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Abstract. In the field of enumeration of walks in cones, it is known how to compute
asymptotically the number of excursions (finite paths in the cone with fixed length,
starting and ending points, using jumps from a given step set). As it turns out, the
associated critical exponent is related to the eigenvalues of a certain Dirichlet problem
on a spherical domain. An important underlying question is to decide whether this
asymptotic exponent is a (non-)rational number, as this has important consequences on
the algebraic nature of the associated generating function. In this paper, we ask whether
such an excursion sequence might admit an asymptotic expansion with a first rational
exponent and a second non-rational exponent. While the current state of the art does
not give any access to such many-term expansions, we look at the associated continuous
problem, involving Brownian motion in cones. Our main result is to prove that in
dimension three, there exists a cone such that the heat kernel (the continuous analogue
of the excursion sequence) has the desired rational/non-rational asymptotic property.
Our techniques come from spectral theory and perturbation theory. More specifically,
our main tool is a new Hadamard formula, which has an independent interest and allows
us to compute the derivative of eigenvalues of spherical triangles along infinitesimal
variations of the angles.

1. Introduction

The model and our main question. A lattice walk is a sequence of points P0, P1, . . . , Pn
of Zd, d > 1. The points P0 and Pn are its starting and end points, respectively, the
consecutive differences Pi+1 − Pi its steps, and n is its length. Given a set S ⊂ Zd, called
the step set, a set C ⊂ Zd called the domain (which in this paper will systematically be
a cone), and elements P and Q of C, we are interested in the number e(P,Q;n) of walks
(or excursions) of length n that start at P , have all their steps in S, have all their points
in C, and end at Q. In the present note, the main problem we would like to address is the
following: does there exist a walk model (i.e., a step set and a cone in Rd) such that as
n→∞, one has the asymptotics

(1) e(P,Q;n) = ρn ·
(
K1 · nα1 +K2 · nα2 + · · ·+Kp · nαp + o(nαp)

)
,
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with some exponential growth ρ > 0 and critical exponents such that α1, . . . , αp−1 ∈ Q
and αp /∈ Q? (The constants K1, . . . ,Kp are assumed to be non-zero.) We now present the
context and explain our motivations to look at this particular problem.

Asymptotics of the excursion sequence and relation to D-finiteness. Is there a
simple formula for e(P,Q;n) in terms of the coordinates of P,Q and the length n of the
walk? If not, can we at least say something about the asymptotic behaviour (1) of these
numbers as n goes to infinity? A first step towards answering these questions can be done
by considering the excursion generating function

(2) eP,Q(t) =
∑
n>0

e(P,Q;n)tn ∈ Q[[t]]

that is associated with these numbers and determining whether it is algebraic, or, if not,
whether it is at least D-finite. Recall that a series is D-finite if it satisfies a non-trivial
linear differential equation with polynomial coefficients. Knowing that a given series is D-
finite not only implies nice computational properties of its coefficients, but also allows us to
classify the combinatorial model according to the complexity of the underlying generating
function. There has recently been a dense literature around the above questions, in relation
with the probabilistic model of random walks in cones.

As it turns out, there is a strong relation between D-finiteness of a given series and the
asymptotic behavior of its coefficients. For example, the following statement (recalled in
[7, Thm 3]) is a consequence of results by André, Chudnovski and Katz:

Lemma 1. Let (e(n))n>0 be an integer-valued sequence whose n-th term behaves asymp-
totically like

(3) e(n) ∼ K · ρn · nα

for some real positive constants K and ρ. If the singular exponent α is irrational, then the

generating function e(t) =
∞∑
n=0

e(n)tn is not D-finite.

Given the above result, it is natural to ask whether one may compute and study the
rationality of the critical exponent α in the asymptotics (3) of the excursion sequence
e(P,Q;n) (equivalently, the dominant term in the asymptotics (1)).

In dimension 1, the combinatorial model of walks in cones reduces to that of walks
confined to the positive half-line, as studied e.g. in [2]. In this context, it is well known
that only simple exponents appear in the dominant asymptotics, namely α = 0, −1

2 or −3
2

(depending on the drift of the model), and their translations by integers in the complete
asymptotic expansion (1). Accordingly, there is nothing to say from the perspective of
the rationality of asymptotic exponents. We remark that these simple exponents are
deduced from the algebraicity of the associated generating function (2) and classical
transfer theorems (singularity analysis).

Given a cone in higher dimension d > 2, the generating function (2) is in general not
algebraic (and even non-D-finite, see [20, 7] for the case of the quarter plane in dimension
2), and the first problem is to access the critical exponent α. This result is obtained by
Denisov and Wachtel [11]: for a large class of cones in arbitrary dimension, they derive the
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one-term asymptotics (3) for the excursion sequence e(P,Q;n). In particular, they show
that [11, Eq. (12)]

(4) α = −
√
λ1 + (d/2− 1)2 − 1,

where d is the dimension and λ1 is interpreted as the principal Dirichlet eigenvalue for the
Laplace-Beltrami operator on the subdomain of the sphere Sd−1 given by

(5) (LC) ∩ Sd−1,

with C being the domain of confinement (typically an orthant Rd+) and L a linear
application, which depends on the model. One should not be surprised by the presence
of the linear transform L in (5): as a matter of comparison, the classical central limit
theorem for random walks in Rd involves the drift and the covariance matrix of the process,
so as to put the random walk in the domain of attraction of a standard Brownian motion
(here, standard means without drift and with identity covariance matrix). Similarly, the
application L above appears so as to take into account the drift and the covariance matrix
of the combinatorial model under consideration.

Some key ingredients in Denisov and Wachtel’s proof are a coupling of random walk
by Brownian motion and then a use of older results in the probabilistic literature on exit
times for Brownian motion [10, 3, 24] (the eigenvalue λ1 already appearing in the study of
Brownian motion in cones).

Accordingly, all the complexity of the excursion (one-term) asymptotics (3) is contained
in the principal eigenvalue λ1.

Dimension 2. Regarding the combinatorial model of walks in the quarter plane, the
domain (5) simply becomes an arc of circle, see Figure 1 for a few examples. More precisely,
if the walk is driftless and has identity covariance matrix, then L is just the identity and (5)
is a quarter of circle. For other walk models, using the expression of the linear transform
L, the arc has opening β ∈ (0, π), which one may express as arccos(−r), where r is an
algebraic number which is easily computed from the model; see [7] for more details.

As it turns out, the principal eigenvalue (and in fact the whole spectrum) of arcs of
circles is known. More precisely, if the cone has opening β, then λ1 = (πβ )2, and more
generally the j-th eigenvalue is given by λj = (j πβ )2. Consequently, using (4), one deduces
that the asymptotic exponent α is known and is equal to

α = −π
β
− 1 = − π

arccos(−r)
− 1.

For instance, for the model on the left on Figure 1 (called a scarecrow in [7]), one has
r = 1/4 and thus α = − π

arccos(−1/4) − 1, which can be proved to be non-rational [7].
Following this approach, the authors of [7] obtain that for a list of 51 (unweighted, having

infinite group and small steps) models, α is non-rational, and so, using Lemma 1, these 51

models admit non-D-finite generating functions. In the context of unweighted quadrant
lattice walks, it is remarkable that the converse statement is also true: in other words,
the generating function (2) of the 74 non-singular, unweighted quadrant lattice walks is
D-finite if and only if the principal exponent is rational.



