci − (i− 1))−

∑
d((µ′1)rc)<i≤`((µ′1)rc)

(µ′1)rci ((µ′1)rci − i).

There are two cases to consider. For readability, we put λ := µ′1. First assume that d(λrc) =
d(λc). Then by Lemma 5.1.33, we have∑

d(λc)<i≤`(λc)

λci(λ
c
i − (i− 1))−

∑
d(λrc)<i≤`(λrc)

λrci (λrci − i)

=
∑

d(λc)<i≤`(λc)

λci(λ
c
i − (i− 1))−

∑
d(λc)<i≤`(λrc)

λci+1(λci+1 − i)

=
∑

d(λc)<i≤`(λc)

λci(λ
c
i − (i− 1))−

∑
d(λc)+1<i≤`(λrc)+1

λci(λ
c
i − (i− 1)) = 0.

In the final step we used Corollary 5.1.35 and the fact that

λcd(λc)+1 = λcd(λrc)+1 = λcd(λ) = λd(λ) − 1 = d(λ)− 1 = d(λrc) = d(λc),

which follows from Lemma 5.1.17 and Remark 5.1.32. Next assume that d(λrc) = d(λc)− 1.
Then ∑

d(λc)<i≤`(λc)

λci(λ
c
i − (i− 1))−

∑
d(λrc)<i≤`(λrc)

λrci (λrci − i)

=
∑

d(λc)<i≤`(λc)

λci(λ
c
i − (i− 1))−

∑
d(λc)−1<i≤`(λrc)

λci+1(λci+1 − i)

=
∑

d(λc)<i≤`(λc)

λci(λ
c
i − (i− 1))−

∑
d(λc)<i≤`(λrc)+1

λci(λ
c
i − (i− 1)) = 0.

�

Lemma 5.2.10.∑
1≤i≤d((µr1)′)

(i− 2)((µr1)′i − (i− 1))−
∑

1≤i≤d(µrc1 )

(i− 1)((µrc1 )′i − i)

=


−

∑
1≤i≤d(µrc1 )

(µr1)′i + 1− i if (µ′1)d(µ1) = d(µ1)

(d(µr1)− 2)((µr1)′d(µr1) + 1− d(µr1))−
∑

1≤i≤d(µrc1 )

(µr1)′i + 1− i otherwise

Proof. To prove the claim we begin similarly to Lemma 5.2.9, using the fact that (µr1)′ =
(µ′1)c. Letting λ = µ′1, we split into cases based on whether d(λrc) = d(λc), or d(λrc) =
d(λc)− 1, and apply Lemma 5.1.33. In the case where d(λrc) = d(λc),∑

1≤i≤d(λc)

(i− 2)(λci − (i− 1))−
∑

1≤i≤d(λrc)

(i− 1)(λrci − i)
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=
∑

1≤i≤d(λc)

(i− 1)(λci − (i− 1))−
∑

1≤i≤d(λc)

(i− 1)(λci + 1− i)−
∑

1≤i≤d(λc)

(λci − (i− 1))

= −
∑

1≤i≤d(λc)

(λci − (i− 1)).

The case where d(λrc) = d(λc)− 1 is similar. Finally, we note that d(λrc) = d(λc)− 1 if and
only if λd(λ) > d(λ) by Remark 5.1.32. �

Lemma 5.2.11.∑
1≤i≤d(µc1)

i((µc1)′i − i− 1)−
∑

1≤i≤d(µ1)

(i− 1)((µ′1)i − i)

=


∑

1≤i<d(µ1)

((µ′1)i − i)− (d(µ′1)− 1)((µ′1)d(µ1) − d(µ′1))− d(µ1) if (µ′1)d(µ1)+1 = d(µ1)∑
1≤i<d(µ1)

((µ′1)i − i)− (d(µ′1)− 1)((µ′1)d(µ1) − d(µ′1)) otherwise

Proof. We use the fact that (µc1)′ = (µ′1)r, and then we split into cases based on whether
d((µ′1)r) = d(µ′1) or d((µ′1)r) = d(µ′1)− 1. If d((µ′1)r) = d(µ′1), then by Lemma 5.1.9, we have∑

1≤i≤d(µc1)

i((µc1)′i − i− 1)−
∑

1≤i≤d(µ1)

(i− 1)((µ′1)i − i)

=
∑

1≤i≤d(µ1)

i((µ′1)ri − i− 1)−
∑

1≤i≤d(µ1)

(i− 1)((µ′1)i − i)

=
∑

1≤i<d(µ1)

i((µ′1)i − i) + d(µ1)((µ′1)d(µ1)+1 − d(µ1)− 1)−
∑

1≤i≤d(µ1)

(i− 1)((µ′1)i − i)

=
∑

1≤i<d(µ1)

((µ′1)i − i) + d(µ1)((µ′1)d(µ1)+1 − d(µ1)− 1)− (d(µ′1)− 1)((µ′1)d(µ1) − d(µ′1)).

By Lemma 5.1.13, since d((µ′1)r) = d(µ′1), (µ′1)d(µ1)+1 = d(µ′1), so

d(µ1)((µ′1)d(µ1)+1 − d(µ1)− 1) = −d(µ1).

The computation in the case where d((µ′1)r) = d(µ′1)− 1 is very similar. �

Lemma 5.2.12. ∑
d(µc1)<i≤`((µc1)′)

(µc1)′i((µ
c
1)′i − i− 1)−

∑
d(µ1)<i≤`(µ′1)

(µ′1)i((µ
′
1)i − i)

=

{
d(µ1) if (µ′1)d(µ1)+1 = d(µ1)

0 otherwise

Proof. We begin by using the fact that (µc1)′ = (µ′1)r. Then we split into cases based on
whether d((µ′1)r) = d(µ′1) or d((µ′1)r) = d(µ′1) − 1. To get the final expression we make use
of the fact that d((µ′1)r) = d(µ′1) if and only if (µ′1)d(µ1)+1 = d(µ1). �

Remark 5.2.13. By combining Lemmas 5.2.11 and 5.2.12, we get that the sums involved
result in ∑

1≤i<d(µ1)

((µ′1)i − i)− (d(µ′1)− 1)((µ′1)d(µ1) − d(µ′1))
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in all cases. If we then include the sums from Lemma 5.2.10, we split into two cases. If
(µ′1)d(µ1) = d(µ′1), then by Lemma 5.1.17, we get

−(d(µ′1)− 1)((µ′1)d(µ1) − d(µ′1)) = 0.

If (µ′1)d(µ1) > d(µ′1), then by Remark 5.1.22, d(µr1) = d(µ1), and by Lemma 5.1.17, we get

−(d(µ′1)− 1)((µ′1)d(µ1) − d(µ′1)) + (d(µr1)− 2)((µr1)′d(µr1) + 1− d(µr1)) = d(µ1)− (µ′1)d(µ1).

So in all cases, the sums from Lemmas 5.2.9, 5.2.10, 5.2.11, and 5.2.12 combine to produce

d(µ1)− (µ′1)d(µ1).

