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Persistence for a class of order-one
autoregressive processes and
Mallows-Riordan polynomials

Gerold Alsmeyer, Alin Bostan, Kilian Raschel and Thomas Simon

Abstract We establish exact formulae for the persistence probabilities of
an AR(1) sequence with symmetric uniform innovations in terms of certain
families of polynomials, most notably a family introduced by Mallows and
Riordan as enumerators of finite labeled trees when ordered by inversions. The
connection of these polynomials with the volumes of certain polytopes is also
discussed. Two further results provide factorizations of general AR(1) models,
one for negative drifts with continuous innovations, and one for positive drifts
with continuous and symmetric innovations. The second factorization extends
a classical universal formula of Sparre Andersen for symmetric random walks.
Our results also lead to explicit asymptotic estimates for the persistence
probabilities.
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d’Ascq, France. e-mail: thomas.simon@univ-lille.fr

This project was partially funded by the Deutsche Forschungsgemeinschaft (DFG)
under Germany’s Excellence Strategy EXC 2044–390685587 (Gerold Alsmeyer) and
by the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme under the Grant Agreement No 759702
(Kilian Raschel). Alin Bostan and Kilian Raschel were also supported in part by
DeRerumNatura ANR-19-CE40-0018.

1

http://arxiv.org/abs/2112.03016v2
gerolda@math.uni-muenster.de
alin.bostan@inria.fr
raschel@math.cnrs.fr
thomas.simon@univ-lille.fr


2 G. Alsmeyer, A. Bostan, K. Raschel and T. Simon

AMS 2020 subject classifications Primary 05C31; 60J05; Secondary
11B37; 30C15; 60F99
Keywords Autoregressive model; deformed exponential function; first pas-
sage time; persistence probability; Mallows-Riordan polynomial; Tutte poly-
tope; zigzag number

1 Introduction and main results

Let X be a real Gaussian random variable with mean µ and variance σ2.
Then Y = eX has a log-normal distribution with integer moments E[Y n] =

enµ+n2σ2/2 for all n > 1 and cumulant generating function

logE[etY ] ≡ log


∑

n>0

enµ+n2σ2/2 t
n

n!


 ≡ log


∑

n>0

θn(n−1)/2 z
n

n!


 , (1)

where θ = eσ
2

and z = teµ+σ2/2. However, being divergent except for the
degenerate case σ2 = 0, the above series are considered as formal power
series only, and the notation≡ is used here and throughout to express identity
between two such series.

It was observed by Mallows and Riordan in [23] that the right-hand side
of (1) is the exponential generating function of a family of polynomials with
integer coefficients. More precisely, Eq. (2) in [23] asserts that

log


∑

n>0

θn(n−1)/2 z
n

n!


 ≡

∑

n>1

(θ − 1)n−1Jn(θ)
zn

n!
(2)

where Jn(θ) ∈ Z[X ] is a polynomial of degree (n− 1)(n− 2)/2 with positive
coefficients and leading coefficient 1. For n = 1, . . . , 6, one finds that

J1(θ) = 1,

J2(θ) = 1,

J3(θ) = 2 + θ,

J4(θ) = 6 + 6θ + 3θ2 + θ3,

J5(θ) = 24 + 36θ + 30θ2 + 20θ3 + 10θ4 + 4θ5 + θ6,

J6(θ) = 120 + 240θ + 270θ2 + 240θ3 + 180 θ4 + 120θ5 + 70θ6

+ 35θ7 + 15θ8 + 5θ9 + θ10.

The main result of [23] is that, for each n > 1, Jn(θ) equals the enumerator
of trees with n labeled points by number of inversions, when inversions are
counted on each branch and ordered away from the root, which receives label
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1. In particular, one has Jn(1) = nn−2 for all n > 1 by Cayley’s formula. This
combinatorial significance leads to a recursive formula for these polynomials,
namely

Jn+2(θ) =

n∑

i=0

(
n

i

)
(1 + θ + · · ·+ θi)Ji+1(θ)Jn+1−i(θ) (3)

for every n > 0, see Formula (1) in [21]. Equivalently, one has

∑

n>0

Jn+1(θ)
zn

n!
≡ exp



∑

n>1

Jn(θ) (1 + θ + · · ·+ θn−1)
zn

n!


 (4)

by Cauchy’s product, integration and identifying coefficients, see Formula (5)
in [23]. Mallows-Riordan polynomials, sometimes also called inversion polyno-
mials in the literature, appear in many other counting problems, see [11] and
the references therein. For example, it was shown in [14] that θn−1Jn(θ + 1)
is the enumerator of connected labeled n-vertex graphs by number of edges,
thus Jn(2) is the total number of these graphs. Mallows-Riordan polynomi-
als are also an instance of Tutte’s bivariate dichromatic polynomials in [33]
with one variable fixed, a topic we will discuss in some more detail in Para-
graph 5.1. Let us finally mention that several conjectures on further combina-
torial aspects of Mallows-Riordan polynomials are stated by Sokal in [27, 28].

The main purpose of this paper is to provide a probabilistic interpretation
of Mallows-Riordan polynomials that is not only quite different from the
above connection with the log-normal distribution, but in fact also rather
unexpected. To be more specific, consider a real autoregressive sequence of
order one, defined by

Y0 = 0 and Yn = θYn−1 + Xn for n > 1, (5)

with drift parameter θ ∈ R and i.i.d. innovationsX1, X2, . . . with a nondegen-
erate law. The ergodic properties of this Markov chain with continuous state
space, which can be viewed as a discrete version of the Ornstein-Uhlenbeck
process, are well known. It follows from [16, Corollary 4.3], see also [15,
Proposition 1], that it is positive recurrent if and only if θ ∈ (−1, 1) and
E log(1+ |X1|) <∞. In this case, the chain converges in distribution towards
its unique stationary regime, given by the law of the so-called perpetuity

Y∞ =
∑

n>1

θn−1Xn.

Let Tθ = inf{n > 1 : Yn < 0} be the time where the process becomes negative
and consider the corresponding persistence probabilities
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pn(θ) = P[Tθ > n] = P[Y1 > 0, . . . , Yn > 0], n > 1.

The asymptotic behaviour of pn(θ) as n→ ∞ has been recently investigated
in [3, 10, 17] within a broader class of autoregressive models. See also the end
of Section 3 in [4] and the references therein for a heuristic discussion. In the
positive recurrent case, and for a two-sided innovation law, the results in [3]
provide conditions for the rough estimate

pn(θ) = λn+o(n), (6)

where λ ∈ (0, 1) denotes the largest eigenvalue of some associated compact
operator whose explicit form is typically unknown. See also [2] for an asymp-
totic study in the case of Gaussian innovations. In the case θ ∈ (0, 1) and
for a two-sided innovation law with bounded support and positive absolutely
continuous component, the results in [17] show that the rough estimate (6)
can be refined topn(θ) ∼ cλn for some positive constant c.

The present work aims at providing some exact formulae for certain such
order 1 autoregressive persistence probabilities, which then also lead to more
explicit asymptotics. Our first main result establishes the announced unex-
pected relationship with Mallows-Riordan polynomials and considers the case
when the innovation law is uniform on [−1, 1]. For this case, we stipulate that
pUn (θ) and T

U
θ are used hereafter for pn(θ) and Tθ, respectively.

Theorem 1. For any θ ∈ [−1, 12 ] and n > 1, one has

pUn (θ) =
Jn+1(θ)

2n n!
· (7)

If θ = 0, it follows directly that pUn (0) = 2−n, thus giving Jn+1(0) = n!
for any n, an immediate consequence also of Eq. (2). It can be interpreted
combinatorially by the well-known bijection between permutations and or-
dered labeled trees obtained via the contour function. If θ = −1, a formal
differentiation of (2) and some trigonometry shows that

∑

n>0

Jn+1(−1)
zn

n!
=

1 + sin z

cos z

and then by comparison of coefficients that Jn+1(−1) = An, where An de-
notes Euler’s n-th zigzag number, see also Propriété 2 in [21] for a derivation
based on the recursion (3). In Remark 2.3(d) below, we provide a combina-
torial explanation of this formula by relating An to the probability pUn (−1)
when viewed as the renormalized volume of a certain polytope. In the upper
boundary case θ = 1

2 , it has been observed in [13, 26] that 2n(n−1)/2Jn+1(
1
2 )

equals the number of initially connected acyclic digraphs with n+1 vertices,
where “initially connected” means that there is a directed path from the ver-
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tex labeled 1 to any other vertex of the digraph. The relationship between
this quantity and pUn (

1
2 ) may appear even more surprising.

We present three proofs of Theorem 1, all to be found in Subsection 2.1.
The first one relies on a linear recurrence relation between the pn(θ) that
leads to a closed-form expression of their generating function as a ratio, see
Proposition 1, which in turn is of the same kind as a combinatorial formula
for Mallows-Riordan polynomials stated in [12, Eq. (14.6)]. The other two
proofs are variations, the first one via multivariate changes of variable and
the second one by using that (θ−1)nJn+1(θ)/n! can be viewed as the algebraic
volume of a certain polytope, see Proposition 2. This volume interpretation
is further discussed in Paragraph 5.1 in the framework of Tutte polytopes.
Thanks to the exact character of Theorem 1, we are able in Subsection 2.2 to
derive some precise asymptotics for pUn (θ) and even a complete asymptotic
expansion if θ ∈ [0, 12 ]. In particular, the exponential rate λ in (6) is identified
via the first negative root of the deformed exponential function

E(θ, z) =
∑

n>0

θn(n−1)/2 z
n

n!
· (8)

Equivalently, this identification provides the spectral gap associated with a
class of truncated Volterra operators, see Remark 5.9(c). Finally, some further
infinite divisibility properties related to TU

θ are discussed in Paragraph 5.2.

Eq. (7) established by Theorem 1 works only for θ ∈ [−1, 12 ]. Namely, for θ
outside this interval the situation changes because the domain of integration
of the integral defining pUn (θ) undergoes truncations that make it behave
differently as a function of θ. Therefore, we will show by two further theorems,
assuming θ < 0 and θ > 0, respectively, that a relation between the family
{pn(θ) : k = 0, . . . n} and its involutive conjugate {pn(1/θ) : k = 0, . . . , n}
can be established for each n > 1. For θ < −1 and θ > 2, these relations can
then be utilized to derive identites for pn(θ) in terms of two new families of

polynomials with integer coefficients, denoted J̃n(θ) and Ĵn(θ), respectively,
and still related to the Mallows-Riordan polynomials Jn(θ) through identities
in terms of their generating functions, see Corollaries 1 and 2.

Here is the first of the two announced results, for which we go back to the
initial model (5) with negative drift (θ < 0) and an innovation law whose
non-negative part does not have atoms.

Theorem 2. Assuming θ < 0 and that the innovation law in (5) has no
atoms on [0,∞), the relation

n∑

k=0

(−1)k pk(θ) pn−k(1/θ) = 0 (9)

holds for all n > 1.
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The proof of this result, to be found in Subsection 3.1, relies on a linear
recurrence similar to the one derived in our first proof of Theorem 1. It further
hinges on the fact that the pn(θ) can be expressed in terms of the finite dual
perpetuities

∑n
k=1 r

k−1Xk, where r := −1/θ. This is where the involution
comes into play and our argument only requires the absence of non-negative
atoms, a condition which also seems to be necessary by Remark 3.1 below.

If θ = −1 and the innovations are uniform on [−1, 1], then Theorem 2
yields the well-known alternation property of Euler’s zigzag numbers:

n∑

k=0

(
n

k

)
(−1)kAk An−k = 0, n > 1,

which corresponds to the trivial identity

(
1− sin z

cos z

)(
1 + sin z

cos z

)
= 1

between generating functions.

Corollary 1. If θ 6 −1 and innovations are uniform on [−1, 1], then

pUn (θ) =
J̃n+1(1/θ)

2n n!
(10)

for all n > 0, where the J̃n+1(θ) are defined by the identity

∑

n>0

J̃n+1(θ)
zn

n!
≡



∑

n>0

(−1)nJn+1(θ)
zn

n!




−1

(11)

and again a family of polynomials in Z[X ]. Moreover, J̃1(θ) := 1 and J̃n+1(θ)
has degree n(n− 1)/2, valuation n− 1 and coefficients of constant sign which
alternates with n.

The J̃n(θ) for n = 2, . . . , 6 are easily found explicitly with the help of (11),
viz.:

J̃2(θ) = 1,

J̃3(θ) = −θ,
J̃4(θ) = 3θ2 + θ3,

J̃5(θ) = −
(
12θ3 + 10θ4 + 4θ5 + θ6

)
,

J̃6(θ) = 60θ4 + 80θ5 + 60θ6 + 35θ7 + 15θ8 + 5θ9 + θ10.

Corollary 1 is proved in Subsection 3.3. At θ = −1, the unique fixed point
of the involution θ 7→ 1/θ on the negative halfline, Theorems 1 and 2 yield
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a remarkable order-2 phase transition for the mapping θ 7→ pU
n (θ) for each

n > 2. Namely, its first derivative is continuous at −1, but its second deriva-
tive is not, see Propositions 3.2 and 3.4. As in the case θ ∈ [−1, 12 ], the
exact formula (10) gives precise exponential asymptotics for pU

n (θ) if θ < −1,
expressed in terms of the first negative root of the deformed exponential func-
tion E(1/θ, z), see Proposition 3.11.

For θ > 0, another relation between the pn(θ) and their involutive duals
pn(1/θ) holds as shown by our next theorem, under the further assumption
that the innovation law is symmetric and continuous. In combination with
Eq. (7) for θ ∈ (−1, 12 ], this further implies an identity for pn(θ) in terms of

a polynomial Ĵn+1(θ) for all n > 0 and θ > 2.