4 LUC HILLAIRET, HELEN JENNE, AND KILIAN RASCHEL

π
2

arccos(−1/4)

π
4

Figure 1. Three examples of walks in dimension 2 confined to the quarter
plane C = R2

+, with the associated domain (LC) ∩ S1 as in (5). Their
critical exponent α in (3) is as follows: on the left, α = −3; for the second
model α = − π

arccos(−1/4) − 1 /∈ Q, see [7]; on the right α = −5, see [6].

This equivalence (between D-finiteness of the generating function and rationality of the
critical exponent) is a priori not true in general: the authors of [6] construct several models
(one of them is represented on Figure 1, right) for which α is rational but the generating
function is conjectured to be non-D-finite. See Table 2 in [6] for more examples.

With this in mind, our question in dimension 2 would be to see whether there exist
quadrant walk models such that the associated excursion sequence admits the asymptotics
(1), with α1, . . . , αp−1 ∈ Q and αp /∈ Q. Such a statement would also lead to non-D-
finiteness results, by a generalization of Lemma 1 to many-term asymptotic expansions.
See in particular the works [13, 14], where this generalization is mentioned.

As we will explain later, we conjecture that the above rationality/non-rationality
phenomenon does not occur in dimension 2.

Dimension 3. We now explore the case of dimension 3. First, the domain (5) to consider
is the trace on the sphere S2 of LR3

+, which by construction is a spherical triangle, see
Figure 2 for a few examples. In other words, in dimension 3, one has to understand the
principal eigenvalue λ1 of spherical triangles. This connection between three-dimensional
positive lattice walks and spherical triangles has been studied in [5], see also [21] in relation
with a Brownian pursuit problem.

While in dimension 2, it was possible to compute the whole spectrum for the Laplace-
Beltrami problem with Dirichlet conditions on the domain (5), and in addition we had
nice formulas for all eigenvalues and eigenfunctions (recall that λj = (j πβ )2 in the planar
case), this is no longer the case in dimension 3. More precisely, given a generic spherical
triangle, it is in general impossible to compute in closed form any of its eigenvalues. To
summarize, up to our knowledge, there are only two kinds of exceptional spherical triangles
which admit eigenvalues in closed form:

• Spherical triangles corresponding to tilings of the sphere [4]. Notice that tilings do
not all lead to an explicit spectrum: for instance, the one on the right on Figure 2
(called the tetrahedral tiling) cannot be solved in an explicit manner, as it does
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Figure 2. Two tilings of the sphere by triangles. The left one corresponds
to the simple walk, with jumps {(±1, 0, 0), (0,±1, 0), (0, 0,±1)}. The tiling
on the right is associated to the following model, known as 3D Kreweras
model: {(−1, 0, 0), (0,−1, 0), (0, 0,−1), (1, 1, 1)}. The rationality of its
critical exponent α is still unknown.

not admit the right parity). Specifically, the angles of these triangles should take
one of the following values: (π2 ,

π
3 ,

π
3 ), (π2 ,

π
3 ,

π
4 ), (π2 ,

π
3 ,

π
5 ) or (π2 ,

π
2 ,

π
r ), with some

integer n > 2.
• Arbitrary birectangular triangles, i.e., triangles admitting two right angles π

2 and
one arbitrary angle β ∈ (0, 2π); see [25, 26, 23].

In this three-dimensional context, our question takes the following form: does there exist
an octant walk model such that the associated excursion sequence admits the asymptotics
(1) with α1, . . . , αp−1 ∈ Q and αp /∈ Q?

The heat kernel of cones. To answer our main question, one intrinsic difficulty is to
know a many-term asymptotic expansion of the form of (1). And indeed, such asymptotics
are not available in the literature in general (except in a few very particular cases, which are
the simplest cases, so precisely those with a complete asymptotic expansions with rational
exponents, see e.g. [8]).

As a consequence, in order to progress on our question, we will reason by analogy between
the discrete setting (random walk) and the continuous setting (Brownian motion), and we
will solve the analogous question in the Brownian framework.

First of all, the quantity analogous to the number of excursions e(P,Q;n) is called
the (continuous) heat kernel of the cone, which, as we shall see, admits an expression in
closed-form (7) and explicit complete asymptotic expansions.

The heat kernel pC(x, y; t) of a cone (and actually of any domain) C admits the
following probabilistic interpretation: it is the probability density function of the transition
probability kernel

(6) pC(x, y; t)dy = Px(Bt ∈ dy, τC > t),

where the Brownian motion is denoted by Bt and τC is the first exit time from the cone C,
that is, τC = inf{t > 0 : Bt /∈ C}. Letting 0 < λ1 < λ2 6 λ3 6 · · · denote the eigenvalues
of the Laplace-Beltrami operator with Dirichlet conditions on the domain C ∩ Sd−1, its
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explicit expression is given by [3]

(7) pC(x, y; t) =
exp

(
− |x|

2+|y|2
2t

)
t(|x| · |y|)d/2−1

∞∑
j=1

Iαj

(
|x| · |y|
t

)
mj

(
x

|x|

)
mj

(
y

|y|

)
,

where αj =
√
λj + (d/2− 1)2, mj is the associated normalized eigenfunction, and Iν is

the modified Bessel function of order ν, which admits the expression

Iν(x) =
∞∑
m=0

1

m!Γ(ν +m+ 1)

(x
2

)ν+2m
.

The following result may be found in [9, Thm 2.3]:

Lemma 2. For any dimension d > 1 and any cone regular enough, the heat kernel
pC(x, y; t) in (6) admits a complete asymptotic expansion of the form

(8) pC(x, y; t) = K1 · t−α1 +K2 · t−α2 + · · ·+Kp · t−αp + o(t−αp),

where
• the order p of the expansion is arbitrary large;
• the constants Ki depend on x and y, i.e., Ki = Ki(x, y);
• the exponents αi are independent of x and y, and α1 < α2 < · · · < αp;
• αi =

√
λj + (d/2− 1)2 + k, where λj is an eigenvalue and k is a positive integer.

In this new (and last!) setting, our question may be formulated as follows: is it possible
in the asymptotics (8) to have first rational exponents α1, . . . , αp−1 and a non-rational αp?

Statements of our main results. As the following proposition establishes, our question
is easily solved in dimension 2, and the answer happens to be negative.

Proposition 3. In dimension d = 2, the exponents αi appearing in the asymptotics (8) of
the heat kernel are simultaneously all rational or non-rational.

Proof. Using that d = 2 and λj = (j πβ )2, it follows from Lemma 2 that the exponents αi
may be expressed as j πβ + k, where j and k are positive integers. Clearly, when j and k
vary, these numbers are either all rational or all non-rational. �

Accordingly, we also conjecture that we cannot construct any discrete model having this
rationality/non-rationality property (with sufficiently many moment conditions).

Although we shall not elaborate on this here, we would like to mention that, based on the
above two-dimensional result, it should be easy to give an example to our rationality/non-
rationality phenomenon in dimension 4, seeing R4 as a product of two planes and defining
on each plane a different model, one with π

β1
∈ Q and the second one with π

β2
∈ Q. We

thank Andrew Elvey Price for this suggestion.
So we have to move to dimension 3. Our main theorem in this paper is the following:

Theorem 1. There exists a 3D cone such that the heat kernel admits the asymptotics (8),
with first rational exponents α1, . . . , αp−1 and then a non-rational exponent αp.