Lemma 5.2.14. ∑
d(µr2)<i≤`(µr2)

(µr2)i((µ
r
2)i − 1)

2
−

∑
d(µ2)<i≤`(µ2)

(µ2)i((µ2)i − 1)

2

=

−
d(µ2)(d(µ2)− 1)

2
if (µ2)d(µ2)+1 = d(µ2)

0 otherwise

Proof. We split into cases based on whether d(µr2) = d(µ2) or d(µr2) = d(µ2) − 1, and then
we use the fact that d(µr2) = d(µ2) if and only if (µ2)d(µ2)+1 = d(µ2). �

Lemma 5.2.15. ∑
1≤i≤d(µr2)

i

(
(µr2)i −

i+ 1

2

)
−

∑
1≤i≤d(µ2)

(i− 1)

(
(µ2)i −

i

2

)

=
∑

1≤i≤d(µ2)−1

(µ2)i − (d(µ2)− 1)

(
(µ2)d(µ2) −

d(µ2)

2

)

+


d(µ2)(d(µ2)− 1)

2
if (µ2)d(µ2)+1 = d(µ2)

0 otherwise

Proof. As in the case of Lemma 5.2.14, we split into cases based on whether d(µr2) = d(µ2)
or d(µr2) = d(µ2) − 1. We omit the details as they are similar to the details of other proofs
in this section. �

Lemma 5.2.16.∑
1≤i≤d(µc2)

(i− 2)

(
(µc2)i −

i− 1

2

)
−

∑
1≤i≤d(µrc2 )

(i− 1)

(
(µrc2 )i −

i

2

)

=


−

∑
1≤i≤d(µrc2 )

(µc2)i if (µ2)d(µ2) = d(µ2)

−
∑

1≤i≤d(µrc2 )

(µc2)i + (d(µ2)− 2)

(
(µ2)d(µ2) −

d(µ2) + 1

2

)
otherwise

Proof. If d(µrc2 ) = d(µc2)− 1, the difference of sums becomes∑
1≤i≤d(µc2)

(i− 2)

(
(µc2)i −

i− 1

2

)
−

∑
1≤i≤d(µc2)−1

(i− 2)

(
(µrc2 )i −

i

2

)
−

∑
1≤i≤d(µc2)−1

(
(µrc2 )i −

i

2

)
.
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Then, using Lemma 5.1.33, we get∑
1≤i≤d(µc2)

(i− 2)

(
(µc2)i −

i− 1

2

)
−

∑
1≤i≤d(µc2)−1

(i− 2)

(
(µc2)i + 1− i

2

)

−
∑

1≤i≤d(µc2)−1

(
(µc2)i + 1− i

2

)
.

We can write this as∑
1≤i≤d(µc2)

(i− 2)

(
(µc2)i −

i− 1

2

)
−

∑
1≤i≤d(µc2)−1

(i− 2)

(
(µc2)i −

i− 1

2

)
−

∑
1≤i≤d(µc2)−1

i− 2

2

−
∑

1≤i≤d(µc2)−1

(
(µc2)i −

i− 2

2

)
.

So, by Remark 5.1.22 and Lemma 5.1.17, the final result is

−
∑

1≤i≤d(µrc2 )

(µc2)i + (d(µc2)− 2)

(
(µc2)d(µc2) −

d(µc2)− 1

2

)

= −
∑

1≤i≤d(µrc2 )

(µc2)i + (d(µ2)− 2)

(
(µ2)d(µ2) − 1− d(µ2)− 1

2

)

= −
∑

1≤i≤d(µrc2 )

(µc2)i + (d(µ2)− 2)

(
(µ2)d(µ2) −

d(µ2) + 1

2

)
.

If instead d(µrc2 ) = d(µc2), the proof is similar. �

Lemma 5.2.17. ∑
d(µc2)<i≤`(µc2)

(µc2)i((µ
c
2)i − 1)

2
−

∑
d(µrc2 )<i≤`(µrc2 )

(µrc2 )i((µ
rc
2 )i − 1)

2

=


(d(µ2)− 1)(d(µ2)− 2)

2
if (µ2)d(µ2) = d(µ2)

0 otherwise

Proof. The proof is similar to the proof of Lemma 5.2.10. We split into cases based on
whether d(µrc2 ) = d(µc2) or d(µrc2 ) = d(µc2)− 1. �

Remark 5.2.18. By combining Lemmas 5.2.14 and 5.2.15, we find that the sums involved
result in ∑

1≤i≤d(µ2)−1

(µ2)i − (d(µ2)− 1)

(
(µ2)d(µ2) −

d(µ2)

2

)
in all cases. By Lemma 5.1.17,∑

1≤i≤d(µ2)−1

(µ2)i −
∑

1≤i≤d(µrc2 )

(µc2)i = d(µrc2 ).
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So, when we combine the sums from Lemmas 5.2.14, 5.2.15, and 5.2.16, there are two cases.
If (µ2)d(µ2) = d(µ2), then we get

d(µrc2 )− (d(µ2)− 1)

(
d(µ2)

2

)
=

(d(µ2)− 1)(2− d(µ2))

2
.

Otherwise, we get

d(µrc2 )− (d(µ2)− 1)

(
(µ2)d(µ2) −

d(µ2)

2

)
+ (d(µ2)− 2)

(
(µ2)d(µ2) −

d(µ2) + 1

2

)
= d(µrc2 )− (µ2)d(µ2) + 1 = d(µ2)− (µ2)d(µ2).

So when we include the sums from Lemma 5.2.17, we get{
0 if (µ2)d(µ2) = d(µ2)

d(µ2)− (µ2)d(µ2) otherwise.

So in all cases, the sums from Lemmas 5.2.14, 5.2.15, 5.2.16, and 5.2.17 combine to produce

d(µ2)− (µ2)d(µ2).

Now we subtract the terms in A that do not involve N from the terms in C that do not
involve N , and include the difference −1 of the terms involving N :

C − A = −1 + |µr1|+ |µc2| − |µ3| − |µc1| − |µr2|+ |µ3|
+

∑
1≤i≤d((µr1)′)

(i− 2)((µr1)′i − (i− 1)) +
∑

d((µr1)′)<i≤`((µr1)′)

(µr1)′i((µ
r
1)′i − (i− 1))

+
∑

1≤i≤d(µc2)

(i− 2)

(
(µc2)i −

i− 1

2

)
+

∑
d(µc2)<i≤`(µc2)

(µc2)i((µ
c
2)i − 1)

2

+
∑

1≤i≤d(µc1)

i((µc1)′i − i− 1) +
∑

d(µc1)<i≤`((µc1)′)

(µc1)′i((µ
c
1)′i − i− 1)

+
∑

1≤i≤d(µr2)

i

(
(µr2)i −

i+ 1

2

)
+

∑
d(µr2)<i≤`(µr2)

(µr2)i((µ
r
2)i − 1)

2

−
∑

1≤i≤d(µ1)

(i− 1)((µ′1)i − i)−
∑

d(µ1)<i≤`(µ′1)

(µ′1)i((µ
′
1)i − i)

−
∑

1≤i≤d(µ2)

(i− 1)

(
(µ2)i −

i

2

)
−

∑
d(µ2)<i≤`(µ2)

(µ2)i((µ2)i − 1)

2

−
∑

1≤i≤d(µrc1 )

(i− 1)((µrc1 )′i − i)−
∑

d(µrc1 )<i≤`((µrc1 )′)

(µrc1 )′i((µ
rc
1 )′i − i)

−
∑

1≤i≤d(µrc2 )

(i− 1)

(
(µrc2 )i −

i

2

)
−

∑
d(µrc2 )<i≤`(µrc2 )

(µrc2 )i((µ
rc
2 )i − 1)

2

= −1 + |µr1|+ |µc2| − |µ3| − |µc1| − |µr2|+ |µ3|
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+
∑

d((µr1)′)<i≤`((µr1)′)

(µr1)′i((µ
r
1)′i − (i− 1))−

∑
d(µrc1 )<i≤`((µrc1 )′)

(µrc1 )′i((µ
rc
1 )′i − i)︸ ︷︷ ︸

Remark 5.2.13

+
∑

1≤i≤d((µr1)′)