Theorem 3. Assuming θ > 0 and the innovation law in (5) to be continuous
and symmetric, the relation

n∑

k=0

pk(θ) pn−k(1/θ) = 1 (12)

holds for all n > 0 or, equivalently,

(
∑

n>0

pn(θ) z
n

)(
∑

n>0

pn(1/θ) z
n

)
=

1

1− z

for all z ∈ (−1, 1).

The proof of this result is given in Subsection 4.1 and similar to the one of
Theorem 2 by relying on a linear recurrence relation that is combined with a
telescoping argument. Theorem 3 can also be viewed as an extension of the
formula ∑

n>0

pn(1) z
n =

1√
1− z

(13)

for every z ∈ (−1, 1) which goes back to Sparre Andersen in the case θ =
1, i.e., for ordinary random walks, see e.g. [4, Eq. (2.3)] and the references
therein. Observe that the symmetry and the continuity of the increments are
necessary for (13).

Corollary 2. If θ > 2 and innovations are uniform on [−1, 1], then

pUn (θ) =
Ĵn+1(1/θ)

2n n!
(14)

for all n > 0, where the Ĵn+1(θ) are defined by the identity

∑

n>0

Ĵn+1(θ)
zn

n!
≡ 1

1− 2z

(
∑

n>0

Jn+1(θ)
zn

n!

)−1

(15)
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and again polynomials in Z[X ]. Moreover, Ĵ1(θ) := 1 and Ĵn+1(θ) is of degree
n(n − 1)/2 with order 0 coefficient 2n−1n! and all other coefficients being
negative.

For n = 2, . . . , 6, the Ĵn(θ) are as follows:

Ĵ2(θ) = 1,

Ĵ3(θ) = 4 − θ,

Ĵ4(θ) = 24 −
(
6θ + 3θ2 + θ3

)
,

Ĵ5(θ) = 192 −
(
48θ + 24θ2 + 20θ3 + 10θ4 + 4θ5 + θ6

)
,

Ĵ6(θ) = 1920 −
(
480θ + 240θ2 + 200θ3 + 160 θ4 + 120θ5 + 70θ6

+35θ7 + 15θ8 + 5θ9 + θ10
)
.

Corollary 2 is proved in Subsection 4.2 along with a further result on the
first k coefficients, for arbitrary k > 0, of the polynomial expansion of pUn (θ)
for n > k + 1 as a function of 1/θ. Namely, if θ > 2, then these coefficients
are independent of n as asserted by Proposition 4.3. This in turn will lead
to an explicit formula, see (47) in Subsection 4.3, for the all-time persistence
probability

ℓ(θ) = lim
n→∞

pU
n (θ) > 0,

and to a precise evaluation of the exponential rate of this convergence in terms
of the first root of a certain meromorphic function, see Proposition 4.8. In the
more general case of continuous, symmetric innovations and for any θ > 1,
we show in Proposition 4.5 that the all-time persistence probability is also
positive in the positive recurrent case.

For θ ∈ (12 , 1) ∪ (1, 2), the quantities pUn (θ) appear as truncated Laurent
series defined piecewise on a growing number of subintervals whose bound-
aries are generalized Fibonacci numbers and their inverses. The increasingly
complicated formulae, which do not seem to have any combinatorial interpre-
tation, are different on each Fibonacci subinterval of (12 , 1) or (1, 2); for two
examples see Remarks 2.1(a) and 4.1(b). On the other hand, Figure 1 shows
the intriguing fact that the mapping θ 7→ pUn (θ) is apparently smoother at
these boundaries than at the particular value θ = −1 on the negative halfline.

The above discussion shows that for symmetric uniform innovations, the
general and very simple factorization stated in Theorem 3 for θ > 0 leads to
explicit expressions for the appearing coefficients in the case θ ∈ (0, 12 ], owing
to Theorem 1 and Corollary 2, but does not in the remaining case θ ∈ (12 , 1).
More precisely, if there are explicit formulae, they will be much more compli-
cated. In the case of biexponential symmetric innovations previously studied
in [22] for θ ∈ (0, 1), such a strong difference of complexity occurs as well,
namely between the cases θ < 0 and θ > 0, see Remarks 3.5 and 4.1(a). As
for the Wiener-Hopf factorization of random walks, it would be interesting to
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Fig. 1 The persistence probability pn(θ) and its first derivative for n = 4, 5 and
θ ∈ [−5, 5]. The blue points with positive abscissa indicate where the formula for
pn(θ) changes and correspond to the unique positive solutions to θ+ · · ·+ θi = 1 and
to 1/θ + · · ·+ 1/θi = 1 for i = 1, . . . , n− 1. At the blue point with negative abscissa
−1, the first derivative of pn(θ) is continuous, but the second derivative is not.
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know if there are other AR(1) models with continuous symmetric innovations
that have explicit factors in Theorems 2 and 3 given in terms of combinatorial
objects as remarkable as the Mallows-Riordan polynomials.

2 The case θ ∈ [−1, 1

2
]

2.1 Proof of Theorem 1

By definition,

pUn (θ) = P[U1 > 0, U2 + θU1 > 0, . . . , Un + θUn−1 + . . .+ θn−1U1 > 0]

for any θ ∈ R and n > 1. For θ > 0, this leads to the truncated integral
formula

pUn (θ) =
1

2n

∫ 1

0

∫ 1

−(1∧θu1)

· · ·
∫ 1

−(1∧(θun−1+···+θn−1u1))

dun . . . du2 du1 (16)

which remains valid for θ ∈ [−1, 0) because θui−1 + · · ·+ θi−1u1 ∈ [−1, 0] for
each i = 2, . . . , n in the domain of integration of the ui. For θ ∈ [−1, 12 ], the
crucial point is now, technically speaking, that θui−1 + · · ·+ θi−1u1 ∈ [−1, 1]
for every i = 2, . . . , n and thus all truncations in the domain of integration
can be removed in (16), giving

pUn (θ) =
1

2n

∫ 1

0

∫ 1

−θu1

· · ·
∫ 1

−(θun−1+···+θn−1u1)

dun . . . du2 du1, (17)

which will be our starting point. We mention that, if θn >
1
2 is the positive

solution to θ + · · · + θn−1 = 1, thus θn ↓ 1
2 as n → ∞, then (17) actually

remains true for θ 6∈ [−1, θn], but fails to be so for θ > θn, see Remark 2.1(a)
below. In the following, we put p̂U

n (θ) = 2npUn (θ).

2.1.1 Proof via linear recurrence

The following expression of the generating function of the p̂U
n (θ), as a ratio of

two formal power series, forms the basis of the proof and is also of independent
interest.

Proposition 1. For every θ ∈ [−1, 12 ], one has
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∑

n>0

p̂U
n (θ) zn ≡

1 +
∑

n>2

(θ + · · ·+ θn−1)n

θn(n−1)/2

zn

n!

1− z +
∑

n>3

(θ + · · ·+ θn−2)n

θn(n−1)/2

zn

n!

· (18)

Proof. We put Hn(u) = un/n! = H ′
n+1(u) for any n > 0 and rewrite (17) as

p̂U
n (θ) =

∫ 1

0

du1

∫ 1

−v1

du2 · · ·
∫ 1

−vn−1

dun,

where v0 = 0 and vi = θ(ui + vi−1) for i = 1, . . . , n − 1. Setting q̂ U
n (θ) =

p̂U
n (θ)− p̂U

n−1(θ) for any n > 2 and q̂1(θ) = 0, we then see that

q̂ U
n (θ) =

∫ 1

−v0

∫ 1

−v1

· · ·
∫ 1

−vn−2

H1(vn−1) du1 · · · dun−1

=
1

θ

∫ 1

−v0

∫ 1

−v1

· · ·
∫ 1

−vn−3

H2(θ + θvn−2) du1 · · · dun−2

for each n > 3, and q̂ U
2 (θ) = θ/2. Further partial integration provides

q̂ U
n (θ) =

1

θ

∫ 1

−v0

∫ 1

−v1

· · ·
∫ 1

−vn−3

H2(θ + θ2(un−2 + vn−3)) du1 · · · dun−2

=
1

θ3

∫ 1

−v0

∫ 1

−v1

· · ·
∫ 1

−vn−4

(H3(θ + θ2(1 + vn−3))−H3(θ)) du1 · · · dun−3

= − H3(θ) p̂
U
n−3(θ)

θ3

+
1

θ3

∫ 1

−v0

∫ 1

−v1

· · ·
∫ 1

−vn−4

H3(θ + θ2 + θ3(un−3 + vn−4)) du1 · · · dun−3

...
...

= −
n−1∑

k=3

Hk(θ + · · ·+ θk−2) p̂U
n−k(θ)

θk(k−1)/2

+
1

θ(n−1)(n−2)/2

∫ 1

0

Hn−1(θ + · · ·+ θn−2 + θn−1u1) du1

= −
n∑

k=3

Hk(θ + · · ·+ θk−2) p̂U
n−k(θ)

θk(k−1)/2
+
Hn(θ + · · ·+ θn−1)

θn(n−1)/2
.

Consequently, p̂U
1 (θ) = p̂U

0 (θ) = 1, p̂U
2 (θ) = p̂U

1 (θ) + θ/2, and
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p̂U
n (θ) = p̂U

n−1(θ) +
Hn(θ + · · ·+ θn−1)

θn(n−1)/2
−

n∑

k=3

Hk(θ + · · ·+ θk−2) p̂U
n−k(θ)

θk(k−1)/2

for any n > 3. Multiplication by zn and subsequent summation over n finally
leads to the following identity between formal power series:

(1− z)
∑

n>0

p̂U
n (θ) zn

≡ 1 +
∑

n>2

Hn(θ + · · ·+ θn−1) zn

θn(n−1)/2

−
∑

n>3

n∑

k=3

(
Hk(θ + · · ·+ θk−2) zk

θk(k−1)/2

)
p̂U
n−kz

n−k

≡ 1 +
∑

n>2

Hn(θ + · · ·+ θn−1) zn

θn(n−1)/2

−


∑

n>0

p̂U
n (θ) zn




∑

n>3

Hn(θ + · · ·+ θn−2) zn

θn(n−1)/2


 ,

and this is easily seen to be equivalent to (18). �

Proof (of Theorem 1). Differentiation with respect to z of Eqs. (2) and (18)
provides

∑

n>0

(θ − 1)nJn+1(θ)
zn

n!
≡

∑

n>0

θn(n+1)/2 z
n

n!

∑

n>0

θn(n−1)/2 z
n

n!

(19)

and

∑

n>0

(θ − 1)np̂U
n (θ) zn ≡

∑

n>0

(θn − θ)n

θn(n−1)/2

zn

n!

∑

n>0

(θn−1 − θ)n

θn(n−1)/2

zn

n!

, (20)

respectively, whence it is enough to show identity of the two ratios of formal
power series on the right-hand sides. Equivalently,

(
∑

n>0

(θn − θ)n

θn(n−1)/2

zn

n!

)(
∑

n>0

θn(n−1)/2 z
n

n!

)

≡
(
∑

n>0

θn(n+1)/2 z
n

n!

)(
∑

n>0

(θn−1 − θ)n

θn(n−1)/2

zn

n!

)
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must be verified, that is, upon comparison of coefficients,

n∑

k=0

(
n

k

)
(θk−1 − θ)kθ−n(k−1) =

n∑

k=0

(
n

k

)
(θk − θ)kθ−k(n−1)

for each n > 0. To this end, we finally note that

n∑

k=0

(
n

k

)
(θk−1 − θ)kθ−n(k−1)

=
n∑

k=0

(
n

k

)
θ−n(k−1)

k∑

ℓ=0

(
k

ℓ

)
(−1)k−ℓθk−ℓ+ℓ(k−1)

=

n∑

l=0

n∑

k=ℓ

(
n

k

)(
k

ℓ

)
(−1)k−ℓθk−ℓ+(ℓ−n)(k−1)

=
n∑

ℓ′=0

ℓ′∑

k′=0

(
n

ℓ′

)(
ℓ′

k′

)
(−1)ℓ

′−k′

θℓ
′−k′+ℓ′(1+k′−n)

=

n∑

k=0

(
n

k

)
θ−k(n−1)

k∑

ℓ=0

(
k

ℓ

)
(−1)k−ℓθk−ℓ+ℓk

=

n∑

k=0

(
n

k

)
(θk − θ)kθ−k(n−1)

where we have set k′ = n − k, ℓ′ = n − ℓ in the fourth line and made the
change of variable (ℓ′, k′) 7→ (k, l) in the fifth line. �

Remark 2.1 (a) It follows from the point made after (17) at the beginning
of this section that, for any fixed n > 2, the statement of Theorem 1 extends
to all θ ∈ (12 , θn] if θn >

1
2 denotes the positive solution to θ+ · · ·+ θn−1 = 1,

which has been coined generalized Fibonacci number in the literature, see [35]
and the references therein. On the other hand, the formula becomes different
for θ > θn. For example, for n = 3 and θ ∈ (θ3, 1), it can be shown that

p̂U
3 (θ) = θ +

11

6
− 1

2θ2
+

1

6θ3
·

Except for the Sparre Andersen formula at θ = 1, expressing p̂U
n (θ) as a

function of θ for θ ∈ (θn, 1/θn) becomes very complicated with growing n
and does not seem to permit a nice combinatorial formulation. An intriguing
fact is that, despite these complications, the mapping θ → p̂U

n (θ) seems to
maintain a certain degree of smoothness for θ ∈ [ 12 , 2] and any n > 1, see
Figure 1.

(b) As a by-product of (18), we obtain the following apparently new for-
mula for the generating function of Mallows-Riordan polynomials as a ratio
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of two (for any θ 6∈ {−1, 0,+1} divergent) formal power series:

∑

n>0

Jn+1(θ)
zn

n!
≡

1 +
∑

n>2

(θ + · · ·+ θn−1)n

θn(n−1)/2

zn

n!