Theorem 1 is a rather direct consequence of the following result:



ON THE RATIONALITY OF 3D LATTICE WALKS CONFINED TO AN OCTANT 7

Theorem 2. There exists t0 > 0 and a real analytic function b defined on (−t0, t0), such
that the one parameter family of triangles (Tt)t∈(−t0,t0) that have one side of length π

2 and
adjacent angles with values

π

2
+ t,

π

2
+ b(t),

satisfies, for the Dirichlet Laplace operator,
• the first eigenvalue λ1(t) of Tt is constant: ∀t ∈ (−t0, t0), λ1(t) = 12,

• the second eigenvalue λ2(t) admits the first order approximation:

λ2(t) = 30− 22
√

3 · |t| + o(t).

Acknowledgments. The last author would like to thank Alin Bostan for very interesting
discussions related to the rationality of asymptotic exponents and the relation to non-D-
finiteness.

2. The spectrum of spherical triangles

We prove Theorem 2 by studying the first eigenvalues as functions on the set M of
spherical triangles with one side of length π

2 . We first show that the level sets of the
first eigenvalue λ1 are analytic curves inM. Denote by T∗ the equirectangle triangle, see
Figure 3 (left). Restricting to the curve on which the first eigenvalue is constant and equal
to 12 = λ1(T∗), we compute the derivatives of the second and third eigenvalue branches at
T∗. Since the latter derivatives do not vanish, the theorem will be proved.

This strategy of proof relies heavily on analytic perturbation theory (see [17]) and similar
techniques which have been used by the authors of [23] to study the spectral gap of spherical
triangles. The reader new to analytic perturbation theory may also find [12] as a useful
reference giving a similar application of this theory.

2.1. The set of spherical triangles and the associated spectral problem. Let A∗
and B∗ be two points at distance π

2 on the unit sphere in R3. We choose one of the two
hemispheres that have A∗ and B∗ on its boundary and denote by M the set of triangles
whose vertices are A∗, B∗ and C, where C is any point of that hemisphere. For any T in
M, we denote by a the length of the side opposite to A∗ (resp. b and c) any by α the angle
at A∗ (resp. β at B∗ and γ at C). Figure 3 summarizes these notations.

Remark 1. Strictly speaking, to properly define the set of triangles with one side of length
π
2 we should mod out by the involution (α, β) ↔ (β, α). We do not need this subtlety here
and may freely work onM.

The set M is naturally parametrized by (α, β) ∈ (0, π) × (0, π) and we will denote by
T (α, β) the corresponding triangle. Analyticity onM means analyticity in (α, β).

We also define the distance between two triangles T and T ′ by

d(T, T ′) = max(|α− α′|, |β − β′|).

We let T∗ = T (π2 ,
π
2 ) and A∗, B∗, C∗ its vertices.

For any fixed β, when α goes to 0, the triangle T (α, β) degenerates onto the arc A∗B∗,
and when α goes to π, it degenerates onto Dβ : the digon (or spherical lune) of opening
angle β, see Figure 4 (left).
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x y

z

A∗

π
2

B∗

π
2

C∗
π
2

c

ab

x y

z

A∗
α

B∗

β

C

γ

c

a
b

Figure 3. On the left: the equirectangle triangle T∗ = T (π2 ,
π
2 ). On the

right: a generic triangle T (α, β) inM.

x y

z

x y

z

A∗
θ

B∗

M(r, θ)

r

Figure 4. On the left: a digon (or spherical lune) is a domain bounded
by two great circles. On the right: the spherical coordinates (r, θ)

We will use (spherical) polar coordinates at A∗: the point M(r, θ) is at distance r along
the geodesic that emanates from A∗, making the angle θ with the arc A∗B∗; see Figure 4
(right).

The side [B∗, C] is parametrized, in these polar coordinates, by the mapping θ 7→ Lβ(θ)

that is implicitly defined by the following application of the cotangent four-part formula:
(that is simplified using that the distance between A∗ and B∗ is π

2 )

0 = cotLβ(θ)− cotβ sin θ.

This equation can be solved by setting

∀β, θ ∈ (0, π), Lβ(θ) = arccot (cotβ sin θ) ,
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with arccot the reciprocal function to cot with values in (0, π). The mapping (β, θ) 7→
Lβ(θ) is thus analytic on (0, π)2 and, for any β ∈ (0, π), the mapping θ 7→ Lβ(θ) extends
smoothly to R.

Thus we have the parametrization:

(9) T (α, β) =
{

(r, θ) : θ ∈ (0, α), r ∈ (0, Lβ(θ))
}
.

In these polar coordinates, the spherical metric reads g = dr2 + sin2(r)dθ2, the area
element is sin rdrdθ and the Dirichlet energy quadratic form for the triangle T = T (α, β)

is, for any u ∈ C∞0 (T ),

(10) q(u) =

∫
T

[∣∣∂ru(r, θ)
∣∣2 +

1

sin2 r

∣∣∂θu(r, θ)
∣∣2] sin rdrdθ.

We also denote by n the Riemannian L2 norm on T :

(11) n(u) =

∫
T

∣∣u(r, θ)
∣∣2 sin rdrdθ.

We will abuse notation by also using q and n to denote the bilinear forms that are
canonically associated with q and n.

We now explain how to associate a self-adjoint operator (that we call the Dirichlet
Laplace operator) to this setting. The procedure is quite standard and we refer the reader
to [22] for more details. It is well-known that when Q is a bounded quadratic form on a
Hilbert spaceH with scalar product n, there exists a unique associated self-adjoint operator
that satisfies

∀x ∈ H, Q(x) = n(Ax, x).

The latter statement can be extended to closed unbounded quadratic forms. However,
with the definitions above and since the quadratic form q is defined on C∞0 (T ) only, it is
not closed. In order to prove that the quadratic form q is closable, we remark that, using
integration by parts, there exists a partial differential operator P such that

∀u ∈ C∞0 (T ), q(u) = n(Pu, u).

Moreover, the operator P , with domain C∞0 (T ) is formally symmetric so that we can use
the Friedrichs extension procedure. As a result, the Dirichlet Laplace operator is obtained
as follows. We first define H1

0 (T ) to be the completion of C∞0 (T ) with respect to the
quadratic form q+n. The quadratic form q with domain H1

0 is now closed and the unique
associated self-adjoint operator is the Dirichlet Laplace operator on T . We denote it by
∆ (observe that, by construction, ∆ is a non-negative operator). Despite the corners,
the injection from H1

0 (T ) into L2(T ) is still compact so that the spectrum of ∆ consists
solely of eigenvalues of finite multiplicity. The construction implies that a function u is an
eigenfunction of ∆ with eigenvalue λ if and only if the following system is satisfied:

(12)
{
u ∈ H1

0 (T ),

∀v ∈ H1
0 (T ), q(u, v) = λn(u, v).