(i− 2)((µr1)′i − (i− 1))−
∑

1≤i≤d(µrc1 )

(i− 1)((µrc1 )′i − i)︸ ︷︷ ︸
Remark 5.2.13

+
∑

1≤i≤d(µc1)

i((µc1)′i − i− 1)−
∑

1≤i≤d(µ1)

(i− 1)((µ′1)i − i)︸ ︷︷ ︸
Remark 5.2.13

+
∑

d(µc1)<i≤`((µc1)′)

(µc1)′i((µ
c
1)′i − i− 1)−

∑
d(µ1)<i≤`(µ′1)

(µ′1)i((µ
′
1)i − i)︸ ︷︷ ︸

Remark 5.2.13

+
∑

d(µr2)<i≤`(µr2)

(µr2)i((µ
r
2)i − 1)

2
−

∑
d(µ2)<i≤`(µ2)

(µ2)i((µ2)i − 1)

2︸ ︷︷ ︸
Remark 5.2.18

+
∑

1≤i≤d(µr2)

i

(
(µr2)i −

i+ 1

2

)
−

∑
1≤i≤d(µ2)

(i− 1)

(
(µ2)i −

i

2

)
︸ ︷︷ ︸

Remark 5.2.18

+
∑

1≤i≤d(µc2)

(i− 2)

(
(µc2)i −

i− 1

2

)
−

∑
1≤i≤d(µrc2 )

(i− 1)

(
(µrc2 )i −

i

2

)
︸ ︷︷ ︸

Remark 5.2.18

+
∑

d(µc2)<i≤`(µc2)

(µc2)i((µ
c
2)i − 1)

2
−

∑
d(µrc2 )<i≤`(µrc2 )

(µrc2 )i((µ
rc
2 )i − 1)

2︸ ︷︷ ︸
Remark 5.2.18

= −1 + |µr1|+ |µc2| − |µ3| − |µc1| − |µr2|+ |µ3|
+ d(µ1)− (µ′1)d(µ1) + d(µ2)− (µ2)d(µ2)

= −1 + d(µ1)− (µ1)d(µ1) + d(µ2)− (µ′2)d(µ2) = −K.
In the last step we used the fact that |µr| − |µc| = µ′d(µ) − µd(µ) (see Remark 5.1.27).

5.3. PT weights. In this section we compute the constants A, B, and C from equation (7)
in Section 4.5. To that end, in Section 5.3.1 we compute the edge-weights of the baseµ, baseup,
and basedown double-dimer configurations. As in previous sections, we assume N ≥M . The
remaining work is to compute C − A; this is done in Section 5.3.2.

5.3.1. Edge-weight of base double-dimer configuration. In this section we compute the edge-
weights of the baseµ double-dimer configuration and the baseup and basedown configurations.
We prove our formula for the baseµ configuration, but omit the proofs for the baseup and
basedown configurations because they are essentially the same, as the baseup and basedown
configurations only differ from baseµ configurations by shifts.
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The edge-weight of the baseµ double-dimer configuration is given by the following lemma.

Lemma 5.3.1. The edge-weight of the baseµ double-dimer configuration is qwbase(µ), where

wbase(µ) =
N2(N − 1)

2
+

N−`(µ′1)−1∑
i=1

(N − `(µ′1)− 1)(N − `(µ′1))

2
− (i− 1)i

2

+
∑

i:(µ′1)i≥i≥1

(N − (µ′1)i)(N + (µ′1)i − i) +
∑

i:(µ′1)i<i≤`(µ′1)

(N − i)(N + (µ′1)i − i)

+

N−1−`(µ2)∑
i=1

(N + i− 1)(N − i− `(µ2))

+
∑

i:(µ2)i≥i≥1

((µ2)i +N)(−(µ2)i +N) +
(N − (µ2)i − 1)(N − (µ2)i)

2

+
∑

i:(µ2)i<i≤`(µ2)

(N − i)((µ2)i +N) +
(N − i− 1)(N − i)

2
+

`(µ3)∑
i=1

(N − i)(µ3)i.

We start by showing that the formula holds for µ1 = µ2 = µ3 = ∅. While this is not
necessary to prove Lemma 5.3.1, this special case will make the proof of Lemma 5.3.1 easier
to understand.

Lemma 5.3.2. The edge-weight of the base∅,∅,∅ double-dimer configuration is qwbase(∅,∅,∅),
where

wbase(∅, ∅, ∅) =
N2(N − 1)

2
+

N−1∑
i=1

(N + i− 1)(N − i) +
N−1∑
i=1

(N − 1)N

2
− (i− 1)i

2
.

Proof. By Definition 4.4.23, the base∅,∅,∅ double-dimer configuration isD(III,II∪III)(N) = D(∅,∅)(N),
i.e., it corresponds to the AB configuration (∅,∅). So, we have the tilings and double-dimer
configuration shown in Figure 15 for N = 5:

Figure 15. The AB configuration (∅,∅), in the case where µ1 = µ2 = µ3 =
∅. Left: The tiling corresponding to A. Right: The tiling corresponding to B.
Center: The corresponding double-dimer configuration.
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Referring to Figure 15, we see that the only horizontal dimers from the B configuration
are in sector 3, and these horizontal dimers contribute weight

(q0)N(q1)N · · · (qN−1)N = qN
2(N−1)/2.

The horizontal dimers from the A configuration in sector 2 contribute weight

(qN)N−1(qN+1)N−2 · · · (q2N−2)1 =
N−1∏
i=1

(qN+i−1)N−i.

The horizontal dimers from the A configuration in sector 1 contribute weight

(q · q2 · · · qN−1)(q2 · · · qN−1)(q3 · · · qN−1) · · · qN−1 =
N−1∏
i=1

q
(N−1)N

2
− (i−1)i

2 .

There are no horizontal dimers from the A configuration in sector 3. �

Proof of Lemma 5.3.1. This proof has three parts. We first show that the horizontal dimers
in sector 1 have weight

N−`(µ′1)−1∏
i=1

q
(N−`(µ′1)−1)(N−`(µ′1))

2
− (i−1)i

2

∏
i:(µ′1)i≥i≥1

(q(µ′1)iqN−i)N−(µ′1)i

·
∏

i:(µ′1)i<i≤`(µ′1)

(q(µ′1)iqN−i)N−i

=

N−`(µ′1)−1∏
i=1

q
(N−`(µ′1)−1)(N−`(µ′1))

2
− (i−1)i

2

∏
i:(µ′1)i≥i≥1

q(N−(µ′1)i)(N+(µ′1)i−i)

·
∏

i:(µ′1)i<i≤`(µ′1)

q(N−i)(N+(µ′1)i−i).

Note that when `(µ′1) = 0, this formula agrees with the third term in Lemma 5.3.2. We will
next show that the horizontal dimers in sector 2 have weight

N−1−`(µ2)∏
i=1

(qN+i−1)N−i−`(µ2)
∏

i:(µ2)i≥i≥1

(q(µ2)i)N−(µ2)i

N−(µ2)i∏
j=1

qN+j−1


·

∏
i:(µ2)i<i≤`(µ2)

(
(q(µ2)i)N−i

N−i∏
j=1

qN+j−1

)

=

N−1−`(µ2)∏
i=1

(qN+i−1)N−i−`(µ2)
∏

i:(µ2)i≥i≥1

q((µ2)i+N)(N−(µ2)i)q
(N−(µ2)i−1)(N−(µ2)i)

2

·
∏

i:(µ2)i<i≤`(µ2)

q((µ2)i+N)(N−i)q
(N−i−1)(N−i)

2 .
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Again, when `(µ2) = 0, this formula agrees with the second term in Lemma 5.3.2. Finally,
we will show that the horizontal dimers in sector 3 have weight

qN
2(N−1)/2

`(µ3)∏
i=1

(qN−i)(µ3)i .