1− z +
∑

n>3

(θ + · · ·+ θn−2)n

θn(n−1)/2

zn

n!

.

The formula corresponds to the linear recurrence

Jn+1(θ) =
(θ + . . .+ θn−1)n

θn(n−1)/2
+ nJn(θ)

−
n∑

k=3

(
n

k

)
(θ + . . .+ θk−2)k

θk(k−1)/2
Jn−k+1(θ),

valid for any n > 2, of Jn+1(θ) in terms of Jk(θ) for k 6 n, with the notable
curiosity that Jn−1(θ) does not appear. These formulae should be compared
with the following identity due to Gessel, see Formula (14.6) in [12]:

∑

n>0

Jn+1(θ)
zn

n!
≡

∑

n>0

(1 + θ + · · ·+ θn)n

θn(n+1)/2

zn

n!

∑

n>0

(1 + θ + · · ·+ θn−1)n

θn(n+1)/2

zn

n!

and the corresponding linear recurrence

n∑

k=0

(
n

k

)
(θ − 1)kJk+1(θ)

θk(k−1)/2−kn

(θn−k − 1)n−k

(θn+1 − 1)n
= 1.

2.1.2 Proof via polytope volumes

This proof relies on the following expression of Mallows-Riordan polynomials
as algebraic volumes, which is also of independent interest, see Section 5.1
below.

Proposition 2. For every n > 1, one has the polynomial identity

∫ θ

1

∫ θx1

1

· · ·
∫ θxn−1

1

dx1 . . . dxn =
(θ − 1)nJn+1(θ)

n!
· (21)

Proof. A homothetic change of variable provides

∫ θ

1

∫ θx1

1

· · ·
∫ θxn−1

1

dx1 · · · dxn = θn(n+1)/2qn(θ),
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where

qn(θ) =

∫ 1

1/θ

∫ u1

1/θ2

· · ·
∫ un−1

1/θn

du1 . . . dun

for n > 1. Next observe that

qn(θ) +
qn−1(θ)

θn
=

∫ 1

1/θ

∫ u1

1/θ2

· · ·
∫ un−2

1/θn−1

un−1 du1 . . . dun−1

and then, upon repeated summation,

n∑

k=1

qk(θ)

(n− k)! θ(k+1)(n−k)
=

1

(n− 1)!

∫ 1

1/θ

un−1
1 du1 =

1

n!

(
1− 1

θn

)
.

Setting q̂0(θ) = 1 and

q̂k(θ) =
k! θk(k+1)/2qk(θ)

(θ − 1)k

for k > 1, we obtain

n∑

k=0

(
n

k

)
(θ − 1)kq̂k(θ)

θ(k+1)(n−k/2)
= 1 (22)

for any n > 0. On the other hand, it follows from (19) that


∑

n>0

(θ − 1)nJn+1(θ)
zn

n!




∑

n>0

θn(n−1)/2 z
n

n!


 ≡

∑

n>0

θn(n+1)/2 z
n

n!

and therefore, by using Cauchy’s product and comparing coefficients,

n∑

k=0

(
n

k

)
(θ − 1)kJk+1(θ)

θ(k+1)(n−k/2)
= 1

for any n > 0. As q̂0(θ) = J1(θ) = 1, we finally infer q̂n(θ) = Jn+1(θ) for each
n > 0 from (22), which completes the argument. �

Proof (of Theorem 1). Embarking on (17), put r = −1/θ and make the
changes of variables yi+1 = xi+1 − θxi (second line) and zi+1 = riyi+1 (third
line), both for i = 1, . . . , n− 1, to obtain

p̂U
n (θ) =

∫ 1

0

∫ 1

−θx1

· · ·
∫ 1

−(θxn−1+···+θn−1x1)

dx1 . . . dxn

=

∫ 1

0

∫ 1+θy1

0

· · ·
∫ 1+θyn−1

0

dy1 . . . dyn
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= r−n(n−1)/2

∫ 1

0

∫ r−z1

0

· · ·
∫ rn−1−zn−1

0

dz1 . . . dzn.

By yet another change of variables, namely

ti = 1 − (r + 1)zi
ri

for i = 1, . . . , n, we arrive at

p̂U
n (θ) =

( −r
r + 1

)n ∫ −1/r

1

∫ −t1/r

1

· · ·
∫ −tn−1/r

1

dt1 . . . dtn =
Jn+1(θ)

n!

as required, where Proposition 2 has been used for the last equality. �

Remark 2.2 It follows from the formula

p̂U
n (θ) =

∫ 1

0

∫ 1+θy1

0

· · ·
∫ 1+θyn−1

0

dy1 . . . dyn

that θ 7→ pUn (θ) is increasing on [−1, 12 ]. Therefore, by Theorem 1 and since
Jn has positive coefficients, the mapping

θ 7→ Jn(θ)

is positive and increasing on [−1,∞) for all n > 1. We further note that
the mapping θ 7→ pn(θ) is nondecreasing on R

+ = [0,∞) for any innovation
sequence {Xi, i > 1} because pn(θ) = P[Ωn(θ)] and

Ωn(θ) :=

{
j∑

k=1

θj−kXk > 0, j = 1, . . . , n

}
,

is always nondecreasing in θ > 0. However, this simple argument breaks down
for θ < 0. For Mallows-Riordan polynomials, a comparison of coefficients
in the exponential formula (4) plus an induction argument easily show that
Jn+1(θ) is positive on [−1, 0]. On the other hand, it seems impossible to show
directly that J ′

n(θ) > 0 on [−1, 0) for all n > 1. For θ < −1, we believe but
were not able to verify that there exist some n1, n2 > 1 such that Jn1

(θ) < 0
and J ′

n2
(θ) < 0. Finally, we mention that it has been conjectured in [28] that

all complex roots of Jn lie outside the closed unit disk.

2.1.3 Proof via bivariate generating functions

Our last proof is particularly useful in the case θ = −1 and embarks on the
formula
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p̂U
n (θ) = r−n(n−1)/2

∫ 1

0

∫ r−z1

0

· · ·
∫ rn−1−zn−1

0

dz1 . . . dzn

where r = −1/θ should be recalled. Suppose first that θ = −1 and thus r = 1.
Setting B0(t) = 1 and

Bn(t) =

∫ t

0

∫ 1−z1

0

· · ·
∫ 1−zn−1

0

dz1 . . . dzn (23)

for n > 1 and t > 0, we see that B′
n(t) = Bn−1(1 − t) and Bn(0) = 0 for all

n > 1. Introducing the bivariate generating function

B(t, z) =
∑

n>0

Bn(t) z
n,

the ODE
∂2B
∂t2

(t, z) = −z ∂B
∂t

(1− t, z) = −z2 B(t, z) (24)

holds as one can easily check, and it follows upon integration that

B(t, z) = U(z) cos tz + V(z) sin tz.

Moreover, use B(0, z) = 1 and ∂B
∂t (1, z) = z to infer

U(z) = 1 and V(z) =
1 + sin z

cos z
sin tz =

(
sec z + tan z

)
sin tz,

and thereby

B(t, z) = cos tz +
(
sec z + tan z

)
sin tz.

Finally, we obtain upon setting t = 1 that

∑

n>0

p̂U
n (−1) zn = Bn(1, z) = sec z + tan z =

∑

n>0

An
zn

n!

where An = Jn+1(−1) denotes Euler’s n-th zigzag number, see e.g. Pro-
priété 2 in [21] for the last identity. This completes the proof for θ = −1.

For the general case we define, as an extension of (23),

Bn(t, θ) =

∫ t

0

∫ r−z1

0

· · ·
∫ rn−1−zn−1

0

dz1 . . . dzn

with r = −1/θ as before. Then Bn(0, θ) = 0 and

∂Bn

∂t
(t, θ) = rn−1Bn−1(1 + θt, θ).
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Integration and a change of variables provides

Bn(t, θ) = rn−1

∫ t

0

Bn−1(1 + θs, θ) ds =
rn−1

θ

∫ 1+θt

1

Bn−1(u, θ) du

and then after n− 1 iterations

Bn(1, θ) =
rn(n−1)/2

θn

∫ 1+θ

1

∫ 1+θx1

1

· · ·
∫ 1+θxn−1

1

dx1 · · · dxn

=
rn(n−1)/2

(θ − 1)n

∫ θ

1

∫ θy1

1

· · ·
∫ θyn−1

1

dy1 · · · dyn

=
rn(n−1)/2Jn+1(θ)

n!

by Proposition 2. For the second equality we have made the multiple change of
variables xi = (yi+ r)/(1+ r) for i = 1, . . . , n. As Bn(1, θ) = rn(n−1)/2p̂U

n (θ),
the proof is complete. �

Remark 2.3 (a) Regarding the proof just given for the case θ 6= −1, it can
be seen as a variation of the one in the preceding subsection, because it has
been finalized by a use of Proposition 2. Let us also note that, when defining
the trivariate generating function

B(t, θ, z) =
∑

n>0

Bn(t, θ) z
n,

the ODE (24) turns into the delayed PDE

∂2B
∂t2

(t, θ, z) = θz2 B(θ2tθ + 1, θ, r2z),

which does not seem solvable in a simple manner.

(b) An alternative way to finalize the above proof for θ 6= −1 is via the
volume of another polytope: By making successive changes of variables xi =
1 + θyi, yi = θi−1zi and zi =

∑i−1
j=1(θ

1−j − uj), we obtain

Bn(1, θ) =
rn(n−1)/2

θn

∫ 1+θ

1

∫ 1+θx1

1

· · ·
∫ 1+θxn−1

1

dx1 · · · dxn

= rn(n−1)/2

∫ 1

0

∫ 1+θy1

0

· · ·
∫ 1+θyn−1

0

dy1 · · · dyn

= (−1)n(n−1)/2

∫ 1

0

∫ θ−1+z1

0

· · ·
∫ θ1−n+zn−1

0

dz1 · · · dzn

= (−1)n(n−1)/2 Vn(1, θ
−1, . . . , θ1−n)

where Vn(x1, . . . , xn) denotes the volume of the polytope
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{yi > 0, y1 + · · ·+ yi 6 x1 + · · ·+ xi, 1 6 i 6 n} ⊂ R
n.

Applying the formula in [24, p. 620] finally provides the required identity

Bn(1, θ) =
rn(n−1)/2Jn+1(θ)

n!
·

Having this pointed out, Proposition 2 can be viewed as an elementary proof
of the formula in [24]. We will return to this topic later in the more general
framework of Tutte’s polytopes, see Paragraph 5.1.

(c) If θ = −1, the proof of Theorem 1 amounts by (23) to the simple
identities ∫ 1

0

dy1

∫ 1−y1

0

dy2 · · ·
∫ 1−yn−1

0

dyn =
An

n!

for n > 1. This was already observed in [6], where the integral on the left-
hand side is viewed as the volume of the base of a pyramid. The argument
in [6] further relies on a family of polynomials, which are recursively defined
by

P0(x) = 1 and Pn(x) =

∫ 1−x

0

Pn−1(t)dt

and then computed explicitly. Our argument above uses the polynomial
Bn(x) = Pn(1− x) instead and is simpler as it is based only on the straight-
forward observation that B′′

n+2(x) = −Bn(x).

(d) Still in the case θ = −1, Eq. (23) can also be stated as

Bn(1) = Vol {(z1, . . . , zn) ∈ [0, 1]n, z1 + z2 6 1, . . . , zn−1 + zn 6 1}
= Vol {(x1, . . . , xn) ∈ [0, 1]n, x1 < x2 > x3 < x4 > · · ·} ,

where in the second line we have made the changes of variables zi = xi if i is
odd and zi = 1− xi if i is even. This implies

Bn(1) = P [Xi < Xi+1 for i odd and Xi > Xi+1 for i even, i = 1, . . . , n]

= P [σi < σi+1 for i odd and σi > σi+1 for i even, i = 1, . . . , n] ,

where X1, . . . , Xn are independent and uniformly distributed on (0, 1) and σ
denotes a permutation on Sn uniformly picked at random. The fact that

Bn(1) =
An

n!

then follows from the very definition of Euler’s zigzag numbers, see [1]. The
stated argument is a consequence of a general result for chain polytopes given
as Corollary 4.2 in [29], the case of zigzag numbers and zigzag polytopes
being discussed in Example 4.3 therein. However, it does not seem that this
argument works in the case θ 6= −1.
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2.2 Asymptotic behaviour

If θ = −1, a combination of Theorem 1 with a well-known asymptotic result
for Euler’s zigzag numbers (see e.g. (1.10) in [30]) yields

pUn (−1) =
Jn+1(−1)

2nn!
=

An

2nn!
∼ 4

πn+1
as n→ ∞. (25)

An extension to all θ ∈ [−1, 12 ], in terms of the first root

zθ = inf{z > 0 : E(θ,−z) = 0}

of the deformed exponential function E(θ, z) defined in (8) in the introduc-
tion, is provided by the next proposition.

Proposition 2.4 For every θ ∈ [−1, 12 ], one has

pUn (θ) ∼ 1

zθ λnθ
as n→ ∞, (26)

where λθ = 2(1− θ)zθ > 1.

