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ABSTRACT. We prove limit theorems for the greatest common divisor and the least common mul-
tiple of random integers. While the case of integers uniformly distributed on a hypercube with
growing size is classical, we look at the uniform distribution on sublevel sets of multivariate sym-
metric polynomials, which we call hyperbolic regions. Along the way of deriving our main results,
we obtain some asymptotic estimates for the number of integer points in these hyperbolic domains,
when their size goes to infinity.

1. INTRODUCTION

Let f : N→ C be an arithmetic function, with N denoting {1,2, . . .}. The motivation for the
present paper comes from the recent study of hyperbolic sums

fG(n) := ∑
i j6n

f (GCD(i, j)) and fL(n) := ∑
i j6n

f (LCM(i, j)) (1.1)

carried out in [6], where the authors derived asymptotics of fG(n) and fL(n), as n→ ∞, for certain
classes of arithmetic functions f . For example, Theorem 2.2 in [6] yields the following asymptotics

lim
n→∞

fG(n)
n logn

=
1

ζ (2)

∞

∑
k=1

f (k)
k2 , (1.2)

provided that f (n) = o(nβ logδ n), as n→∞, for some β < 1, δ ∈R and with ζ being the Riemann
zeta-function.

To set up the scene, recast (1.1) and (1.2) in the probabilistic language as follows. Assume that
on a certain probability space (Ω,F ,P), there is a sequence of random vectors

(
(V (n)

1 ,V (n)
2 )
)

n∈N
such that, for every fixed n, (V (n)

1 ,V (n)
2 ) has a uniform distribution on the finite set

H2,2(n) := {(i1, i2) ∈ N2 : i1i2 6 n}

(the choice of notation H2,2 will be explained below, see (2.1)). This means that, for all (i1, i2) ∈
H2,2(n),

P{(V (n)
1 ,V (n)

2 ) = (i1, i2)}=
1

|H2,2(n)|
.
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Then

fG(n) = |H2,2(n)| ·E f (GCD(V (n)
1 ,V (n)

2 )) and fL(n) = |H2,2(n)| ·E f (LCM(V (n)
1 ,V (n)

2 )). (1.3)

Taking into account the asymptotics

|H2,2(n)|=
n

∑
i1=1

bn/i1c

∑
i2=1

1 =
n

∑
i1=1
bn/i1c ∼ n logn, n→ ∞,

where bxc denotes the integer part of x∈R and the notation an∼ bn means that limn→∞(an/bn)= 1,
we conclude that (1.2) is equivalent to

lim
n→∞

E f (GCD(V (n)
1 ,V (n)

2 )) =
1

ζ (2)

∞

∑
k=1

f (k)
k2 . (1.4)

Remarkably, the quantity on the right-hand side coincides with E f (U (2,∞)), where by Theorem 1
in [5], the distribution of U (2,∞) is the distributional limit of GCD(Z(n)

1 ,Z(n)
2 ) as n → ∞, the

pair (Z(n)
1 ,Z(n)

2 ) being uniformly distributed in the square {1,2, . . . ,n}2. Since (1.4) holds for all
bounded arithmetic functions, it actually tells us that there is the convergence in distribution

lim
n→∞

P{GCD(V (n)
1 ,V (n)

2 ) = m}= P{U (2,∞) = m}, m ∈ N.

Therefore, GCD(V (n)
1 ,V (n)

2 ) for large n behaves as the GCD of two independent integers picked
uniformly at random from {1,2, . . . ,n}.

We shall show in the present paper that it is not a coincidence but rather a simple instance of a
much deeper and general phenomenon. This observation will allow us to extend some results in
[6] to an arbitrary dimension and cover more general hyperbolic regions defined by the standard
symmetric polynomials.

Acknowledgments. We thank the anonymous referee for several useful comments and sugges-
tions.

2. HYPERBOLIC REGIONS AND HYPERBOLIC SUMS

Fix r ∈ N and 16 `6 r, and let P̀ (x1,x2, . . . ,xr) be the `-th standard symmetric polynomial in
r variables, that is,

P̀ (x1,x2, . . . ,xr) := ∑
16i1<i2<···<i`6r

xi1xi2 · · ·xi`.

In particular,

P1(x1,x2, . . . ,xr) = x1 + x2 + · · ·+ xr and Pr(x1,x2, . . . ,xr) = x1x2 · · ·xr.

Now we introduce ‘discrete’ hyperbolic regions in Nr given, for n>
(r
`

)
, by

H`,r(n) := {(i1, . . . , ir) ∈ Nr : P̀ (i1, i2, . . . , ir)6 n}. (2.1)
2



Observe that the condition n>
(r
`

)
ensures H`,r(n) 6=∅. Moreover, for r = `= 2, (2.1) is consistent

with the definition of H2,2(n) in the introduction. In what follows, we fix r ∈ {2,3, . . .} and ` ∈
{1,2, . . . ,r}. Let (V (n)

1 ,V (n)
2 , . . . ,V (n)

r ) be a random vector uniformly distributed in H`,r(n), that is,

P{(V (n)
1 ,V (n)

2 , . . . ,V (n)
r ) = (i1, i2, . . . , ir)}=

1
|H`,r(n)|

, (i1, i2, . . . , ir) ∈ H`,r(n), n>
(

r
`

)
.

We shall also use the following ‘continuous’ counterparts of the discrete regions H`,r(n):

H`,r(c) := {(x1,x2, . . . ,xr) ∈ Rr
>0 : P̀ (x1,x2, . . . ,xr)6 c}, 16 `6 r, c > 0, (2.2)

where R>0 := [0,∞). See Figure 1 for a few illustrations. Note that H`,r(c) = c1/`H`,r(1), by the
homogeneity property of P̀ . Let Vol denote the r-dimensional Lebesgue measure on Rr. It is clear
that Vol(H1,r(1)) = 1/r! < ∞ and Vol(Hr,r(1)) = ∞. It will be shown in Lemma 4.3 below that
the volumes of all intermediate regions are finite. Since these volumes will play an important role
in what follows, we introduce the following notation:

V`,r := Vol(H`,r(1)) =
∫

∞

0
· · ·
∫

∞

0︸ ︷︷ ︸
r times

1{P̀ (y1,y2,...,yr)61}dy1 · · ·dyr, 16 ` < r.