We remark that since the baseµ double-dimer configuration is D(III,II∪III)(N), the horizontal
dimers from MA(N) in sector i can be completely explained by the partition µi. Also, as in
the proof of Lemma 5.3.2, the only horizontal dimers from MB(N) are in sector 3.

Sector 1. In the case where µ1 = ∅, we can partition the horizontal dimers from MA(N) in
sector 1 (see Figure 15) into N − 1 groups:

(1) The group of horizontal dimers that consists of the topmost horizontal dimer in each
column of hexagons in sector 1. This is a group of N − 1 dimers that each have
weight qN−1.

(2) The group of horizontal dimers that consists of the horizontal dimers directly below
the dimers in group 1. Since the leftmost dimer in group 1 does not have a horizontal
dimer directly below it, this is a group of N − 2 dimers that each have weight qN−2.

(3) Etc.

In general, group i consists of the N− i horizontal dimers directly below the dimers in group
i−1 (with the exception of the leftmost dimer in group i−1, which does not have a horizontal
dimer directly below it). The dimers in group i all have weight qN−i.

Now that we have partitioned the dimers in this way, we are ready to discuss the case
where µ1 6= ∅. Consider (µ′1)1. When (µ′1)1 > 0 (compared to (µ′1)1 = 0), the dimers in
group 1 (i.e. the N − 1 dimers with weight qN−1) shift up (µ′1)1 units. However, some of the
dimers in group 1 shift outside H(N). Specifically, the ith dimer from the leftmost dimer
(so the leftmost dimer corresponds to i = 0) is still in H(N) if and only if i ≤ N − (µ′1)1− 1.
In total, there are N − (µ′1)1 dimers inside H(N) after this shift and these dimers each have
weight q(µ′1)1qN−1.

In general, the ith part of µ′1 affects the weight of group i. For i > `(µ′1), the weight of

group i is unaffected, and the product of all such weights is
N−`(µ′1)−1∏

i=1

q
(N−`(µ′1)−1)(N−`(µ′1))

2
− (i−1)i

2 .

To determine the effect of the ith part of µ′1 on the weight of group i, we break into cases.
If (µ′1)i ≥ i, then as in the case where i = 1, after the dimers in group i shift up, there
are N − (µ′1)i dimers still in H(N), each with weight q(µ′1)iqN−i. If (µ′1)i < i, then after the
dimers in group i shift up, there are N − i dimers still in H(N), each with weight q(µ′1)iqN−i.
Therefore, the total weight of the dimers in sector 1 is

N−`(µ′1)−1∏
i=1

q
(N−`(µ′1)−1)(N−`(µ′1))

2
− (i−1)i

2

∏
i:(µ′1)i≥i≥1

(q(µ′1)iqN−i)N−(µ′1)i
∏

i:(µ′1)i<i≤`(µ′1)

(q(µ′1)iqN−i)N−i.

Sector 2. As we did in sector 1, we partition the horizontal dimers from MA(N) in sector
2 into N − 1 groups:

(1) The group of horizontal dimers that consists of the topmost horizontal dimer in each
column. This is a group of N − 1 dimers with weights qN , qN+1, . . . , q2N−2.
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(2) The group of horizontal dimers that consists of the horizontal dimers directly be-
low the dimers in group 1. Since the rightmost dimer in group 1 does not have
a horizontal dimer directly below it, this is a group of N − 2 dimers with weights
qN , qN+1, . . . , q2N−3.

(3) Etc.

In general, group i consists of the N− i horizontal dimers directly below the dimers in group
i− 1 and these dimers have weights qN , qN+1, . . . , q2N−1−i.

As in sector 1, the ith part of µ2 affects the weight of group i, because the dimers in group
i shift up (µ2)i units. For i > `(µ2), the weight of group i is unaffected, and the product of

all such weights is
N−1−`(µ2)∏

i=1

(qN+i−1)N−i−`(µ2). To determine the effect of the ith part of µ2

on the weight of group i, we break into cases. If (µ2)i ≥ i, then the dimer in group i with
weight qN+j is still in H(N) after being shifted if and only if N + j+ (µ2)i ≤ 2N −1, that is,
if and only if j ≤ N−(µ2)i−1. So after the dimers in group i are shifted, there are N−(µ2)i
dimers still in H(N), and these dimers have weights q(µ2)iqN , q(µ2)iqN+1, . . . , q(µ2)iq2N−1−(µ2)i .
If (µ2)i < i, then after the dimers in group i are shifted, there are N − i dimers still in
H(N), and these dimers also have weights q(µ2)iqN , q(µ2)iqN+1, . . . , q(µ2)iq2N−1−i. Therefore,
the total weight of the dimers in sector 2 is

N−1−`(µ2)∏
i=1

(qN+i−1)N−i−`(µ2)
∏

i:(µ2)i≥i≥1

(q(µ2)i)N−(µ2)i

N−(µ2)i∏
j=1

qN+j−1


·

∏
i:(µ2)i<i≤`(µ2)

(
(q(µ2)i)N−i

N−i∏
j=1

qN+j−1

)
.

Sector 3. Recall from the proof of Lemma 5.3.2 that the horizontal dimers from MB(N) in

sector 3 have weight q
N2(N−1)

2 . In the case where µ3 = ∅, there are no horizontal dimers from
MA(N) in sector 3. When µ3 6= ∅, there are (µ3)i horizontal dimers from MA(N) in sector
3, each of weight qN−i. This gives us the desired formula. �

We conclude this section with expressions for the edge-weights of the baseup and basedown
configurations.

Lemma 5.3.3. The edge-weight of the baseup double-dimer configuration is qwup, where

wup =
(N + 1)N(N − 1)

2
+N2 +

N−`((µr1)′)−1∑
i=1

(N − `((µr1)′) + 1)(N − `((µr1)′))

2
− i(i+ 1)

2

+

0 if (µr1)′ = ∅∑
i:(µr1)′i≥i−1≥0

(N − (µr1)′i − 1)((µr1)′i +N − i+ 1) otherwise

+
∑

i:((µr1)′)i<i−1≤`((µr1)′)−1

(N − i)((µr1)′i +N − i+ 1)

+

N−1−`(µc2)∑
i=1

(N + i)(N − i− `(µc2))

78



+

0 if µc2 = ∅∑
i:(µc2)i≥i−1≥0

((µc2)i +N)(−(µc2)i +N − 1) +
(N−(µc2)i−1)(N−(µc2)i)

2 otherwise

+
∑

i:(µc2)i<i−1≤`(µc2)−1

(N − i)((µc2)i +N) +
(N − i+ 1)(N − i)

2

+

`(µ3)∑
i=1

(N + 1− i)(µ3)i.

Lemma 5.3.4. The edge-weight of the basedown double-dimer configuration is qwdown, where

wdown =
(N − 1)2(N − 2)

2
+

(N − `((µc1)′)− 2)(N − `((µc1)′)− 1)

2

+

N−`((µc1)′)−2∑
i=1

(N − `((µc1)′)− 1)(N − `((µc1)′)− 2)

2
− (i− 1)i

2

+
∑

i:(µc1)′i>i+1>1

(N − (µc1)′i + 1)((µc1)′i +N − i− 1)

+
∑

i:(µc1)′i≤i+1≤`((µc1)′)+1

(N − i)((µc1)′i +N − i− 1)

+

N−1−`(µr2)∑
i=1

(N + i− 2)(N − i− `(µr2))

+
∑

i:(µr2)i>i+1>1

((µr2)i +N − 1)(−(µr2)i +N + 1) +
(N − (µr2)i + 1)(N − (µr2)i)

2

+
∑

i:(µr2)i≤i+1≤`(µr2)+1

(N − i)((µr2)i +N − 1) +
(N − i− 1)(N − i)

2

+

`(µ3)∑
i=1

(N − 1− i)(µ3)i.