Proof. If θ = −1, then E(−1, z) = cos z + sin z and z−1 = π/4, so that (26)
matches (25) above. If θ = 0, then E(0, z) = 1 + z, z0 = 1 and thus λ0 = 2.
Hence (26) is again true. Finally, if θ ∈ (−1, 0)∪ (0, 12 ), then |θ| < 1, and it is
easy to see that the entire function E(θ, ·) has order zero for these θ. By the
Hadamard factorization theorem, see e.g. Theorem XI.3.4 in [9], this implies

E(θ, z) =
∏

k>1

(
1 +

z

ak(θ)

)
,

where {ak(θ), k > 1} denotes the sequence of complex roots of z 7→ E(θ,−z)
such that k 7→ |ak(θ)| is positive, nondecreasing and satisfying

∑

k>1

1

|ak(θ)|s
< ∞

for each s > 0. Consequently, by (2), we obtain

∑

n>1

(1− θ)n−1Jn(θ)
zn

n!
= − logE(θ,−z) = −

∑

k>1

log

(
1− z

ak(θ)

)

=
∑

k>1

∑

n>1

zn

n(ak(θ))n
=
∑

n>1

∑

k>1

zn

n(ak(θ))n

for any z such that |z| < |a1(θ)|. Here the last equality follows by Fubini’s
theorem and the easily established inequality
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∑

n,k>1

|z|n
n|ak(θ)|n

6

(
∑

k>1

∣∣∣∣
a1(θ)

ak(θ)

∣∣∣∣

)(
∑

n>1

|z|n
|a1(θ)|n

)
.

A comparison of coefficients leads to a convergent series representation of
Mallows-Riordan polynomials which is valid for any n > 0 and θ ∈ (−1, 1),
namely

Jn+1(θ)

n!
=
∑

k>1

1

(1− θ)nak(θ)n+1
· (27)

The last step is to show that a1(θ) is simple and positive, and that |a2(θ)| >
a1(θ). Putting everything together, we indeed obtain

pUn (θ) ∼ 1

zθ λnθ
as n→ ∞,

with λθ = 2(1− θ)zθ > 1 since pUn (θ) → 0.
In the case θ ∈ (0, 1), the fact that x 7→ θx(x−1)/2 is a real entire function

of order 2 combined with Laguerre’s criterion (see e.g. [25] p. 186 and the
references therein) entails that all roots ak(θ) are simple and positive, which
is already mentioned in [28].

In the case θ ∈ (−1, 0), the situation is less simple and we will use the
following argument based on subadditivity. By the Markov property and with
Px = P[·|Y0 = x], one has

pUn+m(θ) = E

[
1{TU

θ >m} PYm

[
TU
θ > n

]]

for all m,n > 0, and it is clear that Ym > 0 a.s. on {TU
θ > m}. On the other

hand, by (17) and since θ < 0,

Px

[
TU
θ > n

]
=

1

2n

∫ (1+θx)+

0

∫ 1

−θu1

· · ·
∫ 1

−(θun−1+···+θn−1u1)

dum . . . du2 du1

6 pUn (θ)

holds for each x > 0, which implies subadditivity, viz.

pUn+m(θ) 6 pUm(θ)pUn (θ).

Let now {aj(θ) : j = 1, . . . , q} be the set of roots of E(θ,−z) having the
same modulus as a1(θ), so |aj(θ)| = |a1(θ)| =: ρ > 0 for each j = 1, . . . , q.
Since ∂zE(θ,−z) = −E(θ,−θz) with |θ| < 1, the minimality of ρ entails
∂zE(θ,−aj(θ)) 6= 0 for each j = 1, . . . , q. Therefore all these first roots must
be simple and we infer from (27) that

Jn+1(θ)

n!
=

P (n) + o(1)

(1− θ)nρn+1
,
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with

P (n) =

q∑

j=1

e2πiαj(n+1)

for some q > 0 and distinct frequencies αj ∈ [0, 1) for j = 1, . . . , q. Set
A = {αj : j = 1, . . . , q} and suppose 0 6∈ A. By Lemma 4 in [7], there exists
a constant c < 0 independent of n such that P (n) 6 c for infinitely many n.
Using Theorem 1, this implies that

2n(1− θ)nρn+1pUn (θ) = P (n) + o(1) 6 c/2 < 0

infinitely often which is impossible. Hence, we have 0 ∈ A and can choose
α1 = 0. Assuming A 6= {0}, thus q > 2, we next observe that

(2(1−θ))n+mρn+m+1(pUn (θ)p
U
m(θ)−pUn+m(θ)) = P (n)P (m)−P (n+m)+o(1)

with a decomposition of the real quantity P (n)P (m)−P (n+m) as a sum of
two real sums

q∑

j=2

e2πiαj(m+1) +

q∑

j=2


∑

k 6=j

e2πiαk(m+1)


e2πiαj(n+1).

Since αj ∈ (0, 1) for j = 2, . . . , q, we invoke again Lemma 4 in [7] to infer the
existence of m0 > 0 and c < 0 such that

q∑

j=2

e2πiαj(m0+1) 6 c.

From this,we deduce

P (n)P (m0)− P (n+m0) 6 c+

q∑

j=2


∑

k 6=j

e2πiαk(m0+1)


e2πiαj(n+1)

6 c

for infinitely many n, again by Lemma 4 in [7]. This leads to

(2(1 − θ))n+m0ρn+m0+1(pUn (θ)p
U
m0

(θ)− pUn+m0
(θ)) 6 c/2 < 0

for infinitely many n, contradicting the above subadditivity property. Hence
A = {0} must hold, which means that a1(θ) is simple and positive and that
|a2(θ)| > a1(θ) as required.

Remark 2.5 (a) The following formula is a consequence of (27) and provides
a full asymptotic expansion of pUn (θ) as n→ ∞:

pUn (θ) =
1

zθ λnθ
+
∑

k>2

1

2n(1− θ)nak(θ)n+1
.
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It remains valid at θ = 0 with ak(θ) := ∞ for all i > 2, and also at θ = −1
with ak(θ) := (−1)k−1(2k − 1)π/4 for all i > 2, then boiling down to the
well-known formula

An

n!
= 2

(
2

π

)n+1∑

k>0

(−1)k(n+1)

(2k + 1)n+1

for Euler’s zigzag numbers, see e.g. the end of Section 1 in [30]. For odd n,
the latter amounts to the classical formula for ζ(n+ 1) in terms of Bernoulli
numbers. The roots ak(θ) are generally non-explicit, but in the case θ ∈ (0, 1),
the above proof and Theorem 1 imply the asymptotic result

Jn+1(θ)

n!
∼ 1

zθ

(
2

λθ

)n

as n→ ∞, (28)

which is valid for every θ ∈ [−1, 1) and has apparently remained unnoticed
in the literature. Finally, we mention that λ0 = 2, and we will show in
Remark 5.3 that λθ > 2 for θ ∈ [−1, 0) and λθ < 2 for θ ∈ (0, 1).

(b) As a consequence of Remark 2.2 and (27), the function θ 7→ (1− θ)zθ
is nonincreasing on [−1, 12 ] and taking values π

2 , 1 and 1
2λ 1

2
at −1, 0 and 1

2 ,

respectively. Since Jn(θ) has positive coefficients, it remains nonincreasing on
[ 12 , 1), with limit 1

e at 1 by Stirling’s formula and the fact that Jn(1) = nn−2.
Stirling’s formula may also be used to provide a polynomial correction in (28)
for θ = 1. It would be interesting to know if this monotonicity property of
the first negative zero of the deformed exponential function can be obtained
directly without connection to Mallows-Riordan polynomials and persistence
probabilities.

(c) For θ ∈ (0, 1), complete asymptotic expansions of the roots of the
deformed exponential function were recently obtained in [34], showing in
particular ak(θ) ∼ kθ−(k−1) as k → ∞. For θ ∈ (−1, 0), we believe that the
roots are simple and alternate in sign as for θ = −1, but we have no proof.
See also [28] for several conjectures on the zeroes of the deformed exponential
function with a parameter θ in the unit disk.

(d) For θ > 0, it is easily shown with the above argument that the sequence
{pUn (θ)}n>0 is superadditive, in other words that

pUn+m(θ) > pUn (θ)p
U
m(θ)

for all m,n > 0. In the case θ ∈ (0, 1/2], this is also the consequence of the
stronger property that the sequence is log-convex, see Proposition 5.6 below.
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3 The case θ < 0

3.1 Proof of Theorem 2

Here we embark on the general integral formula

pn(θ) =

∫ ∞

0

∫ ∞

−θu1

· · ·
∫ ∞

−(θun−1+···+θn−1u1)
!dF (u1) . . . dF (un), (29)

valid for all θ ∈ R, where F denotes the common distribution function of the
i.i.d. innovations X1, X2, . . . In the case θ < 0, the domain of integration is
a subset of the positive orthant {u1 > 0, . . . , un > 0}. As a consequence, the
persistence probabilities pn(θ) and pn(1/θ) only depend on F restricted to
the nonnegative halfline for all n > 1.We can also assume F (0−) = F (0) < 1
because otherwise all probabilities are zero. Setting c = 1− F (0) > 0 and

G(x) = 1−G(−x) =
1

2
+
F (x)− F (0)

2c

for all x > 0, we now see that

pn(θ) = (2c)n
∫ ∞

0

∫ ∞

−θu1

· · ·
∫ ∞

−(θun−1+···+θn−1u1)
!dG(u1) . . . dG(un)

for every n > 0 and θ < 0, and since G is symmetric and continuous, we can
assume without loss of generality that F itself has these properties. Setting
again r = −1/θ > 0, we have

pn(θ) = P




k∑

j=1

θk−jXj > 0, k = 1, . . . , n




= P




k∑

j=1

(−1)k−jrj−1Xj > 0, k = 1, . . . , n




= P


(−1)k−1

k∑

j=1

rj−1Xj > 0, k = 1, . . . , n




where Xj
d
= −Xj for even j and the mutual independence of the Xj has been

used in the last line. Defining Sk = X1 + · · ·+ rk−1Xk, A
+
k = {Sk > 0} and

A−
k = {Sk 6 0} for k = 1, . . . , n, we see that, with writing AB as shorthand

for A ∩B,

pn(θ) =

{
P
[
A+

1 A
−
2 · · ·A−

n

]
if n even,

P
[
A+

1 A
−
2 · · ·A+

n

]
if n odd.



Persistence for a class of AR(1) processes 25

On the other hand, we deduce from (29) upon the successive change of vari-
ables uk = (−1)k−1vk for k = 1, . . . , n that

pk(1/θ) =





∫ ∞

0

∫ −rv1

−∞

· · ·
∫ −(rk−1v1+···+rvk−1)

−∞

dG(v1) . . . dG(vk) if k is even,

∫ ∞

0

∫ −rv1

−∞

· · ·
∫ ∞

−(rk−1v1+···+rvk−1)

dG(v1) . . . dG(vk) if k is odd.

Suppose first that n is odd. Using the continuity of G, we obtain

pn(θ) = P
[
A+

1 A
−
2 · · ·A+

n

]

= P
[
A+

1 A
−
2 · · ·A+

n−2 ∩ {−rn−1Xn 6 Sn−1 6 0}
]

=

∫ ∞

0

P
[
A+

1 A
−
2 · · ·A+

n−2 ∩ {Sn−1 ∈ [−rn−1v1, 0]}
]
dG(v1)

=
pn−1(θ)

2
−
∫ ∞

0

P
[
A+

1 A
−
2 · · ·A+

n−2 ∩ {Sn−1 6 −rn−1v1}
]
dG(v1)

= pn−1(θ)p1(1/θ) −
∫ ∞

0

P
[
A+

1 A
−
2 · · ·A+

n−2 ∩ {Sn−1 6 −rn−1v1}
]
dG(v1).

As for the integrand in the last line, we further compute

P
[
A+

1 A
−
2 · · ·A+

n−2 ∩ {Sn−1 6 −rn−1v1}
]

= P
[
A+

1 A
−
2 · · ·A−

n−3 ∩ {0 6 Sn−2 6 −rn−1v1 − rn−2Xn−1}
]

=

∫ −rv1

−∞

P
[
A+

1 A
−
2 · · ·A−

n−3 ∩ {0 6 Sn−2 6 −s2}
]
dG(v2)

= pn−2(θ)F (−rv1) −
∫ −rv1

−∞

P
[
A+

1 A
−
2 · · ·A−

n−3 ∩ {Sn−2 > −s2}
]
dG(v2),

with the notation sk = rn−1v1 + . . . + rn−kvk for k = 1, . . . , n. Therefore,
integrating with respect to v1 and using the previous formula for p2(1/θ), we
obtain

pn(θ) = pn−1(θ)p1(1/θ) − pn−2(θ)p2(1/θ)

+

∫ ∞

0

∫ −rv1

−∞

P
[
A+

1 A
−
2 · · ·A−

n−3 ∩ {Sn−2 > −s2}
]
dG(v1) dG(v2).

Computing in the same manner the integrand in the previous line, we get

P
[
A+

1 A
−
2 · · ·A−

n−3 ∩ {Sn−2 > −s2}
]

= P
[
A+

1 A
−
2 · · ·A+

n−4 ∩ {0 > Sn−3 > −s2 − rn−3Xn−2}
]

=

∫ ∞

−r2v1−rv2

P
[
A+

1 A
−
2 · · ·A+

n−4 ∩ {0 > Sn−3 > −s3}
]
dG(v3)
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= pn−3(θ)F (r
2v1 + rv2)

−
∫ ∞

−r2v1−rv2

P
[
A+

1 A
−
2 · · ·A+

n−4 ∩ {Sn−3 6 −s3}
]
dG(v3),

where the symmetry of F has been utilized for the final equality. Using the
previous formula for p3(1/θ), we thus arrive at

pn(θ) = pn−1(θ)p1(1/θ) − pn−2(θ)p2(1/θ) + pn−3(θ)p3(1/θ)

−
∫ ∞

0

∫ −rv1

−∞

∫ ∞

−r2v1−rv2

P
[
A+

1 A
−
2 · · ·A+

n−4 ∩ {Sn−3 6 −s3}
] 3∏

i=1

dG(vi).

Continuing this way, or by an induction, we arrive at the identity

pn(θ) =

n∑

k=1

(−1)k−1pn−k(θ)pk(1/θ),

which is the desired result for odd n because p0(1/θ) = 1. The argument for
even n follows analogously and is therefore omitted.

