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Abstract. Let Γ be a non-elementary relatively hyperbolic group with a finite generating set. Consider a
finitely supported admissible and symmetric probability measure µ on Γ and a probability measure ν on N
with mean r. Let BRWpΓ, ν, µq be the branching random walk on Γ with offspring distribution ν and base
motion given by the random walk with step distribution µ. It is known that for 1 ă r ď R with R the radius

of convergence for the Green function of the random walk, the population of BRWpΓ, ν, µq survives forever,

but eventually vacates every finite subset of Γ. We prove that in this regime, the growth rate of the trace
of the branching random walk is equal to the growth rate ωΓprq of the Green function of the underlying

random walk. We also prove that the Hausdorff dimension of the limit set Λprq, which is the random subset

of the Bowditch boundary consisting of all accumulation points of the trace of BRWpΓ, ν, µq, is equal to a
constant times ωΓprq.
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1. Introduction

1.1. Background and motivation. Let pV,Eq be a locally finite connected infinite graph. A Branching
Markov chain (BMC) on pV,Eq is defined as follows. One starts with a single particle at a fixed vertex v0 P V .
For n ě 1, each particle still alive at time n dies and gives birth to an independent random number of offspring
particles, according to a probability measure ν on N “ t1, 2, 3, . . .u, each of them independently moving on
pV,Eq according to an underlying Markov chain on pV,Eq driven by a transition kernel ppx, yq, x, y P V .
Sometimes in literature, the measure ν is distributed on Zě0 “ t0, 1, 2, . . .u but we will always assume that
there is at least one offspring particle to avoid the extinction of the system. This is not serious restriction,
as conditioning on non-extinction, one can assume that ν is distributed on N, see [AN04, Chapter 1]. We
will also assume that the underlying Markov chain is irreducible, i.e. every vertex of the graph can be visited
by the Markov chain with positive probability and that it is symmetric, i.e. ppx, yq “ ppy, xq for all x, y P V .
There is a large body of work dedicated to branching Markov chains on the real line and we refer to [Shi12]
and references therein for more details. We also refer to [AN04] for a general discussion and historical
perspective on branching processes.

A branching Markov chain is called recurrent if with positive probability (and thus with probability 1),
some (and thus every) vertex of the graph is visited by infinitely many particles of the BMC. It is called
transient otherwise. Recurrence or transience of the BMC is governed by the expectation of the offspring
distribution

Erνs “
ÿ

kě1

kνpkq

and by the spectral radius ρ of the Markov chain defined by

ρ “ lim sup
n

pnpx, yq
1{n,

which is independent of x and y, provided the underlying Markov chain is irreducible. Here pn is the n-th
convolution power of p defined by

pnpx, yq “
ÿ

z1,...,zn´1PV

ppx, z1qppz1, z2q ¨ ¨ ¨ ppzn´1, yq.

More precisely, if Erνs ď ρ´1, then the branching Markov chain is transient, otherwise, it is recurrent, see
[BP94, GM06] and references therein.

Let us now restrict our attention to the following context. Consider a finitely generated group Γ endowed
with a finite generating set and a probability measure µ on Γ. For a given probability measure ν on N, the
branching random walk BRWpΓ, ν, µq is the branching Markov chain on the Cayley graph of Γ driven by ν and
by the µ-random walk, which is the Markov chain whose transition probability is given by ppx, yq :“ µpx´1yq.
Since p is assumed to be symmetric, µ is symmetric in the sense that µpxq “ µpx´1q for every x P Γ. In this
case, irreducibility of the random walk means that the support of µ generates Γ as a group. We also say
that the random walk driven by µ is admissible.

In the transient case, we introduce the trace P of the branching random walk, which is the set of vertices
that are ever visited by BRWpΓ, ν, µq. It is a random subset of Γ and it has been a fruitful line of research
to study the geometric properties of P. When the group Γ is endowed with a geometric boundary BΓ, one
can define the limit set Λ of P as the closure of P in BΓ, i.e. Λ “ clpPq X BΓ. In hyperbolic context, the
growth rate of P and the Hausdorff dimension of Λ for suited distance on the boundary BΓ has been related
to asymptotic quantities involving Γ and µ as we explain below. Let us first mention that Benjamini and
Müller [BM12] studied qualitative properties of P and listed a certain number of conjectures. They proved
in particular that P has exponential growth, while their method does not give quantitative results on the
growth rate. Hutchcroft proved in [Hut20] that on any non-amenable group, two independent branching
random walks almost surely intersect at most finitely often, which imply that P has infinitely many ends
almost surely. This answers some of the questions in [BM12]. Let us also mention that in a very recent work
[KW22], Kaimanovich and Woess studied limit behaviour of branching random walks in terms of geometric
features of Γ with a very new angle.