5.3.2. Algebraic simplification. Since A = wbase(µ1, µ2, µ3) + wbase(µ
rc
1 , µ

rc
2 , µ3) and B =

wbase(µ
rc
1 , µ2, µ3) + wbase(µ1, µ

rc
2 , µ3), we see that A = B. In addition, C = wup + wdown.

To compute C − A, we split the algebra into two pieces: we first simplify the sums that
have index set going from 1 to a fixed ending point that does not depend on µ, and then we
simplify the remaining summands.

Remark 5.3.5. Since
`(µ3)∑
i=1

(N + 1− i)(µ3)i +

`(µ3)∑
i=1

(N − 1− i)(µ3)i − 2

`(µ3)∑
i=1

(N − i)(µ3)i = 0,

the terms involving µ3 cancel.

Lemma 5.3.6.
N−`((µr1)′)−1∑

i=1

(N − `((µr1)′) + 1)(N − `((µr1)′))

2
− i(i+ 1)

2
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−
N−`((µrc1 )′)−1∑

i=1

(N − `((µrc1 )′)− 1)(N − `((µrc1 )′))

2
− (i− 1)i

2

=


−(N − `((µ′1)c))(N − `((µ′1)c) + 1)

2
if d(µ′1) > 1 or (d(µ′1) = 1 and (µ′1)1 > 1)

N(N − 1)

2
if d(µ′1) = 1 and (µ′1)1 = 1

The terms in the lemma are from wup and wbase(µ
rc
1 , µ

rc
2 , µ3), respectively.

Proof. Recall that (µrc1 )′ = (µ′1)rc, and (µr1)′ = (µ′1)c. For convenience, we write λ := µ′1.
There are two cases to consider. The first is when `(λrc) = `(λc)− 1. This occurs precisely
when d(λ) > 1 or d(λ) = 1 and λ1 > 1. In this case, we can write the second sum as

N−`(λc)∑
i=1

(N − `(λc))(N − `(λc) + 1)

2
− (i− 1)i

2
.

Now we see that
N−`(λc)−1∑

i=1

(N − `(λc) + 1)(N − `(λc))
2

−
N−`(λc)∑
i=1

(N − `(λc))(N − `(λc) + 1)

2

= −(N − `(λc))(N − `(λc) + 1)

2
.

We have
N−`(λc)−1∑

i=1

−i(i+ 1)

2
−

N−`(λc)∑
i=1

−(i− 1)i

2
=

N−`(λc)−1∑
i=1

−i(i+ 1)

2
−

N−`(λc)−1∑
i=0

−i(i+ 1)

2
= 0.

So, if `(λrc) = `(λc)− 1, we have − (N−`(λc))(N−`(λc)+1)
2

. Otherwise, `(λrc) = `(λc) = 0, and
we are left with

N−1∑
i=1

(N + 1)N

2
− i(i+ 1)

2
−

N−1∑
i=1

(N − 1)N

2
− (i− 1)i

2
=
N(N − 1)

2
.

�

Lemma 5.3.7.

(N − `((µc1)′)− 2)(N − `((µc1)′)− 1)

2

+

N−`((µc1)′)−2∑
i=1

(N − `((µc1)′)− 1)(N − `((µc1)′)− 2)

2
− (i− 1)i

2

+

N−`((µr1)′)−1∑
i=1

(N − `((µr1)′) + 1)(N − `((µr1)′))

2
− i(i+ 1)

2

−
N−`(µ′1)−1∑

i=1

(N − `(µ′1)− 1)(N − `(µ′1))

2
− (i− 1)i

2
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−
N−`((µrc1 )′)−1∑

i=1

(N − `((µrc1 )′)− 1)(N − `((µrc1 )′))

2
− (i− 1)i

2

=


0 if d(µ′1) > 1
(N − `(µ′1)− 1)(N − `(µ′1))

2
− (N − 1)N

2
if d(µ′1) = 1 and (µ′1)1 > 1

(N − `(µ′1)− 1)(N − `(µ′1))

2
+

(N − 1)N

2
otherwise

The terms in the lemma are from wdown, wup, wbase(µ1, µ2, µ3) and wbase(µ
rc
1 , µ

rc
2 , µ3), re-

spectively.

Proof. We use the fact that `((µc1)′) = `((µ′1)r) and then we apply Lemma 5.1.12 to write
the first two lines as

(N − `(µ′1)− 1)(N − `(µ′1))

2
+

N−`((µ′1)−1∑
i=1

(N − `(µ′1))(N − `(µ′1)− 1)

2
− (i− 1)i

2
.

So, when we subtract the sum from the fourth line of the lemma statement, we are left with

(N − `(µ′1)− 1)(N − `(µ′1))

2
.

Applying Lemma 5.3.6, if d(µ′1) > 1, then `((µ′1)c) = `(µ′1)+1 (see Remark 5.1.19), and so
the contributions from all of the terms cancel. If d(µ′1) = 1 and (µ′1)1 > 1, then `((µ′1)c) = 1.
So, we get

(N − `(µ′1)− 1)(N − `(µ′1))

2
− (N − 1)N

2
.

Finally, if d(µ′1) = 1 and (µ′1)1 = 1, we get

(N − `(µ′1)− 1)(N − `(µ′1))

2
+

(N − 1)N

2
.

�

Lemma 5.3.8.

N−1−`(µr2)∑
i=1

(N + i− 2)(N − i− `(µr2)) +

N−1−`(µc2)∑
i=1

(N + i)(N − i− `(µc2))

−
N−1−`(µ2)∑

i=1

(N + i− 1)(N − i− `(µ2))−
N−1−`(µrc2 )∑

i=1

(N + i− 1)(N − i− `(µrc2 ))

=


`(µ2) if d(µ2) > 1

−`(µ2)N + `(µ2) if d(µ2) = 1 and (µ2)1 > 1

(N − 1)(N − `(µ2)) +
N(N − 1)

2
otherwise

The terms in the lemma are from wdown, wup, wbase(µ1, µ2, µ3) and wbase(µ
rc
1 , µ

rc
2 , µ3), re-

spectively.
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Proof. Using the fact that `(µr2) = `(µ2)− 1, we write

N−1−`(µr2)∑
i=1

(N + i− 2)(N − i− `(µr2)) =

N−`(µ2)∑
i=1

(N + i− 2)(N − i− `(µ2) + 1)

=

N−`(µ2)−1∑
i=0

(N + i− 1)(N − i− `(µ2)).

So when we subtract the third sum from the lemma statement, we get

(N − 1)(N − `(µ2)).

In the case where `(µrc2 ) = `(µc2)− 1, we can write

N−1−`(µrc2 )∑
i=1

(N + i− 1)(N − i− `(µrc2 )) =

N−`(µc2)∑
i=1

(N + i− 1)(N − i− `(µc2) + 1)

=

N−`(µc2)−1∑
i=0

(N + i)(N − i− `(µc2)).

So, in this case when we subtract this from the second sum in the lemma statement we have

−N(N − `(µc2)).