�

Remark 3.1 When the innovation law has atoms on [0,∞), the statement
of Theorem 2 is not true in general: if dF (x) = cµ(dx) + (1 − c)δ0(dx) with
c ∈ (0, 1) and µ some probability on (−∞, 0), then the right-hand side of (9)
equals (1− c)n(1 + (−1)n)/2.

3.2 Behavior at θ = −1

It is clear from the polynomial identities (7) and (10) stated in Theorem 1
and Corollary 1, respectively, that the mapping θ 7→ pUn (θ) is smooth on
(−∞,−1) ∪ (−1, 12 ) for any n > 0. Regarding the natural question of its
behavior at θ = −1, we prove the following result.

Proposition 3.2 For each n > 1, the mapping θ 7→ pUn (θ) is C1 at θ = −1.

Proof. Continuity follows directly from 2nn! pUn (θ) → J̃n+1(−1) as θ ↑ −1

and J̃n+1(−1) = Jn+1(−1), which in turn is a consequence of

∑

n>0

J̃n+1(−1)
zn

n!
=



∑

n>0

(−1)nJn+1(−1)
zn

n!



−1

=
cos z

1− sin z
=

1 + sin z

cos z
=
∑

n>0

Jn+1(−1)
zn

n!
.
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To prove continuity of the derivative, we introduce the generating functions

J(θ, z) =
∑

n>0

Jn+1(θ)
zn

n!
and J̃(θ, z) =

∑

n>0

J̃n+1(θ)
zn

n!
·

Since J̃(θ, z)J(θ,−z) = 1 by (11) and therefore

J(θ,−z) ∂θJ̃(θ, z) + J̃(θ, z) ∂θJ(θ,−z) = 0,

we infer

∂θJ̃(−1, z) = −(J̃(−1, z))2 ∂θJ(−1,−z) = −cos2z ∂θJ(−1,−z)
(1− sin z)2

· (30)

Next, we want to find ∂θJ(−1, z) with the help of the formula

J(θ, z) =
F (θ, z)

G(θ, z)
,

where

F (θ, z) =
∑

n>0

θn(n+1)/2

(θ − 1)n
zn

n!
and G(θ, z) =

∑

n>0

θn(n−1)/2

(θ − 1)n
zn

n!
.

Direct computation provides F (−1, z) = c+ s, G(−1, z) = c− s,

∂θF (−1, z) =
z(s− c)

4
+
z2(c+ s)

8
and

∂θG(−1, z) =
−z(s+ c)

4
+
z2(c− s)

8
(31)

with c := cos(z/2) and s := sin(z/2). After some trigonometric simplifica-
tions, this yields

∂θJ(−1, z) =
G(−1, z) ∂θF (−1, z) − F (−1, z) ∂θG(−1, z)

G2(−1, z)
=

z sin z

2(1− sin z)

and, by using this in (30), we finally obtain

∂θJ̃(−1, z) = − z sin z

2(1− sin z)
= − ∂θJ(−1, z).

Therefore J̃ ′
n+1(−1) = −Jn+1(−1) for all n > 0 by comparing coefficients.

Since (pUn )
′(θ) → −J̃ ′

n+1(−1) as θ ↑ −1 and (pUn )
′(θ) → J ′

n+1(−1) as θ ↓ −1,
the proof is complete. �

Remark 3.3 The formula
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∑

n>0

J ′
n+1(−1)

zn

n!
= ∂θJ(−1, z) =

z sin z

2(1− sin z)
=

z tan z

2
J(−1, z)

reveals, after some additional computations, the curious fact that J ′
n+1(−1) =

0 for n ∈ {0, 1} and J ′
n+1(−1) = (n/2)Jn+1(−1) for all n > 2, for which we

could not find a reference.

Our next proposition exhibits the remarkable property that, for any n > 2,
the mapping θ 7→ pUn (θ) is not C2 at θ = −1, which means that a phase
transition of order 2 occurs for these persistence probabilities at the common
boundary of the two regimes θ ∈ (−∞,−1) and θ ∈ (−1, 12 ).

Proposition 3.4 For any n > 2, the mapping θ 7→ (pUn )
′′(θ) is not continu-

ous at θ = −1.

Proof. We know that 2nn! (pUn )
′′(θ) → J ′′

n+1(−1) as θ ↓ −1 and, by recalling

2nn!pU
n (θ) = J̃n+1(1/θ) for θ < −1, we also have

2nn! (pUn )
′′(θ) → J̃ ′′

n+1(−1) + 2J ′
n+1(−1) as θ ↑ −1.

We will now prove that J̃ ′′
n+1(−1) + 2J ′

n+1(−1) > J ′′
n+1(−1) for all n > 2 by

first computing the corresponding exponential generating function

∂2θθJ̃(−1, z) − ∂2θθJ(−1, z) + 2 ∂θJ(−1, z)

and then showing that its coefficients of order greater than 2 are positive.
First, by differentiating twice the relation

J(θ, z)

J̃(θ, z)
= J(θ, z)J(θ,−z)

with respect to θ and, recalling

J(−1, z) = J̃(−1, z) and ∂θJ(−1, z) = −∂θJ̃(−1, z),

we obtain

∂2θθJ̃(−1, z) − ∂2θθJ(−1, z) =
4(∂θJ(−1, z))2

J̃(−1, z)

− J(−1, z)
(
J(−1, z)∂2θθJ(−1,−z) + J(−1,−z)∂2θθJ(−1, z)

)

− 2J(−1, z) ∂θJ(−1, z) ∂θJ(−1,−z).

It is easy to deduce from the proof of Proposition 3.2 that

4(∂θJ(−1, z))2

J̃(−1, z)
− 2J(−1, z) ∂θJ(−1, z) ∂θJ(−1,−z) =

z2 sin z tan z

2(1− sin z)
.

On the other hand, we have
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J(−1, z)∂2θθJ(−1,−z) + J(−1,−z)∂2θθJ(−1, z) = A(z) + A(−z),
where

A(z) =
∂2θθJ(−1, z)

J(−1, z)
.

Using the notation of Proposition 3.2, this function can be decomposed as

G(−1, z)∂2θθF (−1, z)− F (−1, z)∂2θθG(−1, z)

F (−1, z)G(−1, z)
− 2∂θG(−1, z)∂θJ(−1, z)

F (−1, z)

and we find with the help of (31) that

∂θG(−1, z)∂θJ(−1, z)

F (−1, z)
+
∂θG(−1,−z)∂θJ(−1,−z)

F (−1,−z) =
z3 tan z

8
− z2 tan2z

4
.

A combination of the previous facts leads to the simplified formula

∂2θθJ̃(−1, z) − ∂2θθJ(−1, z) =
z3 sin z

4(1− sin z)
+
B(z) +B(−z)

1− sin z
,

where B(z) = F (−1, z) (∂2θθG(−1, z) − ∂2θθF (−1,−z)). After some further
elementary but tedious calculations, one finally arrives that

∂2θθG(−1, z) − ∂2θθF (−1,−z) =
z2(c− s)

2
− z(1 + z2/4)(c+ s)

2
,

with c and s as in (31). By finally putting everything together, we obtain the
simple expression

∂2θθJ̃(−1, z) − ∂2θθJ(−1, z) + 2∂θJ(−1, z) =
z2(1 + sin z)

cos z

for the generating function of (pUn )
′′(−1−) − (pUn )

′′(−1+) whose coefficients
of order > 2 are positive as required. More precisely, we have

(pUn )
′′(−1−) − (pUn )

′′(−1+) =
pU
n−2(−1)

4

for each n > 2. Of course, (pUn )
′′(−1±) denote right-hand/left-hand limits of

(pUn )
′′ at −1. �

Remark 3.5 The nonsmoothness of pUn (θ) at θ = −1 is related to the choice
of the uniform distribution as the innovation law, more precisely to the non-
smoothness of its density at the boundaries of its support. Choosing instead
the biexponential law with density e−|x|/2 for the innovations, it can be easily
derived from (29) that

p̂n(θ) =
1

(1− θ)n−1
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for any n > 1 and θ 6 0, which is obviously smooth. Let us further note in
passing that one can easily check the assertion of Theorem 2 for the persis-
tence probabilities in this case. We will return to biexponential innovations
in the more complicated case θ > 0 in Remark 4.1(a).

3.3 Proof of Corollary 1 and properties of the J̃n(θ)

The proof of Corollary 1 essentially amounts to a derivation of the stated
properties of the J̃n(θ) defined by (11), which is done by Proposition 3.6

below. We also collect a number of further relevant aspects of the J̃n(θ) in
this subsection, though without claiming to be exhaustive. Eq. (10), where
these polynomials appear, can easily be deduced from Theorems 1 and 2 via
an induction, and we omit giving details.

Proposition 3.6 For each n > 1, J̃n+1(θ) is a polynomial in Z[X ] of degree

n(n − 1)/2 and with valuation n − 1. Moreover, (−θ)−(n−1)J̃n+1(θ) ∈ Z[X ]
has positive coefficients.

Proof. By definition (11) and Cauchy’s product, the J̃n(θ) are given in terms
of the Mallows-Riordan polynomials by the recursive formula

J̃n+1(θ) =

n∑

k=1

(−1)k−1

(
n

k

)
Jk+1(θ)J̃n+1−k(θ) (32)

for all n > 1, with initial condition J̃1(θ) = 1. Via induction, (32) readily

implies that J̃n+1(θ) is indeed a polynomial in Z[X ] of degree n(n − 1)/2
for any n > 0. Regarding the exponential generating function of the family
{J̃n+1(θ), n > 0}, it follows from (11) and (4) that

∑

n>0

J̃n+1(θ)
zn

n!
= exp


∑

n>1

(−1)n−1(1 + θ + · · ·+ θn−1)Jn(θ)
zn

n!


. (33)

Differentiating with respect to z and applying again Cauchy’s product, the
following alternative recursion similar to (3) is obtained:

J̃n+2(θ) =
n∑

k=0

(
n

k

)
(−1)k(1 + θ + · · ·+ θk)Jk+1(θ) J̃n+1−k(θ) (34)

for any n > 0. Let us define Ak(θ) = (1 + θ + · · · + θk)Jk+1(θ)/k! for k > 0

and Bk(θ) = (−1)k−1J̃k+1(θ)/k! for k > 1. Then we infer
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Bn+1(θ) =
1

n+ 1

(
An(θ) −

n−1∑

k=0

Ak(θ)Bn−k(θ)

)

which, by making use of the above recursion (32), easily leads to

Bn+1(θ) =
1

n+ 1

n−1∑

k=0

(θk+1 + · · ·+ θn)

k!
Jk+1(θ)Bn−k(θ) (35)

for any n > 1. Finally recalling that all coefficients of the Jn+1(θ) are positive,

all the other asserted properties of the J̃n+1(θ) follow by an induction. �

Remark 3.7 As Ak(0) = 1 and J̃2(θ) = 1, it follows from (35) by an induc-
tion that

p̂U
n (−θ) =

J̃n+1(−1/θ)

n!
∼ 1

2θn−1
as θ → ∞ (36)

for any n > 2, which could also be inferred from (29), but only after tedious
calculations. Considering

Cn(θ) = (−θ)−(n−1)J̃n+1(θ)

for n > 1, which is a polynomial of degree (n − 1)(n − 2)/2 with only pos-
itive coefficients, (36) provides that Cn(0) = n!/2 for all n > 2, whereas
C1(0) = 1. Moreover, it has leading coefficient 1 as one can deduce from
(32) by a straightforward argument. For their coefficients of higher degree,
the polynomials Cn exhibit some similarities with Touchard’s polynomials,
see [32, p. 24], but their full combinatorics have apparently not yet been dis-
cussed in the literature.

An alternative expression for the exponential generating function of the
family {J̃n+1(θ), n > 0} is

∑

n>0

J̃n+1(θ)
zn

n!
≡

∑

n>0

θn(n−1)/2

(1− θ)n
zn

n!

∑

n>0

θn(n+1)/2

(1− θ)n
zn

n!

(37)

but it does not even seem to provide directly that J̃n+1(θ) is a polynomial.
Choosing θ = −1, we obtain

∑

n>0

J̃n+1(−1)
zn

n!
=

cos z

1− sin z
=

1 + sin z

cos z
=
∑

n>0

Jn+1(−1)
zn

n!
,

which has been observed already in the proof of Proposition 3.2 and implies
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J̃n+1(−1) = Jn+1(−1) = An

for all n > 0. The following result shows another striking similarity of the
J̃n with Mallows-Riordan polynomials. Recall that Jn+1(1) = (n+ 1)n−1 for
any n > 0, see e.g. [21] after Eq. (3).

Proposition 3.8 For any n > 0, (−1)n−1J̃n+1(1) = (n− 1)n−1 holds.

Proof. It follows from (33) for θ = 1 that

∑

n>0

J̃n+1(1)
zn

n!
= exp



∑

n>1

(−1)n−1 nJn(1)
zn

n!




= exp



∑

n>1

(−n)n−1 z
n

n!


 = exp [W (z)]

for any z ∈ (−1/e, 1/e). Here W (z) equals the Lambert function W (z) and
is known to satisfy

e−W (z) = z−1W (z)

on (−1/e, 1/e). A comparison of coefficients on both sides of this equation
yields the desired result. �

We conclude this paragraph with a monotonicity property on [−1, 0] that
is similar to the one stated in Remark 2.2 for Mallows-Riordan polynomials.
It is clear from Proposition 3.6 that θ 7→ (−1)nJ̃n(θ) increases on R

+ for any
n > 3, and we have also observed in the proof of Proposition 3.2 that

J̃ ′
n+1(−1) = −J ′

n+1(−1) = −nAn/2 < 0

for any n > 2. The following property, obtained through the connection with
persistence probabilities, completes the picture.

Proposition 3.9 The function θ 7→ J̃n(θ) decreases on [−1, 0] for any n > 3.