We do not know whether V`,r admits a closed-form expression, for 1 < ` < r.
For an arithmetic function f : N→ C and n>

(r
`

)
, consider the random variables

f`,r,G(n) := f (GCD(V (n)
1 ,V (n)

2 , . . . ,V (n)
r )) and f`,r,L(n) := f (LCM(V (n)

1 ,V (n)
2 , . . . ,V (n)

r )). (2.3)

The following equalities extend formula (1.3):

E f`,r,G(n) =
1

|H`,r(n)| ∑
(i1,...,ir)∈H`,r(n)

f (GCD(i1, i2, . . . , ir)),

E f`,r,L(n) =
1

|H`,r(n)| ∑
(i1,...,ir)∈H`,r(n)

f (LCM(i1, i2, . . . , ir)).

Thus, deriving the asymptotics of the hyperbolic sums ∑(i1,...,ir)∈H`,r(n) f (GCD(i1, i2, . . . , ir)) and
∑(i1,...,ir)∈H`,r(n) f (LCM(i1, i2, . . . , ir)) is equivalent to finding the asymptotics of the counting func-
tion |H`,r(n)| and the expectations E f`,r,G(n) and E f`,r,L(n), respectively. The latter will be ob-
tained for various functions f from the corresponding distributional limit theorems for

GCD(V (n)
1 ,V (n)

2 , . . . ,V (n)
r ) and LCM(V (n)

1 ,V (n)
2 , . . . ,V (n)

r ).

3. STATEMENT OF THE MAIN RESULTS

3.1. First properties of the uniform distribution on H`,r(n). We start with some basic asymp-
totic properties of the distribution of (V (n)

1 ,V (n)
2 , . . . ,V (n)

r ), which, we recall, is the uniform distri-
bution on the set H`,r(n) defined in (2.1).

3



FIGURE 1. Hyperbolic regions defined by (2.2) with c = 1. The first row: H1,2(1)
and H2,2(1). The second row: H1,3(1), H2,3(1) and H3,3(1). The adjective ‘hy-
perbolic’ stems from the fact that, for r > 2 and 1 < ` 6 r, the set {(x1,x2) ∈
R2
>0 : P̀ (x1,x2,c3, . . . ,cr) = c} defines either a hyperbola or an empty set for all

c3, . . . ,cr > 0 and c > 0. This term is not quite appropriate in the case ` = 1, in
which H1,r(c) is an r-dimensional polytope.

Proposition 3.1. Assume that r > 2 and 16 ` < r. Then, for α1, . . . ,αr > 0,

lim
n→∞

P
{

V (n)
1 6 α1n1/`, . . . ,V (n)

r 6 αrn1/`
}
=

1
V`,r

∫
α1

0
· · ·
∫

αr

0
1{P̀ (y1,y2,...,yr)61}dy1 · · ·dyr.

Proposition 3.1, as well as all subsequent results stated in this section, will be proved in Sec-
tion 4.

In the case r = `, the limit relation is of different nature, for the volume Vr,r is infinite. In

the sequel, we find it more convenient to write distributional limit relations using ‘ d−→
n→∞

’ notation.
Specifically, for fixed r ∈ N, the notation

(Xn,1, . . . ,Xn,r)
d−→

n→∞
(X1, . . . ,Xr)

means that P{Xn,1 6 x1, . . . ,Xn,r 6 xr} → P{X1 6 x1, . . . ,Xr 6 xr}, as n→ ∞, for each continuity
point (x1, . . . ,xr) of the distribution function (y1, . . . ,yr) 7→ P{X1 6 y1, . . . ,Xr 6 yr}.

Let Z1, . . . ,Zr−1 be independent random variables with continuous uniform distribution on [0,1].
Denote by Z(1) < Z(2) < .. . < Z(r−1) their order statistics. Put Z(r) := 1,

J1 := Z(1) and Jk = Z(k)−Z(k−1), k = 2, . . . ,r.

4



Proposition 3.2. Assume that r = `> 2. Then(
logV (n)

1
logn

,
logV (n)

2
logn

, . . . ,
logV (n)

r

logn

)
d−→

n→∞
(J1,J2, . . . ,Jr) , (3.1)

or, equivalently,(
logV (n)

1
logn

,
log(V (n)

1 V (n)
2 )

logn
, . . . ,

log(V (n)
1 · · ·V

(n)
r )

logn

)
d−→

n→∞

(
Z(1),Z(2), . . . ,Z(r)

)
. (3.2)

The next result deals with limit theorems for the product V (n)
1 V (n)

2 · · ·V
(n)
r .

Proposition 3.3. Assume that r = `> 2. Then

V (n)
1 V (n)

2 · · ·V
(n)
r

n
d−→

n→∞
Ur,r, (3.3)

where Ur,r has a continuous uniform distribution on [0,1].
Assume that 16 ` < r. Then

V (n)
1 V (n)

2 · · ·V
(n)
r

nr/`
d−→

n→∞
U`,r, (3.4)

where U`,r has the distribution function

P{U`,r 6 x}= 1
V`,r

∫
∞

0
· · ·
∫

∞

0
1{P̀ (y1,y2,...,yr)61, y1y2···yr6x}dy1 · · ·dyr, x ∈

[
0, x∗`,r

]
, (3.5)

and x∗`,r :=
(r
`

)−r/`.
In both cases, for n>

(r
`

)
(with `= r in the first case),

P

{
06

V (n)
1 V (n)

2 · · ·V
(n)
r

nr/`
6 1

}
= 1. (3.6)

In particular, all power moments of positive orders in relations (3.3) and (3.4) converge to the
corresponding moments of the limit random variables.