Remark 2. Elaborating on the results of appendix A, it can be proved that the
eigenfunctions of the latter eigenvalue problem do vanish on the sides of the triangles,
hence justifying the “Dirichlet” appellation.
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2.2. Analyticity of the spectrum. For each triangle in M, the spectral problem (12)
gives a spectrum that is usually organized in a non-decreasing sequence:

λ1(T ) < λ2(T ) 6 · · · 6 λn(T ) 6 · · ·

Each eigenvalue is repeated according to its multiplicity, and we have used the known fact
that the first eigenvalue λ1(T ) is simple.

The theory of analytic perturbations gives conditions under which the spectrum of a
family of such spectral problems depends analytically on its parameters. We refer to [17]
for a complete account on the theory and we now wish to apply the theory when the
parameters (α, β) vary.

Let T0 = T (α0, β0) be a triangle in M, and let T = T (α, β) be another triangle in a
small neighbourhood of T0. We recall that Lβ0 and Lβ are the functions that are used to
describe T0 and T in polar coordinates, see (9).

Analytic perturbation theory applies to a family of quadratic forms on a fixed Hilbert
space. It cannot be used directly here since the spectral problems associated with T

and T0 are not defined in the same Hilbert space, and the corresponding quadratic forms
do not have the same domain. In order to circumvent this problem, we first define a
diffeomorphism between T0 and T . We want this diffeomorphism to depend analytically
on (α, β), but it is actually not necessary to define very precisely what the latter means:
analyticity will be checked on the expression of the quadratic forms in the end.

In order to get Hadamard variational formulas (which we will obtain in Theorems 3 and
4), it is convenient to choose our diffeomorphisms as follows. We choose χ to be a smooth
non-negative and non-increasing function on R such that χ is identically 1 on (−∞, 1

3) and
identically 0 on (2

3 ,∞), and we fix some ε > 0. Let Φ be the mapping defined on T0 by

Φ(r, θ) = (R,Θ),

with {
Θ(r, θ) = θ + (α− α0)χ

(
α0−θ
ε

)
,

R(r, θ) = r + (Lβ ◦Θ(r, θ)− Lβ0(θ))χ
(Lβ0 (θ)−r

ε

)
.

This mapping actually depends on α, β, and ε, i.e., Φ = Φ
(ε)
α,β , but for readability, the

notation does not reflect it. We also set `β = Lβ ◦Θ and `0 = Lβ0 and observe that these
functions depend only on θ.

We now pull back the spherical metric on T to T0 using this diffeomorphism. We thus
introduce the Jacobian matrix of Φ:

Jac Φ|(r,θ) =

(
A(r, θ) C(r, θ)

0 B(r, θ)

)
,

where we have set:

A(r, θ) = ∂rR(r, θ) = 1− (`β(θ)− `0(θ))1
εχ
′( `0(θ)−r

ε

)
,

B(r, θ) = ∂θΘ(r, θ) = 1− (α− α0)1
εχ
′(α0−θ

ε

)
,

C(r, θ) = ∂θR(r, θ) = (`′β(θ)− `′0(θ))χ
( `0(θ)−r

ε

)
+ (`β(θ)− `0(θ))

`′0(θ)
ε χ′

( `0(θ)−r)
ε

)
.
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Observe that Θ does not depend on r, so that ∂rΘ(r, θ) = 0. From these expressions, we
derive the following lemma.

Lemma 4. For any ε > 0 there exists ρε such that Φ is a smooth diffeomorphism from T0

onto T as soon as d(T, T0) < ρε.

Proof. We first choose α close enough to α0 so that B is uniformly bounded below by some
positive (small) constant. It follows that Θ is a smooth diffeomorphism from [0, α0] onto
[0, α] and that |Θ(θ)− θ| = O(|α−α0|) uniformly. By definition (β, θ) 7→ Lβ(θ) is smooth
so that, if ρ is small enough, then A is also bounded below by some positive constant. It
follows that Φ is a smooth bijective mapping from T0 onto T . Restricting ρ again if needed,
we can ensure the Jacobian matrix to be always invertible and this proves the claim. �

Using Φ, T is then parametrized by T0. The pulled-back metric Φ∗(dr2 + sin2 rdθ2) is
now represented by the matrix G defined by

G(r, θ) = tJac Φ|(r,θ)

(
1 0

0 sin2R(r, θ)

)
Jac Φ|(r,θ).

It is convenient to set D(r, θ) = sinR(r, θ) and to define the (Euclidean) gradient

∇u =

(
∂ru

∂θu

)
.

With these notations, the Dirichlet quadratic form (10) now reads

(13)
q(u ; α, β) =

∫
T0

t∇u(r, θ)G−1(r, θ)∇u(r, θ)ABD(r, θ)drdθ

=

∫
T0

[
(C2 +D2B2)(∂ru)2 − 2AC∂ru∂θu+A2(∂θu)2

] drdθ
ABD

and the L2 scalar product (11) reads

(14) n(u ; α, β) =

∫
T0

u2ABDdrdθ.

Using the definitions, we first observe that the quadratic forms q(· ; α, β) are uniformly
equivalent for (α, β) in a small neighbourhood of (α0, β0), and similarly for n(· ; α, β). The
completion procedure that is used to define the Friedrichs extension thus yields a domain
that does not depend on (α, β) and thus coincides with H1

0 (T0).
Moreover, for any fixed u ∈ H1

0 (T0), the functions (α, β) 7→ q(u ; α, β) and (α, β) 7→
n(u ; α, β) are analytic for (α, β) close to (α0, β0). It follows that analytic perturbation
theory applies and yields the following properties:

• If λ0 is a simple eigenvalue of T0, then there exists δ > 0 and a neighbourhood
of T0, such that, in this neighbourhood, there is a unique eigenvalue of T in
(λ0 − δ, λ0 + δ) and this eigenvalue depends analytically on (α, β).
• For any (real-)analytic curve t 7→ (α(t), β(t)) on some interval I, there exists a
collection

(
t 7→ Ei(t)

)
i>1

of real-analytic functions that exhaust the spectrum of
Tt = T (α(t), β(t)). Such a function is called an analytic eigenvalue branch and
there also exist corresponding analytic eigenfunction branches t 7→ ui(t).
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• The derivatives of the eigenbranches are given by the Feynman-Hellmann formula
(see [17] or [16] prop. 4.6 for a proof in a similar setting): for an analytic
eigenbranch t 7→ (E(t), u(t)), we have

(15) ∀t ∈ I, Ė(t)‖u(t)‖2 = [q̇t − E(t)ṅt] (u(t)) ,

in which the dot denotes the derivative with respect to t. This formula is obtained
by differentiating (12); specifically, we first differentiate qt(v) and nt(v) with a
fixed v and then evaluate v = u.

If λ0 is an eigenvalue of T0 of multiplicity m, it follows by standard min-max arguments
that, for δ small enough, there exist exactly m eigenvalues of T in (λ0 − δ, λ0 + δ) in a
small neighbourhood of T0. In a nutshell, analytic perturbation theory says that, along
any curve that is real-analytic, it is possible to label these m eigenvalues so as to have
analytic functions. There are, however, two problems remaining. First, the labeling does
not preserve the order of eigenvalues: analytic eigenbranches will typically cross at T0.
Then, it is usually not possible to define eigenbranches that would be analytic for (α, β)

in a neighbourhood: the labeling depends on the analytic curve that is chosen and cannot
be done consistently in all directions. Of course both problems only arise for multiple
eigenvalues.