Proof. By (10), it is enough to prove that θ 7→ p̂U
n (θ) is increasing on (−∞, 1]

for all n > 2. Setting r = −1/θ ∈ (0, 1], we see by the definition that p̂U
n (θ)

is, for every n > 2, the volume of the polytope in [0, 1]n defined by the
inequalities

xi + θxi−1 + · · · + θi−1x1 ∈ [0, r]

for i = 1, . . . , n− 1, and xn > xn−1 + θxn−2 + · · · + θn−1x1. Changing the
variable y1 = x1 and yi = xi + · · · + θi−1x1 for i = 2, . . . , n, we see that this
volume equals that of the intersection of [0, r]n−1× [0, 1] and the polytope in
[0, 1]n defined by the inequalities
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yi+1 6 1 + θxi−1

for i = 1, . . . , n− 1, which implies that θ 7→ p̂U
n (θ) increases on (−∞, 1]. �

Remark 3.10 When combined with Remark 2.2, the above proof shows that
the mapping θ 7→ pUn (θ) is nondecreasing on the whole real line for all n > 0.
Since this is actually true on R

+ for arbitrary innovation law, see again
Remark 2.2, it would be interesting to know if there are innovation laws
where monotonicity fails to hold on the negative halfline.

3.4 Asymptotic behaviour

The following result gives exact exponential behavior of the pU
n (θ) for θ < −1,

with a rate expressed in terms of the first root z1/θ of the generalized expo-
nential function E(1/θ, z), similar to Proposition 2.4.

Proposition 3.11 For every θ < −1, there exists cθ ∈ (0,∞) such that

pU
n (θ) ∼ 1

cθ µ
n
θ

as n→ ∞,

where µθ = 2(1− θ)z1/θ > −2θ.

Proof. Putting r = 1/θ ∈ (−1, 0) and adopting the notation of Proposi-
tion 2.4, Eq. (37) provides us with

G(r, z) :=
∑

n>0

(1− r)n J̃n+1(r)
zn

n!
=

E(r, z)

E(r, rz)
=

∏

k>1

(
1 +

z

ak(r)

)

∏

k>1

(
1 +

rz

ak(r)

)

for any z ∈ B(0, b1(r)), where b1(r) = −θa1(r) > 0 equals the smallest root
in modulus of z 7→ E(r, rz). We claim that E(r, b1(r)) 6= 0, for otherwise
we would infer E(r,−a1(r)) = E(r, b1(r) = 0 and hence, by Rolle’s theorem,
E′(r, z1) = E(r, rz1) = 0 for some z1 ∈ (−a1(r), b1(r)), which contradicts the
minimality of b1(r). Recalling from the proof of Proposition 2.4 that b2(r) =
−θ|a2(r)| > b1(r), we see that z 7→ G(r, z) is meromorphic on B(0, b2(r))
with a single pole of order one at b1(r). It follows upon setting

cθ =

∏

k>2

(
1 +

θb1(r)

ak(r)

)

∏

k>1

(
1 +

b1(r)

bk(r)

) ∈ (0,∞),
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that the function

z 7→ G(r, z) − b1(r)

cθ(b1(r) − z)

is holomorphic on B(0, b2(r)) and, by evaluating its coefficients, we finally
obtain

pUn (θ)µ
n
θ = (1 − r)n J̃n+1(r)

(b1(r))
n

n!
→ 1

cθ
as n→ ∞.

Finally, the bound µθ = −θλr > −2θ follows by a look at the dual case
θ ∈ (−1, 0] in Proposition 2.4, see Remark 2.5(b). �

Remark 3.12 As expected, one has µθ = −θλ1/θ > λ1/θ and µθ → ∞ as
θ → −∞. And since θ 7→ pUn (θ) is nondecreasing on (−∞,−1), the same must
hold for θ 7→ µ−1

θ on this interval.

4 The case θ > 0

4.1 Proof of Theorem 3

Again, the argument relies on a linear recurrence relation obtained from the
general formula (29). The first step is to show that

pn(θ) =

n∑

k=1

pn−k(θ) (pk−1(1/θ) − pk(1/θ)) (38)

for all θ > 0 and n > 1. Setting r = 1/θ > 0, we embark on the fact that

pn(θ) = P

[
k∑

j=1

rj−1Xj > 0, k = 1, . . . , n

]
.

For n > 1 and u ∈ R, we define

An(u) =

{
k∑

j=1

rj−1Xj > 0, k = 1, . . . , n− 1;

n∑

j=1

rj−1Xj > u

}

and An = An(0). Since

An(u) = An−1 ∩
{

n−1∑

j=1

rj−1Xj > u − rn−1Xn

}
(39)

and the innovation law F is symmetric and continuous, the decomposition
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pn(θ) = P[An] =
pn−1(θ)

2
+

∫ 0

−∞

P
[
An−1(−rn−1u1)

]
dF (u1)

= pn−1(θ) q1(r) +

∫ ∞

0

P
[
An−1(r

n−1u1)
]
dF (u1)

holds, where qk(r) = pk−1(r)−pk(r) for all k > 1. The next step is to evaluate
the integrand, say In−1, in the previous line:

In−1 =

∫ ∞

ru1

pn−2(θ) dF (u2)

+

∫ ru1

−∞

P
[
An−2(r

n−1u1 − rn−2u2)
]
dF (u2)

= pn−2(θ)

(
1 −

∫ ru1

−∞

dF (u2)

)

+

∫ ∞

−ru1

P
[
An−2(r

n−1u1 + rn−2u2)
]
dF (u2)

= pn−2(θ)

(
1 −

∫ ∞

−ru1

dF (u2)

)

+

∫ ∞

−ru1

P
[
An−2(r

n−1u1 + rn−2u2)
]
dF (u2).

Putting things together, we arrive at

pn(θ) = pn−1(θ) q1(r) + pn−2(θ)

(
p1(r) −

∫ ∞

0

∫ ∞

−ru1

dF (u1)dF (u2)

)

+

∫ ∞

0

∫ ∞

−ru1

P
[
An−2(r

n−1u1 + rn−2u2)
]
dF (u1)dF (u2)

= pn−1(θ) q1(r) + pn−2(θ) q2(r)

+

∫ ∞

0

∫ ∞

−ru1

P
[
An−2(r

n−1u1 + rn−2u2)
]
dF (u1)dF (u2),

and calls for a computation of In−1 := P[An−2(r
n−1u1+r

n−2u2)] as the next
step. Introducing the notation sk = rn−kuk + . . . + rn−1u1 for k = 1, . . . n,
we find

In−2 =

∫ ∞

ru2+r2u1

pn−3(θ) dF (u3) +

∫ ∞

−(ru2+r2u1)

P[An−3(s3)] dF (u3)

= pn−3(θ)

(
1 −

∫ ∞

−(ru2+r2u1)

dF (u3)

)
+

∫ ∞

−(ru2+r2u1)

P[An−3(s3)] dF (u3)

and thereupon
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pn(θ) =

3∑

k=1

pn−k(θ) qk(r)

+

∫ ∞

0

∫ ∞

−ru1

∫ ∞

−(ru2+r2u1)

P[An−3(s3)] dF (u1)dF (u2)dF (u3).

Therefore, by continuing in the now obvious manner and repeatedly using
(39), we finally arrive at

pn(θ) =

n∑

k=1

pn−k(θ) qk(r)

as required for (38). But this identity in combination with p0(1/θ) = 1 implies

n∑

k=0

pn−k(θ) pk(1/θ) =

n∑

k=1

pn−k(θ) pk−1(1/θ) =

n−1∑

k=0

pn−1−k(θ) pk(1/θ)

for each n > 1 and θ > 0, that is, the quantity on the very left does not
depend on n and must therefore equal 1 as claimed. �

Remark 4.1 (a) In the case when X1 has a biexponential law and θ ∈ (0, 1),
the generating function of the persistence probabilities can be computed from
the results of [22] in terms of q-series. More precisely, it follows from Formula
(31) in [22] that

∑

n>0

pn(θ) z
n =

(θz; θ2)∞ + (θ2z; θ2)∞
(z; θ2)∞ + (θz; θ2)∞

(40)

with the standard q-notation (z; q)∞ =
∏

n>0(1 − zqn) for all z, q ∈ (0, 1).
Thanks to Theorem 3, we can now also compute this generating function if
θ > 1, namely

∑

n>0

pn(θ) z
n =

(z; θ−2)∞ + (θ−1z; θ−2)∞
(1− z) ((θ−1z; θ−2)∞ + (θ−2z; θ−2)∞)

. (41)

These formulae for pn(θ) if θ > 0 are significantly more complicated than for
θ < 0, see Remark 3.5. On the other hand, they exhibit some interesting sim-
ilarities with those in the case of uniform innovations, due to the q-binomial
theorem. Skipping details, formula (40) can indeed be rewritten

∑

n>0

pn(θ) z
n =

∑

n>0

qn(n+1)/2

(q − 1)n
zn(1 + θ−n)

[n]q!

∑

n>0

qn(n−1)/2

(q − 1)n
zn(1 + θn)

[n]q!
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with q = θ2 ∈ (0, 1), and resembles the formula

∑

n>0

pUn (θ) z
n =

∑

n>0

θn(n+1)/2

(θ − 1)n
zn

2n n!

∑

n>0

θn(n−1)/2

(θ − 1)n
zn

2n n!

,

which in turn follows from the fact that expressions in (19) and (20) are
identical for θ ∈ [−1, 12 ]. This raises the question whether other symmetric
innovation laws exist, intermediate between uniform and bi-exponential, that
allow one to give the explicit persistence probabilities in Theorems 2 and 3.

(b) Recall from Remark 2.1(a) that in the case when the innovation law
is uniform on [−1, 1], Formula (14) for the persistence probabilities pUn (θ) is
valid for each n > 1 and θ > 1/θn, where θn denotes the positive solution to
θ+ · · ·+ θn−1 = 1. In the case θ ∈ (1, 1/θn), the behavior of p

U
n (θ) exhibits a

more exotic character (truncated Laurent series in θ). For example, one has

p̂U
3 (θ) = −1

θ
+

19

6
+
θ2

2
− θ3

6

for each θ > 1 such that θ−1 + θ−2 > 1. Still, the mapping θ → p̂n(θ) seems
to maintain a certain degree of smoothness on (1,∞) for all n, see Figure 1.

4.2 Proof of Corollary 2 and properties of the Ĵn(θ)

Regarding a proof of Corollary 2, we first mention that Eq. (14) for the per-
sistence probabilities pU

n (θ) follows directly from Theorems 1 and 3 when

defining the Ĵn(θ) by (15). Therefore, it remains to verify the asserted prop-
erties of the latter functions, which is done by Proposition 4.2 below, followed
by a discussion of some further notable properties.

Proposition 4.2 For each n > 1, Ĵn+1(θ) is a polynomial in Z[X ] of degree
n(n − 1)/2 that has coefficient 2n−1n! of order 0 while all other coefficients
are negative.

Proof. It follows from (11) and (15) that the Ĵn(θ) and J̃n(θ) are related
through their exponential generating functions, namely

∑

n>0

Ĵn+1(θ)
zn

n!
=

1

1− 2z


∑

n>0

(−1)nJ̃n+1(θ)
zn

n!


 ,

which is equivalent to
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Ĵn+1(θ)

2n n!
=

n∑

k=0

(−1)kJ̃k+1(θ)

2k k!
(42)

for all n > 0 and implies the recursive relation

Ĵn+1(θ) = 2n Ĵn(θ) + (−1)nJ̃n+1(θ) (43)

for all n > 1, with initial condition Ĵ1(θ) = 1. As an immediate consequence

of this relation and formally proved by induction, each Ĵn+1(θ) is indeed a
polynomial in Z[X ] of the asserted degree. We further infer from (42) that

Ĵn+1(θ) = 2n−1n! − 2nn!

n∑

k=2

(−1)k+1J̃k+1(θ)

2k k!

for any n > 2, which together with Ĵ2(θ) = 1 concludes the proof because,
as a consequence of Proposition 3.6, the polynomial

n∑

k=2

(−1)k+1J̃k+1(θ)

2k k!

has valuation 1 and positive coefficients for any n > 2. �

For θ > 2, Formula (42) implies the following curious invariance property
in the expansion of the persistence probability pUn (θ).

Proposition 4.3 For any θ > 2, k > 0 and n > k + 1, the first k terms in
the polynomial expansion of pUn (θ) as a function of 1/θ do not depend on n.

Proof. It follows by Theorem 3 and (42) that

pU
n (θ) =

Ĵn+1(1/θ)

2n n!
=

n∑

j=0

(−1)jJ̃j+1(1/θ)

2jj!

=
k+1∑

j=0

(−1)j J̃j+1(1/θ)

2jj!
+ Pn,k(1/θ) (44)

for any n > k+1, where Pn,k(1/θ) is zero for n = k+1 and, by Proposition 3.6,
a polynomial of valuation k + 1 for n > k + 1. This shows that the k first
terms of the expansion of pUn (θ) in 1/θ are those in the first sum appearing
in (44) and thus do not depend on n > k + 1 as claimed. �

We will see in the next subsection that pU
n (θ) ↓ ℓ(θ) > 0 for all θ > 1. If

θ > 2, Proposition 4.3 contributes to this convergence result an infinite series
representation of the limit, namely

ℓ(θ) =
∑

k>0

ak θ
−k,
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where a0 = 1
2 and ak for k > 1 equals the coefficient of θk in the polynomial

sum
k+1∑

j=0

(−1)jJ̃j+1(θ)

2j j!

and is a negative rational. The first terms in the expansion of ℓ(θ) are

ℓ(θ) =
1

2
−
(

1

8 θ
+

1

16 θ2
+

5

96 θ3
+

1

24 θ4
+

5

128 θ5

+
7

192 θ6
+

9

256 θ7
+

107

3072 θ8
+

641

18432 θ9
+ · · ·

)

and exhibit some curious combinatorial behavior. For example, the sequence
of ratios {ak+1/ak, k > 1} begins with

1

2
,
5

6
,
4

5
,
15

16
,
14

15
,
27

28
,
107

108
,
641

642
, . . .

and thus seems to contain terms of the form N
N+1 only for some integers N .