Example 3.4. The distribution function of U1,2 can be explicitly calculated and takes the following
form:

P{U1,2 6 x}= 1−
√

1−4x+2x log
(

1+
√

1−4x
1−
√

1−4x

)
, x ∈ [0, 1/4],

with a density (the derivative) x 7→ 2log
(

1+
√

1−4x
1−
√

1−4x

)
1[0,1/4](x). For other values of ` < r, there

seems to be no simple closed form expression for P{U`,r 6 x}.
5



3.2. Arithmetic properties of the uniform distribution on H`,r(n). Our next result shows that
without any assumptions on the function f , the random variables f`,r,G(n) in (2.3) converge in
distribution, as n→ ∞.

As a preparation, we introduce a collection of random variables, which is of major importance
for the subsequent analysis. Let P denote the set of prime numbers and (Gk(p))k∈N,p∈P be a
collection of mutually independent random variables with the following geometric distributions

P{Gk(p) = j}=
(

1− 1
p

)
1
p j , j = 0,1,2, . . .

Finally, let λp(n) ∈ {0,1,2, . . .} denote the multiplicity of a prime p in the prime decomposition of
an integer n, that is,

n = ∏
p∈P

pλp(n).

Theorem 3.5. Let f : N→ C be an arithmetic function. Then

f`,r,G(n)
d−→

n→∞
f

(
∏

p∈P
pmink=1,...,r Gk(p)

)
. (3.7)

Remark 3.6. The distribution of the random variable

U (r,∞) := ∏
p∈P

pmink=1,...,r Gk(p)

can be characterized as follows. Since the minimum of independent geometric variables has again
a geometric distribution with the parameter being the product of the parameters of individual vari-
ables, the Mellin transform of U (r,∞) is given by

E
(
(U (r,∞))s)= ∏

p∈P
Epsmink=1,...,r Gk(p) = ∏

p∈P

(
∞

∑
j=0

ps j
(

1− 1
pr

)
1

pr j

)
=

ζ (r− s)
ζ (r)

, s < r−1.

We have used Euler’s product formula for the last equality.

Theorem 3.7 below is a limit theorem for the LCM.

Theorem 3.7. The following convergence in distribution holds true:

LCM(V (n)
1 ,V (n)

2 , . . . ,V (n)
r )

V (n)
1 V (n)

2 · · ·V
(n)
r

d−→
n→∞

∏
p∈P

pmaxk=1,...,r Gk(p)−∑
r
k=1 Gk(p), (3.8)

LCM(V (n)
1 ,V (n)

2 , . . . ,V (n)
r )

nr/`
d−→

n→∞
U`,r ∏

p∈P
pmaxk=1,...,r Gk(p)−∑

r
k=1 Gk(p), (3.9)

where the random variable U`,r on the right-hand side of (3.9) is independent of the Gk(p) and
has the distribution given by (3.5) if ` < r, and has the uniform distribution on [0,1] if ` = r.
Moreover, in both relations (3.8) and (3.9), all power moments of positive orders converge to the
corresponding moments of the limit random variables.

6



Our last result is concerned with the asymptotic behavior of the average E f`,r,L(n). Recall that
a real-valued measurable function f defined in a neighbourhood of +∞ is called regularly varying
at ∞ if there exists β ∈ R such that, for all λ > 0,

lim
t→∞

f (λ t)
f (t)

= λ
β .

The parameter β is called the index of regular variation of f at ∞. We refer to [3] for a compre-
hensive information on regularly varying functions.

Corollary 3.8. Let f : Rr
>0→R be a locally bounded function which varies regularly at ∞ of index

β > 0. Then, as n→ ∞,

E f`,r,L(n) =
1

|H`,r(n)| ∑
(i1,...,ir)∈H`,r(n)

f (LCM(i1, i2, . . . , ir))

∼ E(Uβ

`,r)E

((
∏

p∈P
pmaxk=1,...,r Gk(p)−∑

r
k=1 Gk(p)

)β
)

f (nr/`).

4. PROOFS OF THE MAIN RESULTS

We start with the detailed analysis of the counting functions |H`,r(n)|, which is an essential
ingredient for the proofs of our main results.

4.1. Properties of the counting function when `= 1 and `= r. We first consider the case `= 1
and r ∈ N. Then

H1,r(n) = {(i1, . . . , ir) ∈ Nr : i1 + i2 + · · ·+ ir 6 n},

and there is the obvious exact formula |H1,r(n)|=
(n

r

)
, which entails that, as n→ ∞,

|H1,r(n)| ∼
nr

r!
. (4.1)

Assume now that r = `> 2. Then

Hr,r(n) = {(i1, . . . , ir) ∈ Nr : i1i2 · · · ir 6 n}.

Although there is no simple exact formula for the cardinality of Hr,r(n), one can easily derive the
exact growth rate of |Hr,r(n)|. This is given in the next proposition.

Proposition 4.1. For fixed r > 2, as n→ ∞,

|Hr,r(n)|=
n logr−1 n
(r−1)!

+O(n logr−2 n).

Proof. Put Wr(n) := |Hr,r(n)|. Then W1(n) = n and

Wr(n) =
n

∑
i=1

Wr−1

(⌊n
i

⌋)
, r > 2. (4.2)

7



The claim of Proposition 4.1 follows by induction on r with the help of the asymptotic relation

n

∑
i=1

⌊n
i

⌋
logk−1

(⌊n
i

⌋)
=

n

∑
i=1

n
i

logk−1
(n

i

)
+O(n logk−1 n) =

n logk n
k

+O(n logk−1 n), n→ ∞,

which holds for every fixed k ∈ N. �

Corollary 4.2. For fixed r ∈ N, the sequence (|Hr,r(n)|)n∈N is regularly varying at ∞ of index 1,
that is, for each λ > 0,

lim
n→∞

|Hr,r(bλnc)|
|Hr,r(n)|

= λ .