We have expressed the derivatives of the eigenvalue branch using the corresponding
eigenfunction branch. For the reasons given in the preceding paragraph, it is convenient
to give a way to recover the derivatives without knowing a priori the eigenfunction branch.
This is obtained by the following procedure.

Let λ0 be an eigenvalue of T0 and E0 the corresponding eigenspace. The derivatives
of all the eigenbranches that coincide with λ0 at t = 0 are exactly the eigenvalues of the
quadratic form q̇−λ0ṅ, restricted to E0 and relative to the scalar product n. Observe that
using (9) we can write

(16) q̇ − λ0ṅ = α̇
(
∂αq − λ0∂αn

)
+ β̇

(
∂βq − λ0∂βn

)
,

so that, although we may not have differentiability of the eigenvalues, still, it is enough to
know the partial derivatives ∂αq − λ0∂αn and ∂βq − λ0∂βn to compute the derivatives of
the eigenbranches in any direction.

2.3. A Hadamard variational formula. The formulas in the preceding section express
the derivative of the eigenbranches using integrals over the whole domain T0, of some
quadratic expressions in u, ∂ru, ∂θu, see (15) and (16). Hadamard variational formulas
use integrals only on the boundary of the domain, see Theorems 3 and 4 below. Since the
latter are of independent interest and give slightly simpler computations in the end, we
explain here how to derive them. This derivation is made possible by computing q̇ − λ0ṅ

for fixed ε and then letting our parameter ε go to 0. More precisely, for any ε, we define
the two quadratic forms (see (16))

Dε
α = ∂αq − λ0∂αn and Dε

β = ∂βq − λ0∂βn,

that are obtained from (13) and (14), where recall that the dependence on ε comes from
the diffeomorphism Φ

(ε)
α,β .
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Proposition 5. Let λ0 be an eigenvalue of T0 and E0 the corresponding eigenspace. For
any u ∈ E0,

lim
ε→0

Dε
α(u) = −

∫ `(α)

0

|∂θu(r, α)|2

sin r
dr,

lim
ε→0

Dε
β(u) = −

∫ α0

0

[
|∂ru(Lβ0(θ), θ)|2 +

|∂θu(Lβ0(θ), θ)|2

sin2 Lβ0(θ)

]
(∂βL)β0(θ) sinLβ0(θ) dθ.

Proof. Since u ∈ H1
0 , the expressions Dε

α(u) and Dε
β(u) can be obtained by differentiating

under the integral sign the expressions given in (13) and (14).
Thus, for Dε

α, we need to compute F (r, θ ; α0, β0), ∂αF (r, θ ; α0, β0) for F = A,B,C,D.
Of these four quantities, only ∂αB does not vanish identically and after a somewhat lengthy
but straightforward computation, we obtain

Dε
α(u) =

∫
T0

1

ε
χ′
(α0 − θ

ε

)[ |∂θu|2
sin2 r

+ λ0|u|2
]

sin rdrdθ.

We now let ε go to 0. When tested against sufficiently well-behaved functions, 1
εχ
′(α0− θ)

converges to the integration on the side{
(r, α0) : r ∈ [0, Lβ0(α0)]

}
.

We will provide, in Appendix B, all the necessary estimates showing that this limit is
justified when u is an eigenfunction. We then obtain

lim
ε→0

Dε
α(u) = −

∫ `(α)

0

|∂θu(r, α)|2

sin r
dr.

The second term vanishes since u satisfies the Dirichlet boundary condition.
For Dε

β we follow the same strategy, computing now the derivatives with respect to β,
still evaluated at (α0, β0). We find:

Dε
β(u) =

∫
T0

∂βLβ0 |∂ru|2
[
(cos r)χ

(Lβ0(θ)− r
ε

)
+

sin r

ε
χ′
(Lβ0(θ)− r

ε

)]
drdθ

− 2

∫
T0

∂ru∂θu

sin r

[(
∂βL

′
β0

)
χ
(Lβ0(θ)− r

ε

)
+ ∂βLβ0

L′β0
ε
χ′
(Lβ0(θ)− r

ε

)]
drdθ

−
∫
β0

|∂θu|2

sin2 r

[
(cos r)χ

(Lβ0(θ)− r
ε

)
+

sin r

ε
χ′
(Lβ0(θ)− r

ε

)]
drdθ

− λ0

∫
T0

∂βLβ0 |u|2
[
(cos r)χ

(Lβ0(θ)− r
ε

)
− sin r

ε
χ′
(Lβ0(θ)− r

ε

)]
drdθ.

As above, we will give in Appendix B the needed estimates to prove that the terms with
χ
(Lβ0 (θ)−r

ε

)
converge to 0 and the terms with 1

εχ
′(Lβ0 (θ)−r

ε

)
converge to a boundary integral

over the side
{

(Lβ0(θ), θ) : θ ∈ [0, α0]
}
. Since u satisfies the Dirichlet boundary condition,

u vanishes on the latter side. Denoting by γ the parametrization θ 7→ (Lβ0(θ), θ), we obtain

lim
ε→0

Dε
β(u) =

−
∫ α0

0

[
|∂ru ◦ γ|2 − 2L′β0(θ)

(∂ru∂θu) ◦ γ
sin2 Lβ0(θ)

−
|∂βu ◦ γ|2

sin2 Lβ0(θ)

]
(∂βL)β0(θ) sin(Lβ0(θ)) dθ.
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This expression can be simplified further by observing that Dirichlet boundary condition
implies that

(
L′β0∂ru + ∂θu

)
◦ γ = 0. Finally, we obtain

lim
ε→0

Dε
β(u) = −

∫ α0

0

[
|∂ru ◦ γ|2 +

∂θu ◦ γ|2

sin2 Lβ0(θ)

]
∂βL(θ ;α0, β0) sinLβ0(θ) dθ. �

Remark 3. The estimates of the appendix are needed to properly prove the convergence
when ε goes to zero for any eigenvalue branch at any triangle T0. The proof of Theorem 2
needs this computation only for the first three eigenvalues and at the equirectangle triangle.
In the latter case, we have an explicit expression for the eigenfunction so that the
convergence can be proved directly without referring to the general Sobolev theory on singular
domains.

Combining the latter proposition and the results of analytic perturbation theory that
we have recalled in the previous section, we obtain the following two theorems.

Theorem 3. Let T0 ∈M and λ0 be a simple eigenvalue of the Dirichlet spherical Laplace
operator of T0. There exist δ > 0 and a neighbourhood U ⊂M of T0 such that:

• Any triangle T in U has a unique eigenvalue λ in (λ0 − δ, λ0 + δ).
• The mapping T 7→ λ(T ) is real-analytic on U .
• For any T = T (α, β) ∈ U , we have

∂αλ(T ) = −
∫ Lβ(α)

0

|∂θu(r, α)|2

sin r
dr,

∂βλ(T ) = −
∫ α

0

[
|∂ru(Lβ(θ), θ)|2 +

|∂θu(Lβ(θ), θ)|2

sin2 Lβ(θ)

]
(∂βL)β(θ) sinLβ(θ) dθ,

where u is a L2(T ) normalized eigenfunction.