So, if `(µrc2 ) = `(µc2)− 1, the contribution from all four terms is

−N − `(µ2)N + `(µ2) + `(µc2)N.

There are two ways for `(µrc2 ) = `(µc2) − 1. We could have d(µ2) > 1, in which case
`(µc2) = `(µ2) + 1. Or we could have d(µ2) = 1 and (µ2)1 > 1, in which case `(µc2) = 1.
Therefore we have {

`(µ2) if d(µ2) > 1

−`(µ2)N + `(µ2) if d(µ2) = 1 and (µ2)1 > 1,

as desired.
In the case where `(µrc2 ) = `(µc2) = 0, when we subtract the fourth sum in the lemma

statement from the second sum we have
N−1−`(µc2)∑

i=1

(N + i)(N − i)−
N−1−`(µrc2 )∑

i=1

(N + i− 1)(N − i) =
N(N − 1)

2
.

So, if `(µrc2 ) = `(µc2) = 0, the contribution from all four terms is

(N − 1)(N − `(µ2)) +
N(N − 1)

2
.

�

Remark 5.3.9. Note that

(N − 1)2(N − 2)

2
+

(N + 1)N(N − 1)

2
+N2 − 2 · N

2(N − 1)

2
= 2N − 1.

These terms are from wdown, wup, wbase(µ1, µ2, µ3) and wbase(µ
rc
1 , µ

rc
2 , µ3), respectively.
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We now proceed to simplifying the terms whose index sets depend on µ. As in Section 5.2.2,
our strategy is to pair summands that contribute to the constant C with summands that
contribute to the constant A.

Lemma 5.3.10.∑
i:(µc1)′i>i+1>1

(N − (µc1)′i + 1)(µc1)′i +N − i− 1)−
∑

i:(µ′1)i≥i≥1

(N − (µ′1)i)(N + (µ′1)i − i)

= −(N − (µ′1)d(µ1))(N + (µ′1)d(µ1) − d(µ1))

The terms in the lemma are from wdown and wbase(µ1, µ2, µ3), respectively.

Proof. We use the fact that (µc1)′ = (µ′1)r and Lemma 5.1.16 to write∑
i:(µc1)′i>i+1>1

(N − (µc1)′i + 1)(µc1)′i +N − i− 1)−
∑

i:(µ′1)i≥i≥1

(N − (µ′1)i)(N + (µ′1)i − i)

=
∑

1≤i<d(µ′1)

(N − (µ′1)ri + 1)(µ′1)ri +N − i− 1)−
∑

1≤i≤d(µ′1)

(N − (µ′1)i)(N + (µ′1)i − i)

=
∑

1≤i<d(µ′1)

(N − (µ′1)i)((µ
′
1)i +N − i)−

∑
1≤i≤d(µ′1)

(N − (µ′1)i)(N + (µ′1)i − i)

= −(N − (µ′1)d(µ1))(N + (µ′1)d(µ1) − d(µ1)).

�

Lemma 5.3.11.∑
i:(µr2)i>i+1>1

((µr2)i +N − 1)(−(µr2)i +N + 1) +
(N − (µr2)i + 1)(N − (µr2)i)

2

−
∑

i:(µ2)i≥i≥1

((µ2)i +N)(−(µ2)i +N) +
(N − (µ2)i − 1)(N − (µ2)i)

2

= ((µ2)d(µ2))
2 −N2 −

(N − (µ2)d(µ2) − 1)(N − (µ2)d(µ2))

2

The terms in the lemma are from wdown and wbase(µ1, µ2, µ3), respectively.

Proof. The details of the proof are omitted as it is similar to the proof of Lemma 5.3.10. We
use Lemma 5.1.16 and the fact that when i < d(µ2), (µr2)i = (µ2)i + 1. Then all terms cancel
except the i = d(µ2) term of the second sum. �

Lemma 5.3.12.∑
i:(µc1)′i≤i+1≤`((µc1)′)+1

(N − i)((µc1)′i +N − i− 1)−
∑

i:(µ′1)i<i≤`(µ′1)

(N − i)((µ′1)i +N − i)

=

0 if `(µ′1) = d(µ′1)∑
d(µ′1)+1≤i≤`(µ′1)

(µ′1)i +N − i otherwise

The terms in the lemma are from wdown and wbase(µ1, µ2, µ3), respectively.
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Proof. We use the fact that (µc1)′ = (µ′1)r and Lemma 5.1.16. We get∑
i:(µc1)′i≤i+1≤`((µc1)′)+1

(N − i)(µc1)′i +N − i− 1)−
∑

i:(µ′1)i<i≤`(µ′1)

(N − i)((µ′1)i +N − i)

=
∑

d(µ′1)≤i≤`((µ′1)r)

(N − i)(µ′1)ri +N − i− 1)−
∑

d(µ′1)<i≤`(µ′1)

(N − i)((µ′1)i +N − i)

=
∑

d(µ′1)≤i≤`(µ′1)−1

(N − i)((µ′1)i+1 +N − i− 1)−
∑

d(µ′1)<i≤`(µ′1)

(N − i)((µ′1)i +N − i)

=
∑

d(µ′1)<i≤`(µ′1)

(N − i+ 1)((µ′1)i +N − i)−
∑

d(µ′1)<i≤`(µ′1)

(N − i)((µ′1)i +N − i)

=
∑

d(µ′1)+1≤i≤`(µ′1)

(µ′1)i +N − i.

Note that we have used the fact that since i ≥ d(µ′1), (µ′1)ri = (µ′1)i+1. In the case where
`(µ′1) = d(µ′1), both sums are empty. �

Lemma 5.3.13. ∑
i:(µr2)i≤i+1≤`(µr2)+1

(N − i)((µr2)i +N − 1) +
(N − i− 1)(N − i)

2

−
∑

i:(µ2)i<i≤`(µ2)

(N − i)((µ2)i +N) +
(N − i− 1)(N − i)

2

=

0 if `(µ2) = d(µ2)∑
d(µ2)+1≤i≤`(µ2)

((µ2)i +N − 1) otherwise

The terms in the lemma are from wdown and wbase(µ1, µ2, µ3), respectively.

Proof. Similar to the proof of Lemma 5.3.12, we see that∑
i:(µr2)i≤i+1≤`(µr2)+1

(N − i)((µr2)i +N − 1) +
(N − i− 1)(N − i)

2

−
∑

i:(µ2)i<i≤`(µ2)

(N − i)((µ2)i +N) +
(N − i− 1)(N − i)

2

=
∑

d(µ2)≤i≤`(µr2)

(N − i)((µ2)i+1 +N − 1) +
(N − i− 1)(N − i)

2

−
∑

d(µ2)<i≤`(µ2)

(N − i)((µ2)i +N) +
(N − i− 1)(N − i)

2

=
∑

d(µ2)<i≤`(µ2)

(N − i+ 1)((µ2)i +N − 1) +
(N − i+ 1)(N − i)

2
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−
∑

d(µ2)<i≤`(µ2)

(N − i)((µ2)i +N) +
(N − i− 1)(N − i)

2

=
∑

d(µ2)<i≤`(µ2)

(N − i+ 1)

(
(µ2)i +N − 1 +

N − i
2

)

−
∑

d(µ2)<i≤`(µ2)

(N − i)
(

(µ2)i +N +
N − i− 1

2

)
=

∑
d(µ2)+1≤i≤`(µ2)

((µ2)i +N − 1).