The result of Corollary 4.2 is less precise than that of Proposition 4.1. It is stated here only for
comparison to its counterpart, Corollary 4.5, which treats the case 1 < ` < r.

4.2. Properties of the counting function when 1 < ` < r. Comparing (4.1) and Proposition 4.1
and keeping in mind the homogeneity properties of P̀ , one could think that the asymptotics of
|H`,r(n)| in the intermediate regimes should be of the form Crnr/` log`−1 n. This, however, turns
out to be wrong in that there is no logarithmic factor, that is, the correct answer is |H`,r(n)| ∼Crnr/`

for an appropriate Cr > 0. This is, in fact, a consequence of the finiteness of the volumes V`,r for
` < r.

Lemma 4.3. For all r > 2 and 16 ` < r, Vol(H`,r(c)) = cr/`Vol(H`,r(1))< ∞.

Proof. We proceed in two steps. First, we show that

Vol(Hr−1,r(1))< ∞. (4.3)

As a second step, we prove that

H`,r(1)⊆Hr−1,r(r), ` < r. (4.4)

To check (4.3), observe that

Vol(Hr−1,r(1)) =
∫

∞

0
· · ·
∫

∞

0
1{Pr−1(y1,y2,...,yr)61}dy1 · · ·dyr.

Changing the variables z j :=(y1y2 · · ·yr)/y j or, equivalently, y j =(z1z2 · · ·zr)
1/(r−1)z−1

j , j = 1, . . . ,r,
we conclude that the partial derivatives are given by

∂y j

∂ zk
=

(r−1)−1(z1z2 · · ·zr)
1/(r−1)z−1

j z−1
k , j 6= k,

2−r
r−1(z1z2 · · ·zr)

1/(r−1)z−2
j , j = k.

8



Thus, the Jacobian determinant J is equal to

J = (z1z2 · · ·zr)
r

r−1

∣∣∣∣∣∣∣∣∣∣∣

2−r
r−1

1
z2

1

1
r−1

1
z1z2

· · · 1
r−1

1
z1zr

1
r−1

1
z2z1

2−r
r−1

1
z2

2
· · · 1

r−1
1

z2zr
...

... . . . ...
1

r−1
1

zrz1
1

r−1
1

zrz2
· · · 2−r

r−1
1
z2
r

∣∣∣∣∣∣∣∣∣∣∣
=

1

(z1z2 · · ·zr)
r−2
r−1

∣∣∣∣∣∣∣∣∣∣

2−r
r−1

1
r−1 · · · 1

r−1
1

r−1
2−r
r−1 · · · 1

r−1
...

... . . . ...
1

r−1
1

r−1 · · · 2−r
r−1

∣∣∣∣∣∣∣∣∣∣
=

(−1)r−1

(r−1)(z1z2 · · ·zr)
r−2
r−1

,

whence

Vol(Hr−1,r(1)) =
1

r−1

∫
∞

0
· · ·
∫

∞

0

1{z1+z2+···+zr61}

(z1z2 · · ·zr)
r−2
r−1

dz1 · · ·dzr

6
1

r−1

∫ 1

0
· · ·
∫ 1

0

1

(z1z2 · · ·zr)
r−2
r−1

dz1 · · ·dzr = (r−1)r−1 < ∞.

This proves (4.3).
Turning to (4.4), pick (x1,x2, . . . ,xr) ∈H`,r(1). Then

xi1xi2 · · ·xi` 6 1, for every `-tuple 16 i1 < i2 < · · ·< i` 6 r.

Fix k = 1, . . . ,r and multiply the above inequalities over all `-tuples taken from {1,2, . . . ,k−1,k+
1, . . . ,r}. This yields x1x2 · · ·xk−1xk+1 · · ·xr 6 1 and thereupon Pr−1(x1,x2, . . . ,xr) 6 r, meaning
that (x1,x2, . . . ,xr) ∈Hr−1,r(r). �

Proposition 4.4. For fixed r > 2 and ` < r,

lim
n→∞

|H`,r(n)|
nr/`

= V`,r.

Proof. By homogeneity of P̀ ,

|H`,r(n)|
nr/`

=
1

nr/`

∞

∑
i1=1
· · ·

∞

∑
ir=1

1{P̀ (i1,...,ir)6n} =
1

(n1/`)r

∞

∑
i1=1
· · ·

∞

∑
ir=1

1{P̀ (i1/n1/`,...,ir/n1/`)61}.

The claim follows from Proposition A.1 (see Appendix A) applied to the function g(y1, . . . ,yr) :=
1{P̀ (y1,...,yr)61}. Indeed, while this function is obviously coordinatewise nonincreasing, its integra-
bility follows from Lemma 4.3. �

Corollary 4.5. For fixed r > 2 and 16 ` < r, the sequence (|H`,r(n)|)n>(r
`)

is regularly varying at
∞ of index r/`, that is, for each λ > 0,

lim
n→∞

|H`,r(bnλc)|
|H`,r(n)|

= λ
r/`.

9



Proposition 4.6. For fixed r > 2, 16 `6 r and t1, . . . , tr > 0,

lim
n→∞

|{(i1, . . . , ir) ∈ Nr : P̀ (t1i1, . . . , trir)6 n}|
|H`,r(n)|

=

(
r

∏
k=1

tk

)−1

.