Theorem 4. For t in an interval I, let t 7→ T (α(t), β(t)) = Tt be an analytic family of
spherical triangles and λ0 be an eigenvalue of multiplicity m of T0. Then there exist m
analytic functions (Ek)16k6m defined on I such that:

(i) There exist δ0, t0 > 0 such that, for any t ∈ (−t0, t0) and any eigenvalue λ in
Spec (Tt) ∩ (λ0 − δ0, λ0 + δ0), the multiplicity of λ is the number of k such that
Ek(t) = λ.

(ii) The derivatives Ėk(0) are the eigenvalues of the quadratic form

u 7→ − α̇(0)

∫ Lβ(α)

0

|∂θu(r, α)|2

sin r
dr(17)

− β̇(0)

∫ α

0

[
|∂ru(Lβ(θ), θ)|2 +

∂θu(Lβ(θ), θ)|2

sin2 Lβ(θ)

]
(∂βL)β(θ) sinLβ(θ) dθ,

restricted to the eigenspaces of λ0 and relatively to the L2 norm on T .

Proof. The proof of the two theorems follows the same line. First we fix some ε > 0. The
first statements, in particular the existence of U (or t0), follow from the previous section
using the family of diffeomorphisms Φε. It remains to compute the derivatives. For this,
we pick a triangle T in the neighbourhood U , and we write, for each derivative and each
ε > 0 the formula that is obtained using Φε (with now T as the starting point). Using
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analyticity, the eigenvalue branches that we obtain do not depend on ε. So for each ε, the
formula for the derivative of simple eigenbranches gives the same value. For a multiple
eigenvalue, the quadratic form that gives the derivatives has the same eigenvalues. We can
thus let ε go to zero and and Proposition 5 then yields the result. �

2.4. The first eigenvalue on M. In this section, we describe the first eigenvalue λ1 as
a function on the set of spherical trianglesM.

It is well known that the first eigenvalue of a domain in a Riemannian manifold is
always simple. It then follows that the eigenvalue λ1 depends analytically on (α, β) in
(0, π) × (0, π). We now make a list of several facts that help us understand the level sets
of λ1.

(i) Symmetry: the symmetry with respect to the median hyperplane of [A∗, B∗] in the
sphere exchanges T (α, β) and T (β, α). The function λ1 is thus symmetric with
respect to (α, β)↔ (β, α).

(ii) Monotonicity: if α′ > α and β′ > β, then the triangle T (α, β) is a subset of
T (α′, β′). Using the min-max principle, Dirichlet eigenvalues are shown to be
decreasing relative to the inclusion of domains. We thus infer:

α′ > α and β′ > β =⇒ λ1(α′, β′) 6 λ1(α, β).

Since the first Dirichlet eigenvalue of the hemisphere is 2, we also get that

∀T ∈M, λ1(T ) > 2.

(iii) Regularity:

∀(α, β) ∈ (0, π)× (0, π), ∂αλ1(α, β) < 0, and ∂βλ1(α, β) < 0.

Let us prove that ∂αλ1 6= 0 by contradiction. If this derivative vanishes then
the integral formula of Theorem 3 implies that ∂θu vanishes on one side of the
triangle. If we reflect the triangle across this side, we obtain a rhombus to which
we extend u by 0. We denote by ũ this extension and we test (∆− λ)ũ against a
smooth function with compact support in the rhombus. Using integration by parts
(Green’s formula) inside and outside the original triangle, we obtain an integral
over the side across which we have reflected. This integral vanishes because u and
∂θu vanish on that side. This proves that ũ is an eigenfunction (with the same
eigenvalue) of the Dirichlet Laplace operator in the rhombus. This violates the
principle of analytic continuation for eigenfunctions. By symmetry, the derivative
with respect to β cannot vanish. The monotonicity gives the sign.

(iv) Behaviour near the boundary: If α or β goes to 0, then λ1 goes to infinity. This
is a general fact about shrinking domains with Dirichlet boundary condition. For
instance, here, we could use the minmax principle to compare with a spherical
angular sector whose angle goes to 0.

If α goes to π and β goes to β0 ∈ (0, π], the first eigenvalue λ1(α, β) converges
to the first eigenvalue of the Dβ0 , the digon of opening angle β0 (see Figure 4,
left). Indeed, the family of spectral problems is continuous up to (0, π]× (0, π].

(v) Behaviour on the boundary: All the computations we made are still valid for
α = π and varying β. It follows that the mapping µ which, to an angle β ∈ (0, π],
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Figure 5. All these triangles have first Dirichlet eigenvalue λ1 = 12. The
first domain is the equirectangle triangle T∗ and the last domain is the digon
of opening π

3 . The second eigenvalue is strictly decreasing along this path
of triangles, going from 30 to 20.

assigns the first Dirichlet eigenvalue of the digon of opening angle β, is an analytic,
decreasing diffeomorphism from (0, π) onto (2,∞) that extends continuously at π.

Remark 4. Observe that in [23] (see also [25, 26]), it is proved that the spectrum of the
digon of angle β can be explicitly computed. This computation yields µ(β) = π

β (πβ + 1)

which obviously satisfies all claimed features.

These properties allow us to prove the following proposition, which gives a reasonably
complete understanding of how λ1 behaves as a function on M. See Figure 5 for an
illustration.

Proposition 6. For any c ∈ (2,∞), there exists αc ∈ (0, π) such that the first eigenvalue
of Dαc is c. The level set λ−1

1 {c} ⊂ M is an analytic curve that can be globally parametrized
by α ∈ (αc, π). More precisely, there exists an analytic function Bc from (αc, π) such that

λ1(T (α, β)) = c ⇐⇒ β = Bc(α).

The function Bc is decreasing, extends continuously to [αc, π] by Bc(αc) = π and Bc(π) = αc
and B′c(π2 ) = −1.

Proof. The first statement follows from the known behaviour of the first eigenvalue of
digons, see Remark 4. Moreover, using monotonicity in β, for each α > αc the mapping
β 7→ λ1(α, β) is a decreasing diffeomorphism onto (µ(α),∞). Since this interval contains c,
there is a unique β that we denote by Bc(α) such that λ1(α, β) = c. The fact that Bc(α) is
analytic then follows from the implicit function theorem. The remaining statements follow
from the behaviour of λ1 near and on the boundary and the symmetry. �

3. Proof of Theorem 2

Proof. Let T∗ be the equirectangle triangle with vertices A∗, B∗, C∗, see Figure 3. It
corresponds to α = β = π

2 . We have λ1(T0) = 12. In the sequel, we set B = Bc for c = 12.
Using the formula in [23, Proposition 1.1] for the eigenvalues of the digons, we obtain that
the function B is defined on [π3 , π], analytic in (π3 , π) and

∀α ∈
[π

3
, π
]
, λ1(α,B(α)) = 12.
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Let I be a small interval around 0, for t ∈ I, we define

α(t) =
π

2
+ t, β(t) = B ◦ α(t)

and set Tt = T (αt, βt). The curve t 7→ Tt is real analytic and, using the properties of
B, we know that the spectrum of Tt is organized into analytic branches. Since the second
eigenvalue of T0 is of multiplicity 2, we can restrict I so that there exists three analytic
functions E1, E2, E3 such that

∀t ∈ I, λ1(t) = E1(t) = 12, λ2(t) = min{E2(t), E3(t)}, λ3(t) = max{E2(t), E3(t)}.