A thorougher investigation of the limit function ℓ(θ) and its coefficients ak
for k > 1 is left open for future research.

Recalling that T U
θ = inf{n : Yn < 0} in the case of uniform innovations

on [−1, 1], the last result of this subsection provides a surprisingly simple
formula for the first hitting probabilities P[T U

θ = n] in the case θ > 2.

Proposition 4.4 If θ > 2, then

P[T U
θ = n] =

(−1)n−1J̃n+1(1/θ)

2n n!

holds for all n > 1.

Proof. This follows from

P[T U
θ = n] = pU

n−1(θ) − pUn (θ)

=
2nĴn(1/θ) − Ĵn+1(1/θ)

2n n!
=

(−1)n−1J̃n+1(1/θ)

2n n!

for every n > 1, where the second equality holds by Theorem 3 and the third
one by (43). �

We note as a particular consequence that the mapping θ 7→ P[T U
θ = n]

is decreasing on [2,∞) for all n > 1. This follows because the polynomials

(−1)n−1J̃n+1(θ) have only positive coefficients, and it refines the assertion
that θ 7→ 1 − ℓ(θ) =

∑
n>1 P[T

U
θ = n] decreases in θ which is clear from the

above series expansion for ℓ(θ).
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4.3 Asymptotic behaviour

The next result is a further consequence of Theorem 3 and provides an un-
expected extension of a well-known result for dual pairs of ladder epochs of
ordinary random walks (which occurs here if θ = 1) to general AR(1) pro-
cesses with drift θ > 1 and symmetric, continuous innovation law. To see the
connection with ladder epochs, we point out the obvious facts that

pn(θ) = P[Tθ > n] → P[Tθ = ∞] as n→ ∞,

thus ℓ(θ) = P[Tθ = ∞], and that Tθ = inf{n : Yn < 0} can be viewed as the
first descending ladder epoch of (Yn)n>0.

Proposition 4.5 Given the assumptions of Theorem 3, the identity

ℓ(θ) = P[Tθ = ∞] =
1

E[T1/θ]
(45)

holds true, and the terms are positive if and only if θ > 1 and E log(1+|X1|) <
∞.

If θ = 1, then (Yn)n>0 is an ordinary random walk with continuous and
symmetric increment law. Denoting by T ∗

1 = inf{n : Yn 6 0} its first weakly
descending ladder epoch, it follows from the famous Spitzer-Baxter identities,
see e.g. [8, Sect. 8.4], that (T1, T

∗
1 ) form a dual pair satisfying

P[T1 = ∞] =
1

ET ∗
1

and P[T ∗
1 = ∞] =

1

ET1
. (46)

But under the given additional assumptions on the increment law, it follows
immediately that T1 and T ∗

1 are identically distributed, so that (45) can
indeed be viewed as an extension of (46) of the aforementioned kind. Finally,
we should note that all quantities in (46) are 0 because the random walk is
symmetric and thus particularly oscillating.

Proof (of Proposition 4.5). We already pointed out in the Introduction that
an AR(1) process (Yn)n>0 defined by (5) is positive recurrent if and only if
θ ∈ (−1, 1) and E log(1 + |X1|) < ∞. In particular, we infer here that θ > 1
is necessary and sufficient for

ET1/θ =
∑

n>0

P[T1/θ > n] =
∑

n>0

pn(1/θ) < ∞.

Now use (12) in Theorem 3 to infer

1 =
n∑

k=0

P[Tθ > k]P[T1/θ > n− k] > P[Tθ = ∞]
n∑

k=0

P[T1/θ > n− k]
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for each n > 0 and then upon letting n tend to ∞ that

P[Tθ = ∞]ET1/θ 6 1,

in particular that P[Tθ = ∞] > 0 entails ET1/θ <∞ and so θ > 1. Conversely,
if ET1/θ <∞, then (12) provides, for any m > 0 and n > m

1 6 P[Tθ = ∞]

m∑

k=0

P[T1/θ > k] +

n∑

k=m+1

P[T1/θ > k]

and then upon letting n tend to ∞ that

1 6 P[Tθ = ∞]

m∑

k=0

P[T1/θ > k] +
∑

k>m

P[T1/θ > k].

By finally taking the limit m→ ∞, we arrive at

1 6 P[Tθ = ∞]ET1/θ,

which together with the first part proves the equivalence of P[Tθ = ∞] > 0
and ET1/θ <∞ (and thus θ > 1) as well as Eq. (45). �

Remark 4.6 If θ > 1 and for biexponential innovations, a combination of
Proposition 4.5 and Formula (34) in [22] implies

ℓ(θ) =
(θ−1; θ−2)∞

(θ−1; θ−2)∞ + (θ−2; θ−2)∞
> 0

which can also be seen directly from (41) and the Hardy-Littlewood Taube-
rian theorem.

Remark 4.7 Back to the case when innovations are uniform on [−1, 1],
Proposition 4.5 provides

ℓ(θ) =
1∑

n>0

pUn (1/θ)
> 0 as n→ ∞, (47)

for any θ > 1. This should be compared to the following: for θ > 2, we have
already given in the previous subsection an alternative formula for ℓ(θ) in
terms of the sequence of modified Mallows-Riordan polynomials, namely

ℓ(θ) =
∑

n>0

(−1)nJ̃n+1(1/θ)

2n n!
=
∑

k>0

ak θ
−k,

with a somewhat mysterious sequence of coefficients ak in the convergent
series representation on the right-hand side.
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The final result of this subsection confirms that pUn (θ) for θ > 1 approaches
its limit ℓ(θ) again at an exponential rate, in the case θ > 2 given by the first
positive root

νθ = inf{z > 0 : L(θ, z) = 0}
of the function

L(θ, z) =
1

a1(1/θ)
+
∑

k>2

1− z/λ1(θ)

ak(1/θ) (1− z/λk(θ))
.

Here we have used the notation from Proposition 2.4 and Remark 2.5(a),
and further defined λk(θ) = 2(1 − 1/θ)ak(1/θ). It should be recalled that
(ak(1/θ))k>1 and (λk(θ))k>1 are increasing sequences of positive numbers
with λ1(θ) > 1 and ∑

k>1

1

ak(1/θ)
= 1 < ∞.

This implies that L(θ, z) is real-analytic in z on [0, λ2(θ)), where it decreases
from 1 to −∞ and has a unique and simple root νθ ∈ (λ1(θ), λ2(θ)).

Proposition 4.8 For any θ > 1, there exists κθ > 0 such that

pUn (θ) − ℓ(θ) 6 e−κθn for all n > 0, (48)

and if θ > 2, there further exists cθ > 0 such that

pUn (θ) − ℓ(θ) ∼ 1

cθ νnθ
as n→ ∞. (49)

Proof. Putting rU
n (θ) = pUn (θ)−ℓ(θ) > 0, it follows from (47) and Theorem 3

that
(
∑

n>0

rU
n (θ) zn

)(
∑

n>0

pUn (1/θ) z
n

)
= ℓ(θ)

∑

n>0

pUn (1/θ) (1 + · · ·+ zn−1)

for any z ∈ (0, 1) and θ > 1. Moreover, the right-hand side has an analytic
extension to (0, z∗(θ)) for some z∗(θ) > 1 satisfying pUn (1/θ)z∗(θ)

n → 0 as
n→ ∞, see e.g. Theorem 1 in [20] for the latter property. This clearly implies
(48).

For θ > 2, we have seen in Remark 2.5(a) that, with the above notation,

pU
n (1/θ) =

∑

k>1

1

ak(1/θ)λk(θ)n

for every n > 0. By plugging this in the above equation, we find after some
easy simplifications and upon using Fubini’s theorem that
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∑

n>0

rU
n (θ) zn =

ℓ(θ) L̃(θ, z)

L(θ, z)

for any z ∈ [0, λ1(θ)), with the notation ãk(1/θ) = (λk(θ) − 1)ak(1/θ) for
k > 1 and

L̃(θ, z) =
1

ã1(1/θ)
+
∑

k>2

1− z/λ1(θ)

ãk(1/θ) (1− z/λk(θ))
·

As (λk(θ))k>1 is increasing, the function z 7→ L̃(θ, z), which is real-analytic
and decreasing on [0, λ2(θ)) (as a sum of real-analytic and decreasing func-

tions) must also satisfy L̃(θ, z) > 0. Putting everything together while skip-
ping details, we finally obtain that the function

z 7→
∑

n>0

rU
n (θ) zn

is meromorphic on B(0, λ2(θ)), where it has a unique and simple pole at νθ.
This completes the proof as in Proposition 2.4. �

5 Miscellanea

5.1 The Tutte polynomial on a complete graph

Given a finite graph G, its dichromatic polynomial is defined as the bivariate
generating function

Q(G, x, θ) =
∑

H⊆G

xk(H)θe(H)+k(H)−v(H) ,

where summation ranges over all spanning subgraphs of G and e(H), k(H),
v(H) denote the number of edges, connected components and vertices of H ,
respectively. For the complete graph Kn with n vertices, the exponential
generating function of the Tn(x, θ) = Q(Kn, x, θ) has been computed in [33,
Eq. (17)] as

∑

n>0

Tn(x, θ)
zn

n!
≡
(
∑

n>0

(θ + 1)n(n−1)/2

θn
zn

n!

)θx

≡ exp

[
x
∑

n>1

Jn(θ + 1)
zn

n!

]
, (50)
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where (2) has been utilized for the second equality. Introducing the modified
polynomials TK0

(x, θ) = 1 and

TKn
(x, θ) = 1 +

Tn(x− 1, θ − 1)− 1

x− 1

for n > 1, we have the identity

TKn
(1, θ) = Jn(θ). (51)

For any q ∈ (0, 1] and t > 0, consider now the Tutte polytope Tn(q, t) ⊂ R
n

defined as the set of (x1, . . . , xn) satisfying the constraints xn > 1− q and

qxj 6 q(1 + t)xj−1 − t(1− q)(1 − xi−1)

for all 1 6 i 6 j 6 n, with the convention x0 = 1. The limiting Tutte polytope
is obtained as q → 0 and equals

Tn(0, t) = {1 6 x1 6 1 + t, 1 6 xi 6 (1 + t)xi−1, i = 2, . . . , n}.

The following corollary follows directly from Proposition 2 and (51) above.

Corollary 5.1 For all n > 1 and t > 0, one has

volTn(0, t) = tn TKn+1
(1, 1 + t)/n!.

The result particularly provides that the volume of the Cayley polytope

Cn = volTn(0, 1) = {1 6 x1 6 2, 1 6 xi 6 2xi−1, i = 2, . . . , n}

equals Jn+1(2)/n!, that is 1/n! times the number of labeled connected graphs
with n+ 1 vertices. This fact was conjectured in [5] and proved in [18], as a
consequence of the more general formula

volTn(q, t) = tn TKn+1
(1 + q/t, 1 + t)/n! (52)

for any n > 1, q ∈ (0, 1] and t > 0, see Theorem 1.3 therein. The limiting
case q = 0 follows directly from Proposition 2, the proof of which is more
elementary than the arguments developed in [18]. See also Theorem 3 in [19]
for another elementary proof of Corollary 5.1 in the case t = 1 using partitions
of integers. The natural question arises whether the general identity (52)
admits a simple proof as well.

Before we finish this subsection by pointing out a curious connection be-
tween the Tutte polynomial Tn(x, θ) and a certain Poisson process on N for
θ ∈ [−2, 1), we prove the following summability criterion for Mallows-Riordan
polynomials that seems to have been unnoticed in the literature.
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Lemma 5.2 For θ > −1, the positive series
∑

n>1
Jn(θ)
n! is finite if and only

if θ < 0.

Proof. The only-if part is immediate since Jn(θ) > Jn(0) = (n − 1)! for all
n > 1 and θ > 0. For the if part, we first observe, with the notation of
Subsection 2.2, that for all z ∈ (0, 1) and θ ∈ [−1, 0) one has by (2)

(θ − 1) logE

(
θ,− z

1− θ

)
=
∑

n>1

Jn(θ)
zn

n!
<
∑

n>1

zn

n
< ∞,

recalling the fact mentioned in Remark 2.5(b) that (1 − θ)zθ > 1 for each
θ ∈ [−1, 0). Fixing now any such θ and recalling further that ϑ 7→ (1 − ϑ)zϑ
is nonincreasing on [−1, 12 ] with value z0 = 1 at 0 shows that (1 − θ)zθ = 1
entails (1 − ϑ)zϑ = 1 for all ϑ ∈ (θ, 0), which in turn implies the impossible
fact that the analytic function

ϑ 7→
∑

n>0

ϑn(n−1)/2

(ϑ− 1)n

vanishes on (0,−θ). So we must have (1− θ)zθ > 1 for all θ ∈ [−1, 0) and, by
picking some xθ ∈ (1, (1− θ)zθ), we finally obtain

∑

n>1

Jn(θ)

n!
<
∑

n>1

Jn(θ)
xnθ
n!

< ∞

as required. �

Remark 5.3 Recall from Proposition 2.4 that λθ = 2(1− θ)zθ, thus nonin-
creasing on [−1, 1), and from (28) in Remark 2.5(a) that

Jn+1(θ)

n!
∼ 1

zθ

(
2

λθ

)n

as n→ ∞.

As a consequence of the previous lemma, we now infer λθ > 2 for θ ∈ [−1, 0)
and λθ < 2 for θ ∈ (0, 1).