Proof. If `= r, the claim immediately follows from Corollary 4.2, because

|{(i1, . . . , ir) ∈ Nr : Pr(t1i1, . . . , trir)6 n}|

= |{(i1, . . . , ir) ∈ Nr : t1i1 · · · trir 6 n}|=
∣∣∣∣Hr,r

(⌊
n

t1t2 · · · tr

⌋)∣∣∣∣ .
From now on, we assume that ` < r. Write

|{(i1, . . . , ir) ∈ Nr : P̀ (t1i1, . . . , trir)6 n}|=
∞

∑
i1=1
· · ·

∞

∑
ir=1

1{P̀ (t1i1,...,trir)6n}

=
∞

∑
i1=1
· · ·

∞

∑
ir=1

1{P̀ (t1i1/n1/`,...,trir/n1/`)61}.

Applying Proposition A.1 with the function g(y1, . . . ,yr) := 1{P̀ (t1y1,...,tryr)61} and using Proposi-
tion 4.4, we infer

lim
n→∞

|{(i1, . . . , ir) ∈ Nr : P̀ (t1i1, . . . , trir)6 n}|
|H`,r(n)|

=
1

V`,r

∫
∞

0
· · ·
∫

∞

0
1{P̀ (t1y1,...,tryr)61}dy1 · · ·dyr =

(
r

∏
k=1

tk

)−1

.

For future use, we note here that

|{(i1, . . . , ir) ∈ Nr : P̀ (t1i1, . . . , trir)6 n}|6
nr/`V`,r

t1t2 · · · tr
, 16 ` < r, (4.5)

which is a direct consequence of monotonicity. �

4.3. Proofs of Propositions 3.1, 3.2 and 3.3.

Proof of Proposition 3.1. The proof again relies on Proposition A.1 from the Appendix. Note that

P
{

V (n)
1 6 α1n1/`, . . . ,V (n)

r 6 αrn1/`
}

=
|{(i1, . . . , ir) ∈ Nr : P̀ (i1, . . . , ir)6 n, i1 6 α1n1/`, . . . , ir 6 αrn1/`}|

|H`,r(n)|

=
n−r/`|{(i1, . . . , ir) ∈ Nr : P̀ (i1/n1/`, . . . , ir/n1/`)6 1, i1/n1/` 6 α1, . . . , ir/n1/` 6 αr}|

n−r/`|H`,r(n)|
,

and the right-hand side converges, as n→ ∞, to

1
V`,r

∫
α1

0
· · ·
∫

αr

0
1{P̀ (y1,y2,...,yr)61}dy1 · · ·dyr. �

10



We first prove Proposition 3.3, for this result will be used in the proof of Proposition 3.2.

Proof of Proposition 3.3. For a proof of (3.3), note that, for x ∈ [0, 1] and n ∈ N,

P{V (n)
1 V (n)

2 · · ·V
(n)
r 6 xn}= |{(i1, . . . , ir) ∈ Nr : i1i2 · · · ir 6 xn}|

|{(i1, . . . , ir) ∈ Nr : i1i2 · · · ir 6 n}|
, (4.6)

which, in view of Corollary 4.2, converges to x, as n→ ∞. As for (3.4), write

P{V (n)
1 V (n)

2 · · ·V
(n)
r 6 xnr/`}= |{(i1, . . . , ir) ∈ Nr : P̀ (i1, . . . , ir)6 n, i1 · · · ir 6 xnr/`}|

|H`,r(n)|

=
n−r/`|{(i1, . . . , ir) ∈ Nr : P̀ (i1/n1/`, . . . , ir/n1/`)6 1,(i1/n1/`) · · ·(ir/n1/`)6 x}|

n−r/`|H`,r(n)|
.

While the numerator converges to the integral on the right-hand side of (3.5), by Proposition A.1
applied with g(y1, . . . ,yr) = 1{P̀ (y1,...,yr)61, y1···yr6x}, the denominator converges to V`,r, by Propo-
sition 4.4. The value x∗`,r in (3.5) is the supremum of the support of U`,r. It can be found as the
largest real number such that the surfaces P̀ (x1, . . . ,xr) = 1 and x1 · · ·xr = x∗`,r have a nonempty
intersection.

Formula (3.6) is obvious for ` = r, since, by construction, (V (n)
1 , . . . ,V (n)

r ) is a point chosen at
random in the set Hr,r(n). Alternatively, (3.6) follows on putting x = 1 in (4.6). If ` < r, formula
(3.6) can be proved as follows. By definition, P̀ (V (n)

1 , . . . ,V (n)
r )6 n, which implies

P

V (n)
i1

n1/`

V (n)
i2

n1/` · · ·
V (n)

i`

n1/` 6 1

= 1,

for all `-tuples taken from {1,2, . . . ,r}. Multiplying all these inequalities, we obtain (3.6). �

Proof of Proposition 3.2. We first observe that (3.3) implies

lim
n→∞

P
{

V (n)
1 · · ·V

(n)
r 6 nβ

}
= 0, (4.7)

for every fixed β < 1.
We shall prove a relation equivalent to (3.2), namely, for all 0 < β1 < .. . < βr−1 < βr < 1 and

sufficiently small h1, . . . ,hr−1,hr > 0 such that the intervals

(β1,β1 +h1],(β2,β2 +h2], . . . ,(βr−1,βr−1 +hr−1],(βr,βr +hr]

are disjoint,

lim
n→∞

P{V (n)
1 ∈ (nβ1 ,nβ1+h1 ],V (n)

1 V (n)
2 ∈ (nβ2,nβ2+h2], . . . ,V (n)

1 V (n)
2 · · ·V

(n)
r ∈ (nβr ,nβr+hr ]}

= P{Z(1) ∈ (β1,β1 +h1],Z(2) ∈ (β2,β2 +h2], . . . ,Z(r) ∈ (βr,βr +hr]}

= (r−1)!h1 · · ·hr−11{βr+hr>1}. (4.8)