Let E be the (two-dimensional) eigenspace corresponding to λ2(0). We make the
formulas (17) explicit, using in particular that (∂βL)π

2
(θ) = sin θ and that α̇(0) = 1

and β̇(0) = −1. Thus, the derivatives of E2 and E3 are given by the eigenvalues of the
quadratic form

d(u) = −
∫ π

2

0

|∂θu(r, π2 )|2

sin r
dr +

∫ π
2

0
|∂ru(π2 , θ)|

2 sin θ dθ

with respect to the L2 norm. We define on T0 the functions u1 and u2 by u1(r, θ) =
√

1155
8π

(
3 cos5 r − 4 cos3 r + cos r

)
sin 2θ,

u2(r, θ) =
√

3465
32π cos r sin4 r sin 4θ,

that form a L2-orthonormal basis of E (see in [23, Cor. 2.1] for instance).
We compute∫ π

2

0

|∂θu1(r, π2 )|2

sin r
dr =

1155

8π

∫ π
2

0

4
(
3 cos5 r − 4 cos3 r + cos r

)2
sin r

dr =
44

π
,∫ π

2

0

|∂θu2(r, π2 )|2

sin r
dr =

3465

32π

∫ π
2

0

16 cos2 r sin8 r

sin r
dr =

44

π
,∫ π

2

0

∂θu1(r, π2 )∂θu2(r, π2 )

sin r
dr = C

∫ π
2

0

(
3 cos5 r − 4 cos3 r + cos r

)
cos r sin4 r

sin r
dr = 0,

where C is some numerical constant that we do not need to write down explicitly, and∫ π
2

0
|∂ru1(π2 , θ)|

2 sin θ dθ =
1155

8π

∫ π
2

0
sin2(2θ) sin θdθ =

77

π
,∫ π

2

0
|∂ru2(π2 , θ)|

2 sin θ dθ =
3465

32π

∫ π
2

0
sin2(4θ) sin θ dθ =

55

π
,∫ π

2

0
∂ru1(π2 , θ)∂ru2(π2 , θ) sin θ dθ =

1155
√

3

16π

∫ π
2

0
sin(2θ) sin(4θ) sin θ dθ = −11

√
3.

We obtain that the matrix that represents d in the basis (u1, u2) of E is

D = −11

π

(
3 −

√
3

−
√

3 −3

)
.
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Since (u1, u2) is a L2 orthonormal basis of E , the derivatives Ė2 and Ė3 are the eigenvalues
of D that we compute to be ±22

√
3

π . Finally, we obtain, for t close to 0,
E2(t) = 12 + t · 22

√
3

π + o(t),

E3(t) = 12 − t · 22
√

3
π + o(t),

λ2(t) = 30 − |t| · 22
√

3
π + o(t),

λ3(t) = 30 + |t| · 22
√

3
π + o(t),

and the proof is complete. �

Remark 5. Using the computations above, the quadratic form that is given by equation (17)
at the equirectangle triangle when expressed in the basis (u1, u2) yields the same expression
as (3.11) in [23]. We could have use analyticity to claim that the formula loc. cit., which
is proved for variations of triangles of diameter π

2 (using different variational —Feynman-
Hellmann type—formulas), still holds for any variation. We have found it interesting to
write down the Hadamard variational formula so as to have a (slightly) different proof.

Remark 6. This perturbation approach can be implemented starting from any initial
triangle T∗, and, basically, we only need to show that the ratio λ2

λ1
cannot be always

rational. Although this seems a rather weak statement, our proof requires some rather
precise knowledge of the eigenfunctions. This explains our choice of the equirectangle
triangle.

Appendix A. Regularity of eigenfunctions of a triangle

The aim of this appendix is to provide the necessary estimates that allow to pass to the
limit ε → 0 in order to obtain the Hadamard variational formulas. All the results can be
extracted from the literature on elliptic problems in domains with corners (see [15, 19] for
instance). We have chosen to give some ideas of the proof so as to have a self-contained
presentation.

We fix a spherical triangle T (α, β) for some (α, β) ∈ (0, π)2. Explicitly, it is the domain
as in (9) equipped with the metric g = dr2 + sin2 rdθ2. We may see T as a subset of the
plane R2 equipped with the coordinates x = r cos θ and y = r sin θ. The metric g is then
uniformly equivalent to the Euclidean metric dx2 + dy2.

We recall the definition of the usual Sobolev spaces, for k ∈ N and using the common
multiindex notation:

Hk(T ) = {u ∈ L2(dxdy) : ∀α, |α| 6 k, ∂αu ∈ L2(dxdy)},

∀u ∈ Hk(T ), ‖u‖2Hk =
∑
|α|6k

‖∂αu‖L2(dxdy).

We also recall that H1
0 (T ) is the completion of C∞0 (T ) with respect to the H1 norm.

Writing the partial derivatives ∂x and ∂y in polar coordinates, we see that the Sobolev
space H1(T ) can alternatively be defined as follows:

H1(T ) = {u ∈ L2(T, sin rdrdθ) : ∂ru and
1

sin r
∂θu ∈ L2(T, sin rdrdθ)}.
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We observe that the set H1
0 (T ) is defined in Section 2.1 as the completion of C∞0 (T )

with respect to the Dirichlet energy quadratic form q. We see here that it coincides with
the usual one.

The norm that is associated with the spherical Laplace operator is

∀u ∈ C∞0 (T ), ‖u‖2∆ = ‖u‖2L2(sin rdrdθ) + ‖∆u‖2L2(sin rdrdθ).

By standard ellipticity estimates, this norm is equivalent to the H2 norm.

Lemma 7. The space C∞0 (T ) is dense in dom ∆ with respect to the ‖ · ‖∆ norm.

Proof. Let u ∈ dom ∆ that is orthogonal to C∞0 (T ) with respect to the Hilbertian norm
‖ · ‖∆. Double T to form a surface T̃ that is a sphere equipped with a singular spherical
metric that has three cone points A,B,C at which the total angle is (strictly) less than
2π. Extend u a function ũ on T̃ that is odd with respect to the natural involution of T̃ .
Using Green’s formula, by construction, we have

∀φ ∈ C∞0 (T̃ \ {A,B,C}), 〈ũ, (∆ + 1)φ〉 = 0.

It follows that, in the distributional sense, (∆ + 1)ũ is supported at A,B,C. The latter
can be explicitly described using polar coordinates and it turns out that, since the total
angle is less than 2π, ũ must also be even. Thus, the function ũ vanishes and thus also
u. �

The latter lemma gives dom ∆ = W̊ 2
2 (T ) in the notations of [15], and Theorem 1.4.4.4

loc. cit. applies to give the following corollary.

Corollary 8. For any u ∈ dom ∆, (sin r)−2u, (sin r)−1∂ru and (sin r)−2∂θu belong to
L2(sin rdrdθ).

Proof. Theorem 1.4.4.4 of [15] gives r−2u, r−1∂xu and r−1∂yu in L2(T, dxdy). The claim
follows using

�(18) r∂ru = x∂xu + y∂yu and ∂θu = x∂yu− y∂xu.

Finally, we obtain:

Proposition 9. Let u be an element of the domain of the Dirichlet Laplace operator. Then
u, ∂ru and 1

sin r∂θu belong to H1(T ).