Lemma 5.2 also ensures that the positive measure

mθ(du) =
∑

n>1

Jn(θ + 1)

n!
δn(du)

is finite with total mass mθ = θ log(E(θ + 1, 1/θ)) for any θ ∈ [−2,−1).
Considering now a compound Poisson process {Xθ(t), t > 0} on N with
Lévy measure mθ(du), the discrete Lévy-Khintchine formula, see e.g. Theo-
rem II.3.2 in [31], combined with (50) implies
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∑

n>0

e−tmθTn(t, θ)
zn

n!
= exp

[
−t
∫ ∞

0

(1− zu)mθ(du)

]
= E

[
zXθ(t)

]

for every z ∈ (0, 1). By comparison of coefficients, this leads to

P [Xθ(t) = n] = e−tmθ
Tn(t, θ)

n!

for all t > 0, θ ∈ [−2, 1) and n > 0, and thus to a probabilistic representation
of the Tutte polynomial. In the limiting case θ = −2, m−2 = − log(1− sin 1)
and the compound Poisson process has explicit moment generating function

E

[
zX−2(t)

]
=

(
1− sin 1

1− sin z

)t

for all t > 0 and z ∈ (0, π/2).

5.2 Infinite divisibility

This subsection is devoted to aspects of infinite divisibility (ID) in connection
with the persistence probabilities pn(θ), and it begins with a discussion of

the shifted first passage time below zero T̃θ = Tθ − 1, related to the pn(θ) by

P[T̃θ = n] = pn(θ)− pn+1(θ) for all n > 0.

Unlike Tθ, it qualifies at all to have a discrete ID law by taking values in N0

rather than N only.

For a downward skip-free Markov chain on Z, it is easy to see by right
continuity that its shifted passage time below zero is indeed always ID, but
already replacing the state space with the whole real line makes the problem
less immediate because of the jumps. Back to the model (5) studied in this

work and assuming θ = 0 (white-noise case), the random variable T̃0 is geo-
metric and hence ID regardless of the innovation law, see e.g. Example II.2.6
in [31]. If θ = 1 (random walk case) and the innovation law is symmetric and
continuous, then the Sparre Andersen formula (13) provides

pn(1) =
1

4n

(
2n

n

)
,

and thus P[T̃θ = n] = pn(1) − pn+1(1) = Cn/2
2n+1, where {Cn, n > 0} de-

notes the sequence of Catalan numbers. Their classical integral representation
leads to

P[T̃θ = n] =
1

π

∫ 1

0

xn
√

1− x

x
dx
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for all n > 0 and shows that {P[T̃θ = n], n > 0} is a sequence of positive
moments and therefore log-convex. It follows by the Goldie-Steutel criterion,
see e.g. Theorem II.10.1 in [31], that T̃θ is also ID.

In the true Markovian situation θ ∈ (0, 12 ] with uniform innovation law
on [−1, 1], the moment sequence argument still applies as established by the
following result.

Proposition 5.4 The random variable T̃ U
θ is ID for any θ ∈ [0, 12 ].

Proof. For θ as stated, we infer from (7) and (27) that

pUn (θ) =
∑

k>1

1

ak(θ)λk(θ)n
,

where λk(θ) = 2(1 − θ)ak(θ) is an increasing sequence with λ1(θ) > 1. This
yields

P[T̃ U
θ = n] = pUn (θ) − pU

n+1(θ) =
∑

k>1

λk(θ)− 1

ak(θ) (λk(θ))n+1
=

∫ 1

0

xn νθ(dx),

with

νθ(dx) =
∑

k>1

(
λk(θ)− 1

ak(θ)λk(θ)

)
δ1/λk(θ)(dx),

and since νθ is a positive measure on (0, 1), we arrive at the desired conclusion
as in the case θ = 1. �

Remark 5.5 (a) The moment sequence representation argument to show
log-convexity does no longer work if θ = −1. Indeed, by using Euler’s sum-
mation for the cotangent, we have

∑

n>0

pUn (−1)zn =
1 + sin(z/2)

cos(z/2)
= cot

(
π − z

4

)
= lim

n→∞

∑

|j|6n

4

π(4j + 1)− z
,

which after some simple transformations leads to

P[T̃ U
θ = n] =

∫ 1

−1

xn ν(dx)

with λj = 1/(π(4j + 1)) for all j ∈ Z and

ν(dx) = 4(1− x)
∑

j∈Z

λj δλj (dx).

But the latter is obviously only a signed measure on (−1, 1).

(b) If θ > 2 and thus P[T̃ U
θ = ∞] > 0 (defective case), the ID of T̃ U

θ

remains an open problem. Yet, we remark that
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J̃n+1(1/θ) J̃n−1(1/θ) > (1 + 1/n) J̃n(1/θ)
2 for all n > 2

provides a sufficient condition for the log-convexity of {P[T̃ U
θ = n], n > 1}

and thus the ID of T̃ U
θ , as can be shown with the help of Proposition 4.4.

Another line of attack might be the Wiener-Hopf type factorization

(
1− E

[
zT̃

U
1/θ

])(
1− E

[
zT̃

U
θ ~1{T̃ U

θ <∞}

])
= 1− z,

valid for all z ∈ (0, 1) and a straightforward consequence of Theorem 3. In
support of this, we recall that for Lévy processes, the Wiener-Hopf factors
are indeed ID random variables. Finally, we point out that, because of the
negative signs, the recursive formula (32) does not give, at least not directly,
the canonical representation of a discrete ID distribution as stated in Theo-
rem II.4.4. of [31].

(c) The argument given in the above proof of Proposition 5.4 amounts to a
total positivity property for Mallows-Riordan polynomials that is mentioned
in [27]. To explain, recall that

Jn+1(θ)

n!
=
∑

k>1

1

ak(θ)bk(θ)n
=

∫ ∞

0

xn ν̃θ(dx)

for all θ ∈ (0, 1), where the bk(θ) := (1− θ)ak(θ) = λk(θ)/2 are positive and
increasing numbers, and

ν̃θ(dx) =
∑

k>1

1

ak(θ)
δ1/bk(θ)(dx)

a positive measure on (0,∞). By Stieltjes’ criterion, this entails the total
positivity of the Hankel matrix

[
Ji+j+1(θ)

(i+ j)!

]

i,j>0

for any θ ∈ (0, 1), which means that all minors of this matrix are non-negative.
Now it has been conjectured in [27] that this Hankel matrix is even coefficien-
twise totally positive, that is, all minors are polynomials with nonnegative
coefficients. But even the assertion that the polynomial

Jn+1(θ)Jn−1(θ) − (1 + 1/n) (Jn(θ))
2

has only nonnegative coefficients for all n > 1, which provides to the coeffi-
cientwise log-convexity of the sequence {Jn+1(θ)/n!, n > 0}, remains an open
problem.

Propositions 2.4, 3.11 and 4.5 have shown that E[T U
θ ] < ∞ if and only if

θ < 1. In this case, the random variable T̂ U
θ with law
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P[T̂ U
θ = n] =

P[T U
θ > n]

E[T U
θ ]

for all n > 0 can be considered. This law is called the size-biasing of the
law of TU

θ and appears, for instance, in renewal theory. Regarding infinite
divisibility, we have the following result.

Proposition 5.6 The random variable T̂ U
θ is ID for θ ∈ [−1, 12 ] and fails to

be so for θ < −1.

Proof. If θ ∈ [0, 12 ], the result follows from the log-convexity of the sequence

{P[T̃U
θ = n], n > 1} shown in the proof of Proposition 5.4 combined with

[31, Proposition II.10.7], which then ensures the same property for the cor-

responding size-biased probabilities P[T̂ U
θ = n].

If θ ∈ [−1, 0), we use Theorem 1 and the exponential formula (4), giving

∑

n>0

P[T̂ U
θ = n] zn =

1

E[T U
θ ]

∑

n>0

Jn+1(θ)
zn

2n n!

= exp

[
−
∑

n>1

Jn(θ) (1 + · · ·+ θn−1)

2n n!
(1− zn)

]

for all z ∈ (0, 1]. Now the discrete Lévy-Khintchine formula and the fact that

Jn(θ) (1+ · · ·+ θn−1) > 0 for all n > 1 and θ ∈ [−1, 0) imply that T̂ U
θ is ID.

Finally, if θ < −1, we note as a direct consequence of (14) and (33) that

∑

n>0

P[T̂ U
θ = n] zn

= exp

[
−
∑

n>1

(−1)n−1Jn(1/θ) (1 + · · ·+ θ1−n)

2n n!
(1 − zn)

]
,

and this shows that T̂ U
θ cannot be ID because (−1)n−1Jn(1/θ) (1+· · ·+θ1−n)

takes negative values. �

Remark 5.7 (a) If θ < −1 the argument just given has shown that the

sequence {P[T̂ U
θ = n], n > 0} is not log-convex and so, again by [31, Propo-

sition II.10.7], that the sequence {P[T U
θ = n], n > 0} is not log-convex either.

(b) If θ = −1, one has Jn(−1) (1 + · · · + (−1)1−n) = Bn−1 > 0, where
Bn is Euler’s n-th secant or “zig” number, and so we retrieve the well-known
formula

∑

n>0

An
zn

n!
= exp

[
∑

n>1

Bn−1
zn

n!

]
= exp

[
∑

n>0

A2n
z2n+1

(2n+ 1)!

]
,
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which (see e.g. (1.2) in [30]) amounts to

∫ x

0

dt

cos t
= log

(
1 + sinx

cosx

)
, x ∈ (0, π/2).

5.3 Uniform innovations on non-symmetric intervals

Finally, we want to briefly discuss how some of our results can be extended to
the case when the innovation law is uniform on [−a, b] for arbitrary a, b > 0.
Let pa,bn (θ) denote the corresponding persistence probability.

Proposition 5.8 For every a, b > 0 and n > 0, one has

pa,bn (θ) =





(
b

a+ b

)n
Jn+1(θ)

n!
if θ ∈

[
−1,

a

a+ b

]
,

(
b

a+ b

)n
J̃n+1(1/θ)

n!
if θ ∈ (−∞,−1].

Proof. Given uniform innovations on [−a, b] in (5), it is no loss of generality to

assume b = 1, for otherwise this holds for the innovations X̂n = b−1Xn upon
multiplication of (5) by b−1 and pa,bn (θ) = P[Ŷ1 > 0, . . . , Ŷn > 0]. Recalling
the discussion prior to (17), it is easy to see that in the present situation

pa,1n (θ) =
1

(a+ 1)n

∫ 1

0

∫ 1

−θu1

· · ·
∫ 1

−(θun−1+···+θn−1u1)

dun . . . du2 du1

=
Jn+1(θ)

(a+ 1)n n!

for any θ > −1 such that θ+ · · ·+θn−1 6 a. But the latter holds for all n > 0
if θ ∈ [−1, a/(a+ 1)]. If θ < −1, we observe that

pa,1n (θ) =
1

(a+ 1)n

∫ 1

0

∫ 1

(−θu1)∧1

· · ·
∫ 1

(−θun−1−···−θn−1u1)∧1

dun . . . du2 du1

because each of the lower integration bounds are > 0 and thus independent
of a. In other words, a 7→ (a+ 1)npa,1n (θ) is constant for each n > 1, and the

constant equals 2np1,1n (θ) = J̃n+1(1/θ)/n! by Corollary 1. �

Remark 5.9 (a) Proposition 5.8 covers the comfortable cases when (a+1)n

pa,1n (θ) = 2np1,1n (θ) so that we can give closed-form expressions by resorting to
our results for symmetric uniform innovations. For θ > 1+1/a, this comfort-
able situation does no longer occur whence a closed-form expression cannot
be derived from Theorem 3 and its corollary. In the random walk case θ = 1,
the same disclaimer applies whenever a 6= 1. Finally, as a consequence of the
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previous result combined with what has been pointed out in Remarks 2.2
and 3.10, we note that θ 7→ pa,bn (θ) is non-decreasing on R for all a, b > 0 and
n > 0.

(b) Regarding asymptotic behavior, it follows from Propositions 2.4 and
3.11 that

pa,bn (θ) ∼





1

zθ

(
b

(a+ b)(1− θ) zθ

)n

if θ ∈
[
−1,

a

a+ b

]
,

1

cθ

(
b

(a+ b)(1− θ) z1/θ

)n
if θ ∈ (−∞,−1],

as n → ∞, where zθ = inf{z > 0 : E(θ,−z) = 0} and cθ denotes a positive
constant. The first asymptotics extends Proposition 3.1 in [3] dealing with the
zigzag case θ = −1. From Proposition 5.4, we can also deduce that the shifted
first passage time T̃ a,b

θ , with obvious meaning, is ID for all θ ∈ [0, a/(a+ b)].

(c) For any a, b > 0 and θ ∈ R, the truncated Volterra endomorphism K
on Cb(R+,R), defined by

Kψ(x) =
1

a+ b

∫ b

−a

ψ(y + θx)~1{y+θx>0} dy, x > 0

is totally bounded and equicontinuous and hence compact by the Arzelà-
Ascoli theorem. It follows from Theorem 2.1. in [3] and the above asymptotics
that its largest eigenvalue equals

b

(a+ b)(1− θ) zθ
< 1 if θ ∈

[
−1,

a

a+ b

]

and
b

(a+ b)(1− θ) z1/θ
< 1 if θ ∈ θ ∈ (−∞,−1].

If θ = 0, the largest eigenvalue equals b/(a + b) and the corresponding
eigenvectors are the constant functions. If θ = −1, the largest eigenvalue
is 2πb/(a+ b) and the corresponding eigenvectors are the constant multiples
of cos(πx/2b)~1[0,b](x). In all other cases, the eigenvectors are the solutions to
certain delayed ODE’s and of unknown explicit form. Finally, it would also
be interesting to know if the largest eigenvalue of this truncated Volterra
operator is computable in the case θ = (a/(a+ b), 1).
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