The second equality in (4.8) follows from the fact that (Z(1), . . . ,Z(r−1)) has a constant density in
the region {(x1, . . . ,xr−1) ∈ [0,1]r−1 : x1 6 · · · 6 xr−1 6 1}, which is equal to (r− 1)!, see, for

11



instance, formula (1.4) on p. 238 in [8]. An appeal to (4.7) and the fact that V (n)
1 V (n)

2 · · ·V
(n)
r 6 n

justifies the equivalence of (4.8) and

lim
n→∞

P{V (n)
1 ∈ (nβ1,nβ1+h1 ],V (n)

1 V (n)
2 ∈ (nβ2,nβ2+h2], . . . ,V (n)

1 V (n)
2 · · ·V

(n)
r−1 ∈ (nβr−1,nβr−1+hr−1]}

= (r−1)!h1 · · ·hr−1. (4.9)

The probability on the left-hand side of (4.9) is equal to

|{(i1, . . . , ir) : i1 ∈ (nβ1,nβ1+h1], . . . , i1 · · · ir−1 ∈ (nβr−1,nβr−1+hr−1], i1 · · · ir 6 n}|
|Hr,r(n)|

.

Hence, according to Proposition 4.1, formula (4.9) follows once we can check that the numerator
is asymptotically equivalent to h1 · · ·hr−1n logr−1 n, as n→ ∞. The latter relation can be written as

∞

∑
i1=1

1{i1∈(nβ1 ,nβ1+h1 ]}

∞

∑
i2=1

1{i2∈(nβ2/i1,nβ2+h2/i1]} · · ·
∞

∑
ir−1=1

1{ir−1∈(nβr−1/(i1···ir−2),n
βr−1+hr−1/(i1···ir−2)]}

∞

∑
ir=1

1{ir6n/(i1·...·ir−1)} ∼ h1 · · ·hr−1n logr−1 n,

or after calculating the rightmost sum as

∞

∑
i1=1

1{i1∈(nβ1 ,nβ1+h1 ]}
i1

∞

∑
i2=1

1{i2∈(nβ2/i1,nβ2+h2/i1]}
i2

· · ·
∞

∑
ir−1=1

1{ir−1∈(nβr−1/(i1···ir−2),n
βr−1+hr−1/(i1···ir−2)]}

ir−1

∼ h1 · · ·hr−1 logr−1 n. (4.10)

Relation (4.10) readily follows by induction on r > 2 with the help of the formula
∞

∑
i=1

1{i∈[xna,xna+h]}
i

= h logn+O(1), n→ ∞,

which holds for all fixed a,h > 0, uniformly in x and n satisfying xna→∞. In our setting, the latter
relation is secured by nβk−1/(i1 · · · ik−2)→ ∞ for every k > 3, which, in its turn, follows in view of
βk−2 +hk−2 < βk−1. �

4.4. Prime decomposition. The following proposition lies in the core of our main theorems and
shows that as far as divisibility properties are concerned, the random vector (V (n)

1 ,V (n)
2 , . . . ,V (n)

r ),
uniformly distributed in the hyperbolic region H`,r(n), behaves as a set of r independent variables
uniformly distributed in {1,2, . . . ,n}, see, for example, Lemma 3.1 in [4].

Proposition 4.7. Assume that r > 2. The following convergence in distribution holds true:(
V (n)

1 V (n)
2 · · ·V

(n)
r

nr/`
,
(

λp(V
(n)
1 ), . . . ,λp(V

(n)
r )
)

p∈P

)
d−→

n→∞

(
U`,r,(G1(p), . . . ,Gr(p))p∈P

)
on R× (Rr)∞, where U`,r on the right-hand side is independent of the Gk(p), for all k = 1, . . . ,r
and p ∈P .

12



Proof. Fix m ∈ N, x> 0, pairwise distinct primes p1, . . . , pm ∈P and arbitrary jk,t ∈ {0,1,2, . . .}
for k = 1, . . . ,r and t = 1, . . . ,m. Write

P{V (n)
1 V (n)

2 · · ·V
(n)
r 6 xnr/`,λpt (V

(n)
k )> jk,t for all k = 1, . . . ,r and t = 1, . . . ,m}

= P{V (n)
1 V (n)

2 · · ·V
(n)
r 6 xnr/`, p

jk,t
t divides V (n)

k for all k = 1, . . . ,r and t = 1, . . . ,m}

=
1

|H`,r(n)|

∞

∑
i1=1
· · ·

∞

∑
ir=1

1{P̀ (i1, . . . , ir)6 n, i1 · · · ir 6 xnr/`,

p
jk,t
t divides ik for all k = 1, . . . ,r and t = 1, . . . ,m}

=
1

|H`,r(n)|

∞

∑
i1=1
· · ·

∞

∑
ir=1

1

{
P̀ (i1, . . . , ir)6 n, i1 · · · ir 6 xnr/`,

m

∏
t=1

p
jk,t
t divides ik for all k = 1, . . . ,r

}
.

For notational simplicity, put µk :=∏
m
t=1 p

jk,t
t . Since the sum over ik in the formula above is actually

taken over multiples of µk, k = 1, . . . ,r, we obtain

P{V (n)
1 V (n)

2 · · ·V
(n)
r 6 xn`/r,λpt (V

(n)
k )> jk,t for all k = 1, . . . ,r and t = 1, . . . ,m}

=
|{(i1, . . . , ir) ∈ Nr : P̀ (µ1i1, . . . ,µrir)6 n,(µ1i1) · · ·(µrir)6 xnr/`}|

|H`,r(n)|
. (4.11)

If `= r, the last quantity converges as n→∞ to x/(µ1 · · ·µr), by Corollary 4.2. If `< r, it converges
to

1
V`,r

∫
∞

0
· · ·
∫

∞

0
1{P̀ (µ1y1,...,µryr)61, (µ1y1)···(µryr)6x}dy1 · · ·dyr =

1
µ1 · · ·µr

P{U`,r 6 x},

by Proposition A.1. This finishes the proof, because

1
µ1 · · ·µr

= P{Gk(pt)> jk,t for all k = 1, . . . ,r and t = 1, . . . ,m}. �

4.5. Proof of Theorem 3.5. We start by noting that the infinite product on the right-hand side of
(3.7) converges almost surely (a.s.) and in mean. For r = 2, a proof can be found in formula (6.8)
of [1], see also [5]. Since the infinite product is nonincreasing in r a.s., it must also converge for
all r > 3.