Proof. Since u ∈ dom ∆, then all derivatives with respect to (x, y) of order at most 2 are in
L2. We compute ∂2

ru and 1
sin r∂θ∂ru in Cartesian coordinates using the relations (18), and

we check by inspection that these are L2. We do the same for ∂r 1
sin r∂θu and 1

sin2 r
∂2
θu. �

Appendix B. Application to the Hadamard formula

In this section, we use the regularity of eigenfunctions to prove that the limit ε → 0

that is used in the proof of Hadamard variational formula is justified (see the proof of
Proposition 5). As in Remark 3, we emphasize here that it is actually not needed to
prove Theorem 2 since we would only need to consider the first three eigenfunctions of the
equirectangle triangle for which explicit bounds can be given.
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We begin by addressing the limit ofDε
β(u) since it gives simpler computations; the global

strategy being the same. We first observe that in all terms, the χ or χ′ factor cuts-off near
r = Lβ0(r). Using that u ∈ H1

0 (T ), all terms with the factor χ converge to 0 by integration
of a L1 function on a shrinking domain. It remains to address the terms with a χ′. All
these terms can be written under the expression

Bε(h) =

∫ α0

0

∫ `(θ)

0

1

ε
χ′
(Lβ0(θ)− r)

ε

)
h(r, θ) drdθ,

in which h is obtained as a product of a smooth function (away of r = 0) times two
first order derivatives of u. Since u ∈ domT , the partial derivatives ∂ru and ∂θu are in
H1(T ∩ {r > r0 > 0}). It follows that h belongs to W 1

1 (T ): the set of L1 functions whose
gradient is also L1.

Changing variables, we have

Bε(h) =

∫ 1

0

∫ α0

0
χ′(ρ)h(Lβ0(θ)− ερ, θ)dρdθ.

Since
∫
χ′(ρ)dρ = −1, we see that

Bε(h) +

∫ α0

0
h(Lβ(θ), θ) dθ =

∫ 1

0

∫ α0

0
χ′(ρ) [h(Lβ0(θ)− ερ, θ)− h(Lβ0(θ), θ)] dρdθ.

We define the mapping Φ on [0, 1]× [0, 1]× [0, α0] by (ρ, s, θ) 7→ (ρ, Lβ0(θ)− sερ, θ). For
any fixed θ and ρ, s 7→ Φ(ρ, s, θ) parametrizes a curve in T and since u ∈W 1

1 , we can write

h(Lβ0(θ)− ερ, θ)− h(Lβ0(θ), θ) = −
∫ 1

0
ερ∂rh ◦ Φ(ρ, s, θ) ds.

This leads us to consider the integral

Rε =

∫ 1

0

∫ 1

0

∫ α0

0

∣∣χ′(ρ)ερ∂rh ◦ Φ(ρ, s, θ)
∣∣ dsdρdθ.

The mapping Φ is obviously smooth and injective, and since its Jacobian determinant is
−ερ, the change of variables is legitimate. Using that ρ′ has support in [1

3 ,
2
3 ], we obtain

Rε =

∫
Uε

∣∣χ′(ρ)∂rh(r, θ)
∣∣ dρdrdθ,

where Uε is the image of [1
3 ,

2
3 ]× [0, 1]× [0, α] under Φ. We define the set Vε ⊂ T such that

{1} × Vε = Φ{1} × [0, 1]× [0, α0],

it is straightforward that Uε ⊂ [0, 1] × Vε and that Uε is a shrinking neighbourhood in T
of the side {(L(θ), θ) : θ ∈ [0, α0]}. Since ∂rh ∈ L1(T ), we obtain that Rε goes to 0 with
ε and, hence,

lim
ε→0

Bε(h) = −
∫ α0

0
h(Lβ(θ), θ) dθ.

Applying this result to the different terms in Dε
β(u) yields the Hadamard formula for ∂βE.
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We follow the same strategy to study the limit of Dε
α(u). We have two terms that can

be brought to the expression

Aε(h) =

∫ α0

0

∫ Lβ0 (θ)

0

1

ε
χ′
(α0 − θ

ε

)
h(r, θ) rdrdθ,

with h ∈ W 1
1 (T ). We first perform a change of variables that fixes the domain of

integration. For (ρ, t) in [0, Lβ0(α0)]× [0, 1], we define

θ = α0 − εt,

δ(ρ, t) =
1

ε
[Lβ0(α0 − εt)− Lβ0(α0)]χ

(Lβ0(α0)− ρ
Lβ0(α0)

)
,

r = ρ + εδ(r, t).

Observe that δ also depends on ε.
The mapping Φ is seen to be a diffeomorphism from [0, Lβ0(α0)]× [0, 1] onto Wε, which

is a neighbourhood in T of the side {(r, α0) : r ∈ [0, Lβ0 ]} that shrinks when ε goes to 0.
Using Φ as a change of variables, we obtain

Aε(h) =

∫ 1

0

∫ Lβ0 (α0)

0
χ′(t)h(ρ+ εδ, α0 − εt) [1 + ε∂ρδ] (ρ+ εδ)dρdt.

We obtain a sum of three terms:

A0
ε(h) =

∫ 1

0

∫ Lβ0 (α0)

0
χ′(t)h(ρ+ εδ, α0 − εt)ρdρdt,

R1
ε(h) =

∫ 1

0

∫ Lβ0 (α0)

0
χ′(t)h(ρ+ εδ, α0 − εt)ε∂ρδρdρdt,

R2
ε(h) =

∫ 1

0

∫ Lβ0 (α0)

0
χ′(t)h(ρ+ εδ, α0 − εt) [1 + ε∂ρδ] εδ)dρdt.

Using that δ is identically 0 if ρ < 1
3 and that δ and its first-order derivatives are uniformly

bounded with respect to ε, t, ρ, by undoing the change of variables we see that the terms
Ri, i = 1, 2 are bounded by the integral of |h| over Wε. Since h ∈ L1 the latter goes to 0

and we are left to study the limit of A0
ε.

We now set

R0
ε(h) = A0

ε(h) +

∫ Lβ0 (α0)

0
h(r, α0)r dr

so that, as above

R0
ε(h) =

∫ 1

0

∫ Lβ0 (α0)

0
χ′(t) [h(ρ+ εδ, α0 − εt)− h(ρ, α0)] ρdρdt.

Fix (ρ, t) ∈ [0, Lβ0(α0)] × [0, 1]. The mapping γ(· ; ρ, t) : s 7→ (ρ + sεδ(ρ, st), α0 − εst)
sends the interval [0, 1] onto a smooth curve in T that stays within Wε. Since h is W 1

1 , we
have

R0
ε(h) =

∫ 1

0

∫ Lβ0 (α0)

0

∫ 1

0
χ′(t)

[
ε(δ(ρ, st) + st∂tδ(ρ, st))∂rh ◦ γ(s ; ρ, t)

− εt∂θ ◦ γ(s ; ρ, t)
]
ρdsdρdt.
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We now argue in a similar fashion as before: we define Ψ on [0, Lβ0(α0)] × [0, 1] × [0, 1]

by Ψ(ρ, t, s) = (ρ, γ(s ; ρ, t)). We show that it is a legitimate change of variables, which
turns R0

ε into an integral that is bounded above by the integral of a L1 function over Wε.
It thus tends to 0 and that makes the proof finally complete.
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