�

Lemma 5.3.14. 0 if (µr1)′ = ∅∑
i:(µr1)′i≥i−1≥0

(N − (µr1)′i − 1)((µr1)′i +N − i+ 1) otherwise

−
∑

i:(µrc1 )′i≥i≥1

(N − (µrc1 )′i)(N + (µrc1 )′i − i)

=

{
0 if (µr1)′ = ∅
(N − (µr1)′d(µ′1) − 1)((µr1)′d(µ′1) +N − d(µ′1) + 1) otherwise

The terms in the lemma are from wup and wbase(µ
rc
1 , µ

rc
2 , µ3), respectively.

Proof. If (µr1)′ = ∅, then `(µr1) = 0, so by Remark 5.1.12, `(µ1) = 1, in which case d(µ1) = 1
and we get

−
∑

1≤i<d(µ1)

(N − (µrc1 )′i)(N + (µrc1 )′i − i) = 0.

Otherwise, using the fact that (µr1)′ = (µ′1)c, we write the first sum as∑
i:(µ′1)ci≥i−1≥0

(N − (µ′1)ci − 1)((µ′1)ci +N − i+ 1).

Applying Lemma 5.1.23, we can write this sum as∑
i:1≤i≤d(µ′1)

(N − (µ′1)ci − 1)((µ′1)ci +N − i+ 1).

Noting that (µrc1 )′ = (µ′1)rc and applying Lemma 5.1.33 to the second sum, we get∑
i:(µrc1 )′i≥i≥1

(N − (µ′1)ci − 1)(N + (µ′1)ci + 1− i).

Since the second sum runs over i such that 1 ≤ i ≤ d(µrc1 ), and d(µrc1 ) = d(µ1) − 1, this
completes the proof. �

Lemma 5.3.15.∑
i:(µr1)′i<i−1≤`((µr1)′)−1

(N − i)((µr1)′i +N − i+ 1)−
∑

i:(µrc1 )′i<i≤`((µ′1)rc)

(N − i)((µ′1)rci +N − i)
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=

0 if `((µr1)′) ≤ d(µ1)∑
i:d(µ1)<i≤`((µ′1)c)

− ((µ′1)ci +N − i+ 1) otherwise

The terms in the lemma are from wup and wbase(µ
rc
1 , µ

rc
2 , µ3), respectively.

Proof. We apply many of the same arguments as in Lemma 5.3.14. Namely, we use the facts
that (µr1)′ = (µ′1)c and Lemma 5.1.23 to write the first sum as∑

i:d(µ1)<i≤`((µ′1)c)

(N − i)((µ′1)ci +N − i+ 1).

Now, applying Lemma 5.1.33, we have∑
i:d(µrc1 )<i≤`((µ′1)rc)

(N − i)((µ′1)rci +N − i) =
∑

i:d(µrc1 )<i≤`((µ′1)c)−1

(N − i)((µ′1)ci+1 +N − i)

=
∑

i:d(µrc1 )+1<i≤`((µ′1)c)

(N − i+ 1)((µ′1)ci +N − i+ 1).

So, subtracting this from the first sum, we get∑
i:d(µ1)<i≤`((µ′1)c)

− ((µ′1)ci +N − i+ 1) .

�

Lemma 5.3.16.0 if µc2 = ∅∑
i:(µc2)i≥i−1≥0

((µc2)i +N)(−(µc2)i +N − 1) +
(N−(µc2)i−1)(N−(µc2)i)

2
otherwise

−
∑

i:(µrc2 )i≥i≥1

((µrc2 )i +N)(−(µrc2 )i +N) +
(N − (µrc2 )i − 1)(N − (µrc2 )i)

2

=

0 if µc2 = ∅

(N − (µc2)d(µ2) − 1)

(
(µc2)d(µ2)

2
+

3N

2

)
otherwise

The terms in the lemma are from wup and wbase(µ
rc
1 , µ

rc
2 , µ3), respectively.

Proof. If µc2 = ∅, then `(µc2) = 0, so by Remark 5.1.19, d(µ2) = 1 and (µ2)1 = 1, in which
case µrc2 = ∅ and we get

−
∑

i:(µrc2 )i≥i≥1

((µrc2 )i +N)(−(µrc2 )i +N) +
(N − (µrc2 )i − 1)(N − (µrc2 )i)

2
= 0.

Otherwise, using Lemma 5.1.33, we see that∑
i:1≤i≤d(µrc2 )

(−(µrc2 )i +N)((µrc2 )i +N) +
(N − (µrc2 )i − 1)(N − (µrc2 )i)

2

=
∑

i:1≤i≤d(µrc2 )

(−(µc2)i − 1 +N)((µc2)i + 1 +N) +
(N − (µc2)i − 2)(N − (µc2)i − 1)

2
.
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We see that∑
i:1≤i≤d(µrc2 )

((µc2)i +N)(−(µc2)i +N − 1) +
(N − (µc2)i − 1)(N − (µc2)i)

2

−
∑

i:1≤i≤d(µrc2 )

(−(µc2)i − 1 +N)((µc2)i + 1 +N) +
(N − (µc2)i − 2)(N − (µc2)i − 1)

2

=
∑

i:1≤i≤d(µrc2 )

(−(µc2)i +N − 1)((µc2)i +N − (µc2)i − 1−N)

+
(N − (µc2)i − 1)

2
(N − (µc2)i − (N − (µc2)i − 2)) = 0.

So, all that remains is the i = d(µ2) term of the first sum:

((µc2)d(µ2) +N)(−(µc2)d(µ2) +N − 1) +
(N − (µc2)d(µ2) − 1)(N − (µc2)d(µ2))

2

= (N − (µc2)d(µ2) − 1)

(
(µc2)d(µ2)

2
+

3N

2

)
.

�

Lemma 5.3.17. ∑
i:(µc2)i<i−1≤`(µc2)−1

(N − i)((µc2)i +N) +
(N − i+ 1)(N − i)

2

−
∑

i:(µrc2 )i<i≤`(µrc2 )

(N − i)((µrc2 )i +N) +
(N − i− 1)(N − i)

2

=

0 if `(µc2) < d(µ2)∑
i:d(µ2)<i≤`(µc2)

−((µc2)i +N) otherwise

The terms in the lemma are from wup and wbase(µ
rc
1 , µ

rc
2 , µ3), respectively.

Proof. Applying Lemma 5.1.33, we have∑
i:d(µrc2 )<i≤`(µrc2 )

(N − i)((µrc2 )i +N) +
(N − i− 1)(N − i)

2

=
∑

i:d(µrc2 )<i≤`(µc2)−1

(N − i)((µc2)i+1 +N) +
(N − i− 1)(N − i)

2

=
∑

i:d(µrc2 )+1<i≤`(µc2)

(N − i+ 1)((µc2)i +N) +
(N − i)(N − i+ 1)

2
.

So, subtracting this from the first sum, we’re left with∑
i:d(µ2)<i≤`(µc2)

−((µc2)i +N).
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If `(µc2) < d(µ2), both sums are empty. �

Now that we have paired all of the sums, we simplify the results from Lemmas 5.3.10
through 5.3.17.

Lemma 5.3.18. The terms from Lemmas 5.3.10 and 5.3.14 cancel, unless (µr1)′ = ∅, in
which case we are left with −N(N − 1).

Proof. Lemma 5.1.17 states that (µ′1)cd(µ′1) = (µ′1)d(µ′1) − 1. Applying this to Lemma 5.3.14

completes the proof in the case that (µr1)′ 6= ∅. If (µr1)′ = ∅, then µr1 = ∅, so `(µr1) = 0 and
by Remark 5.1.12, `(µ1) = 1, implying that d(µ1) = 1 and (µ′1)1 = 1. Then the term from
Lemma 5.3.10 is

−(N − (µ′1)d(µ1))(N + (µ′1)d(µ1) − d(µ1)) = −(N − 1)(N + 1− 1) = −N(N − 1).