We shall use a representation

GCD(V (n)
1 ,V (n)

2 , . . . ,V (n)
r )) = ∏

p∈P
pmink=1,...,r λp(V

(n)
k ) =

(
∏

p∈P,p6M
· · ·

)(
∏

p∈P,p>M
· · ·

)
,

where M > 0 is a fixed large number. As n→ ∞, the first product converges in distribution to

∏
p∈P,p6M

pmink=1,...,r Gk(p),
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which, in its turn, is a.s. converging, as M → ∞, to the right-hand side of (3.7). According to
Theorem 3.2 in [2], it remains to check that

lim
M→∞

limsup
n→∞

P

{
∏

p∈P,p>M
pmink=1,...,r λp(V

(n)
k ) 6= 1

}
= 0,

which is equivalent to

lim
M→∞

limsup
n→∞

P
{

for some p ∈P, p > M, min
k=1,...,r

λp(V
(n)
k )> 0

}
= 0. (4.12)

Using Boole’s inequality and formula (4.11) we write

P
{

for some p ∈P, p > M, min
k=1,...,r

λp(V
(n)
k )> 0

}
6 ∑

p∈P,p>M
P{λp(V

(n)
1 )> 1, . . . ,λp(V

(n)
r )> 1}

= ∑
p∈P,p>M

|{(i1, . . . , ir) ∈ Nr : P̀ (pi1, . . . , pir)6 n}|
|H`,r(n)|

= ∑
p∈P,p>M

|{(i1, . . . , ir) ∈ Nr : P̀ (i1, . . . , ir)6 n/p`}|
|H`,r(n)|

= ∑
p∈P,p>M

|H`,r(bn/p`c)|
|H`,r(n)|

.

Invoking Corollaries 4.2 and 4.5 in conjunction with Potter’s bound for regularly varying functions
(Theorem 1.5.6 in [3]), we infer, for n ∈ N large enough,

|H`,r(bn/p`c)|
|H`,r(n)|

6
2

(p`)(2r−1)/(2`)
=

2
pr−1/2 6

2
p3/2 .

This yields (4.12), because

lim
M→∞

∑
p∈P,p>M

2
p3/2 = 0.

4.6. Proof of Theorem 3.7 and Corollary 3.8. Similarly to the proof of Theorem 3.5, we start
with a decomposition

LCM(V (n)
1 ,V (n)

2 , . . . ,V (n)
r )

V (n)
1 V (n)

2 · · ·V
(n)
r

= ∏
p∈P

pmaxk=1,...,r λp(V
(n)
k )−∑

r
k=1 λp(V

(n)
k )

=

(
∏

p∈P,p6M
· · ·

)(
∏

p∈P,p>M
· · ·

)
,

where M is a fixed large integer. As n→ ∞, the first product converges to

∏
p∈P,p6M

pmaxk=1,...,r Gk(p)−∑
r
k=1 Gk(p)
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by virtue of Proposition 4.7. As M→ ∞, the latter converges a.s. to

∏
p∈P

pmaxk=1,...,r Gk(p)−∑
r
k=1 Gk(p),

which is an a.s. finite random variable, see Proposition 2.1 in [4].
Appealing once again to Theorem 3.2 in [2], we see that it is enough to check that

lim
M→∞

limsup
n→∞

P

{
∏

p∈P,p>M
pmaxk=1,...,r λp(V

(n)
k )−∑

r
k=1 λp(V

(n)
k ) 6= 1

}
= 0,

which is equivalent to

lim
M→∞

limsup
n→∞

P

{
for some p ∈P, p > M, max

k=1,...,r
λp(V

(n)
k ) 6=

r

∑
k=1

λp(V
(n)
k )

}
= 0. (4.13)

Observe that {
max

k=1,...,r
λp(V

(n)
k ) 6=

r

∑
k=1

λp(V
(n)
k )

}
⊂

{
r

∑
k=1

λp(V
(n)
k )> 2

}
.

Thus

P

{
for some p ∈P, p > M, max

k=1,...,r
λp(V

(n)
k ) 6=

r

∑
k=1

λp(V
(n)
k )

}

6 ∑
p∈P,p>M

P

{
r

∑
k=1

λp(V
(n)
k )> 2

}
6 ∑

p∈P,p>M
P
{

λp(V
(n)
k )> 2 for some k = 1, . . . ,r

}
+ ∑

p∈P,p>M
P
{

λp(V
(n)
i )> 1,λp(V

(n)
j )> 1 for some i, j = 1, . . . ,r, i 6= j

}
.

Using the fact that the vector (V (n)
1 ,V (n)

2 , . . . ,V (n)
r ) is exchangeable, that is, its distribution is invari-

ant under permutations, and then applying formula (4.11), we conclude that

P

{
for some p ∈P, p > M, max

k=1,...,r
λp(V

(n)
k ) 6=

r

∑
k=1

λp(V
(n)
k )

}
6 r ∑

p∈P,p>M
P
{

λp(V
(n)
1 )> 2

}
+ r(r−1) ∑

p∈P,p>M
P
{

λp(V
(n)
1 )> 1,λp(V

(n)
2 )> 1

}
= r ∑

p∈P,p>M

|{(i1, . . . , ir) ∈ Nr : P̀ (p2i1, i2, . . . , ir)6 n}|
|H`,r(n)|

+ r(r−1) ∑
p∈P,p>M

|{(i1, . . . , ir) ∈ Nr : P̀ (pi1, pi2, i3, . . . , ir)6 n}|
|H`,r(n)|

.
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If `= r, the right-hand side is equal to

r2
∑

p∈P,p>M

|Hr,r(bn/p2c)|
|Hr,r(n)|

and (4.13) follows by appealing to Potter’s bound in the same fashion as we did in the proof of
Theorem 3.5. If ` < r, we apply inequality (4.5) to obtain

P

{
for some p ∈P, p > M, max

k=1,...,r
λp(V

(n)
k ) 6=

r

∑
k=1

λp(V
(n)
k )

}
6 r2 nr/`V`,r

|H`,r(n)|

(
∑

p∈P,p>M

1
p2

)
.

Sending first n→ ∞ and using Proposition 4.4, and then letting M→ ∞ yields (4.13). Thus, (3.8)
has been proved. The second limit relation (3.9) is justified by the continuous mapping theorem in
combination with the joint convergence(

V (n)
1 V (n)

2 · · ·V
(n)
r

nr/`
,
LCM(V (n)

1 ,V (n)
2 , . . . ,V (n)

r )

V (n)
1 V (n)

2 · · ·V
(n)
r

)
d−→

n→∞

(
U`,r, ∏

p∈P
pmaxk=1,...,r Gk(p)−∑

r
k=1 Gk(p)

)
,

which holds true, by Proposition 4.7. The convergence of all power moments of positive orders
follows from the fact that both variables on the left-hand side are supported by [0,1].

Corollary 3.8 follows immediately from formula (3.9) and Proposition A.2 in the Appendix,
upon applying the Skorohod representation theorem, see, for instance, Theorem 4.30 in [7]. The
theorem guarantees that there exist versions of the random variables on the left-hand side of (3.9),
which converge almost surely to a version of the limit random variable in (3.9).

APPENDIX A. TWO CONVERGENCE RESULTS

First, we state a result concerning multivariate infinite Riemann sums.

Proposition A.1. Let r ∈ N and g : Rr
>0→ R>0 be a coordinatewise nonincreasing function. As-

sume that
I :=

∫
∞

0
· · ·
∫

∞

0
g(y1,y2, . . . ,yr)dy1 · · ·dyr < ∞.

Then

lim
n→∞

1
nr

∞

∑
i1=1
· · ·

∞

∑
ir=1

g
(

i1
n
,
i2
n
, . . . ,

ir
n

)
= I.

Proof. Put

In :=
∫

∞

1/n
· · ·
∫

∞

1/n
g(y1,y2, . . . ,yr)dy1 · · ·dyr

and note that, by monotonicity,

In 6
1
nr

∞

∑
i1=1
· · ·

∞

∑
ir=1

g
(

i1
n
,
i2
n
, . . . ,

ir
n

)
6 I.

By the dominated convergence theorem,

06 I− In =
∫

∞

0
· · ·
∫

∞

0
g(y1,y2, . . . ,yr)1{min(y1,y2,...,yr)6n−1}dy1 · · ·dyr→ 0, n→ ∞. �
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Proposition A.2 is used in the proof of the moment convergence in Theorem 3.8. Even though
the result looks rather standard, we have not been able to locate it in the literature.

Proposition A.2. Assume that X is a random variable with P{X = 0} < 1, and (Xn)n∈N is a
sequence of random variables on some probability space (Ω,F ,P) such that, P-a.s.,

Xn

an
→ X as n→ ∞, and 06

Xn

an
6C for some constant C > 0,

where an→∞. Let f : R>0→R be a locally bounded function which varies regularly at ∞ of index
β > 0. Then, as n→ ∞,

E f (Xn) ∼ (EXβ ) f (an).

Proof. By Theorem 1.5.3 in [3], there exists a nondecreasing function g such that g(x)∼ f (x), as
x→ ∞. Fix ε > 0 and write

g(Xn)

g(an)
=

g((Xn/an)an)

g(an)
=

g((Xn/an)an)

g(an)
1{Xn/an>ε}+

g((Xn/an)an)

g(an)
1{Xn/an6ε} =: In(ε)+ Jn(ε).

By the uniform convergence theorem for regularly varying functions (Theorem 1.5.2 in [3]),

lim
n→∞

In(ε) = Xβ
1{X>ε} P− a.s.

By monotonicity,
limsup

n→∞

Jn(ε)6 ε
β P− a.s.

and thereupon

limsup
n→∞

g(Xn)

g(an)
6 Xβ

1{X>ε}+ ε
β P− a.s.

Hence,

limsup
n→∞

g(Xn)

g(an)
6 Xβ P− a.s.

The converse inequality for the liminf is a consequence of

g(Xn)

g(an)
>

g(Xn)

g(an)
1{Xn/an>ε}→ Xβ

1{X>ε}, n→ ∞ P− a.s.

Thus,

lim
n→∞

g(Xn)

g(an)
= Xβ P− a.s.

By monotonicity and regular variation of g in conjunction with the assumption Xn/an 6 C, the
left-hand side is bounded, which entails

lim
n→∞

Eg(Xn)

g(an)
= EXβ .

Further,

lim
n→∞

Eg(Xn)

f (an)
= EXβ .
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It remains to note that

lim
n→∞

Eg(Xn)

E f (Xn)
= 1. (A.1)

Indeed, given ε > 0, there exists x0 > 0 such that (1− ε) f (x)6 g(x)6 (1+ ε) f (x), for all x> x0.
Thus,

(1−ε)E f (Xn)−(1−ε) sup
x∈[0,x0]

f (x)6 (1−ε)E f (Xn)1{Xn>x0} 6Eg(Xn)6 (1+ε)E f (Xn)+g(x0),

and (A.1) follows. �
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