�

Lemma 5.3.19. The terms from Lemmas 5.3.16 and 5.3.11 sum to0 if µc2 6= ∅

1−N2 − (N − 2)(N − 1)

2
if µc2 = ∅.

Proof. To get the expression when µc2 = ∅, we use the fact that if µc2 = ∅, then it must be
the case that (µ2)1 = 1. �

Lemma 5.3.20. When we add the terms from Lemmas 5.3.12 and 5.3.15, we get`(µ′1) +N`(µ′1)−N − `(µ′1)(`(µ′1) + 1)

2
if d(µ′1) = 1

−(d(µ′1) +N − ((µ1)d(µ1) + 1)) otherwise.

Proof. First we deal with the case that d(µ′1) = 1. In this case, (µ′1)i ≤ 1 for all i ≥ 2 and
(µ′1)ci = 0 for all i ≥ 2. So, the contribution from Lemma 5.3.15 is 0 and the sum from
Lemma 5.3.12 becomes∑
d(µ′1)+1≤i≤`(µ′1)

(µ′1)i +N − i =

`(µ′1)∑
i=2

1 +N − i = (`(µ′1)− 1)(1 +N)− `(µ′1)(`(µ′1) + 1)− 2

2

= `(µ′1) +N`(µ′1)−N − `(µ′1)(`(µ′1) + 1)

2
.

In the case where d(µ′1) > 1, let id be the largest integer i with (µ′1)i ≥ d(µ′1). Then
applying Lemma 5.1.17, we see that the sum from Lemma 5.3.15 becomes

−
∑

i:d(µ1)<i≤`((µ′1)c)

((µ′1)ci +N − i+ 1)

= −
∑

i:d(µ1)+1≤i≤id

((µ′1)i +N − i)

− (d(µ′1) +N − (id + 1))−
∑

i:id+1<i≤`((µ′1)c)

((µ′1)i−1 +N − i+ 1)

88



= −
∑

i:d(µ1)+1≤i≤id

((µ′1)i +N − i)

−
∑

i:id<i≤`((µ′1)c)−1

((µ′1)i +N − i)− (d(µ′1) +N − (id + 1)).

Since the first two sums cancel with the sum from Lemma 5.3.12, we are left with

−(d(µ′1) +N − (id + 1)) = −(d(µ′1) +N − ((µ1)d(µ1) + 1))

by Remark 5.1.20. �

Lemma 5.3.21. When we combine the terms from Lemmas 5.3.13 and 5.3.17, we get{
(`(µ2)− 1)N if d(µ2) = 1

−d(µ2)−N + 1− `(µ2) + (µ′2)d(µ2) otherwise.

Proof. As in the previous lemma, we begin with the case where d(µ2) = 1. In this case, the
sum from Lemma 5.3.17 is empty and the sum from Lemma 5.3.13 becomes∑

i:d(µ2)+1≤i≤`(µ2)

((µ2)i +N − 1) =
∑

i:2≤i≤`(µ2)

N = (`(µ2)− 1)N.

In the case where d(µ2) > 1, let id be the largest integer with (µ2)i ≥ d(µ2). Then we can
write the sum from Lemma 5.3.17 as

−
∑

i:d(µ2)<i≤`(µc2)

((µc2)i +N)

= −
∑

i:d(µ2)+1≤i≤id

((µ2)i − 1 +N)− (d(µ2)− 1 +N)−
∑

i:id+1<i≤`(µ2)+1

((µ2)i−1 +N)

= −
∑

i:d(µ2)+1≤i≤id

((µ2)i +N − 1)−
∑

i:id<i≤`(µ2)

((µ2)i +N)− (d(µ2)− 1 +N).

Writing the sum from Lemma 5.3.13 as∑
i:d(µ2)+1≤i≤`(µ2)

((µ2)i +N − 1) =
∑

i:d(µ2)+1≤i≤id

((µ2)i +N − 1) +
∑

i:id<i≤`(µ2)

((µ2)i +N − 1),

we see that the first sum cancels with the first sum from Lemma 5.3.17. Combining the second
sum with the second sum from Lemma 5.3.17 we get −(`(µ2)−id) = −(`(µ2)−(µ′2)d(µ2)). �

We conclude the computation of C − A by adding the results from Lemmas 5.3.7 and
5.3.8, Remark 5.3.9, and Lemmas 5.3.18 through 5.3.21.

Terms involving µ1 From Lemma 5.3.7 we have
0 if d(µ′1) > 1
(N − `(µ′1)− 1)(N − `(µ′1))

2
− (N − 1)N

2
if d(µ′1) = 1 and (µ′1)1 > 1

(N − `(µ′1)− 1)(N − `(µ′1))

2
+

(N − 1)N

2
otherwise.
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From Lemmas 5.3.18 and 5.3.20 we have−(d(µ′1) +N − ((µ1)d(µ1) + 1)) if d(µ′1) > 1

`(µ′1) +N`(µ′1)−N − `(µ′1)(`(µ′1) + 1)

2
if d(µ′1) = 1

+

{
0 if (µr1)′ 6= ∅
−N(N − 1) otherwise.

Note that, by Remark 5.1.12, (µr1)′ = ∅ if and only if µr1 = ∅ if and only if `(µr1) = 0 if and
only if `(µ1) = 1 if and only if d(µ′1) = 1 and (µ′1)1 = 1.

So there are three cases to consider. If d(µ′1) > 1, we have

(µ1)d(µ1) − d(µ1)−N + 1.

When d(µ′1) = 1 and (µ′1)1 > 1, we get

`(µ′1)−N = (µ1)d(µ1) −N − d(µ1) + 1.

When d(µ′1) = 1 and (µ′1)1 = 1, we get

`(µ′1)−N + (N − 1)N −N(N − 1) = `(µ′1)−N = (µ1)d(µ1) −N − d(µ1) + 1.

Terms involving µ2 Recall from Lemma 5.3.8 that the terms involving µ2 are
`(µ2) if d(µ2) > 1

−`(µ2)N + `(µ2) if d(µ2) = 1 and (µ2)1 > 1

(N − 1)(N − `(µ2)) +
N(N − 1)

2
otherwise.

The terms involving µ2 from Lemmas 5.3.19 and 5.3.21 are{
−d(µ2)−N + 1− `(µ2) + (µ′2)d(µ2) if d(µ2) > 1

(`(µ2)− 1)N if d(µ2) = 1

+

0 if d(µ2) > 1 or (d(µ2) = 1 and (µ2)1 > 1)

1−N2 − (N − 2)(N − 1)

2
if d(µ2) = 1 and (µ2)1 = 1.

So there are three cases. If d(µ2) > 1, then we are left with

−d(µ2)−N + 1 + (µ′2)d(µ2).

If d(µ2) = 1 and (µ2)1 > 1 then we have

`(µ2)−N = −d(µ2) + 1 + (µ′2)d(µ2) −N.
Finally, in the case where d(µ2) = 1 and (µ2)1 = 1, we have

`(µ2)−N = −d(µ2) + 1 + (µ′2)d(µ2) −N.
Combining all terms In all cases, we have

(µ1)d(µ1) − 2N − d(µ1) + 2− d(µ2) + (µ′2)d(µ2).

By Remark 5.3.9, we must add 2N − 1 to this sum, so we conclude that

C − A = (µ1)d(µ1) − d(µ1) + (µ′2)d(µ2) − d(µ2) + 1 = K.
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