1.2. Earlier results on hyperbolic groups. We introduce the Green function defined as

Grpx, yq “
ÿ

ně0

pnpx
´1yqrn, x, y P Γ.
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Its radius of convergence R is independent of x, y provided that the random walk driven by µ is admissible.
We have R “ ρ´1, where ρ is the spectral radius introduced above. The groups under consideration in this
paper will always be non-amenable, so by a landmark result of Kesten, R ą 1, see [Woe00, Corollary 12.5].
For every r ď R, we set

Hrpnq “
ÿ

xPSn

Grpe, xq

where Sn is the sphere of radius n centered at e for the word distance and

ωΓprq “ lim sup
nÑ8

1

n
logHrpnq.

We call ωΓprq the growth rate of the Green function. It depends both on µ and on the chosen finite
generating set of Γ. We also set Pn “ P X Sn and Mn “ 7Pn. We define the growth rate of BRWpΓ, ν, µq as
lim sup 1

n logMn.
Assume that Γ is a finitely generated free group endowed with its standard generating set and consider a

branching random walk on Γ with Erνs “ r P r1, ρ´1s. Let λ ă 1 and for x, y P Γ, set dλpx, yq “ λn, where n
is the biggest integer such that the prefixes of length n of x and y coincide. Then, dλ extends to a distance
on ΓY BΓ, where BΓ is the set of ends of Γ. Liggett [Lig96] and Hueter-Lalley [HL00] proved that whenever
the underlying random walk is a symmetric, possibly anisotropic, nearest neighbor random walk on Γ, then
the limit

θprq “ lim
nÑ8

pMnq
1{n

is well defined and is almost surely a constant. Moreover, the Hausdorff dimension of the limit set Λ in BΓ
is equal to ´ logλ θprq. Finally, the function θprq is continuous and strictly increasing on r1, ρ´1s and has
critical exponent 1{2 at ρ´1, which means that there exists C ą 0 such that

θpρ´1q ´ θprq „
rÑρ´1

C
a

ρ´1 ´ r

and

log θpρ´1q ´ log θprq „
rÑρ´1

C

θpρ´1q

a

ρ´1 ´ r.

Furthermore, log θprq ď 1
2v, where v “ logp2q ´ 1q is the volume growth rate of the free group Γ with q

generators.
In [SWX20], the authors extended these results to all hyperbolic groups and expressed log θ as the growth

rate of the Green function, i.e.

θprq “ eωΓprq.

Here, BΓ is the Gromov boundary of Γ endowed with a visual distance dλ satisfying dλpξ, ζq — λpξ|ζq, where
p¨|¨q is the Gromov product, see [SWX20, Section 2.1] for more details. In particular, the Hausdorff dimension
of the limit set was proven there to be ωΓprq for r ă ρ´1, but the critical case r “ ρ´1 remained open. As a
particular case of our work, we will show that this is still true at r “ ρ´1, see Corollary 1.5 below.

1.3. Main results. Our goal in this paper is to generalize some of the aforementioned results to the class
of relatively hyperbolic groups, whose precise definition is recalled in Section 2. Briefly, a finitely generated
group Γ is called relatively hyperbolic if it admits a geometrically finite action on a proper geodesic hyperbolic
space X. The Bowditch boundary of Γ is then the limit set of the orbit of a fixed base point x0 in the Gromov
boundary of X. It is unique up to Γ-equivariant homeomorphism. We say that Γ is non-elementary if its
Bowditch boundary is infinite. Since their introduction by Gromov, these groups have been extensively
studied by many authors and from different point of views. Besides the class of Gromov hyperbolic groups,
the following groups of geometric and algebraic interests are the main archetypal examples:

(1) Fundamental groups of finite volume hyperbolic manifolds, and of more general finite volume Rie-
maniann manifolds with negatively pinched sectional curvature.

(2) Infinitely ended groups, equivalently by Stalling’s theorem, all non-trivial amalgamated free products
and HNN extension over finite groups.

In particular, free products are the simplest combinatorial examples of relatively hyperbolic groups, on which
branching random walks were studied by Candellero, Gilch and Müller [CGM12]. We recover some of their
results in this paper.
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A finitely generated group Γ endowed with a finite generating set S is equipped with the word distance.
Its volume growth rate is the growth rate of the balls for the word distance. We again refer to Section 2 for
more details.

Theorem 1.1. Let Γ be a non-elementary relatively hyperbolic group endowed with a finite generating set.
Consider a finitely supported admissible and symmetric probability measure µ on Γ and a probability measure
ν on N with mean r P r1, Rs. Consider a branching random walk pΓ, ν, µq starting at e. Then, almost surely,

lim sup
nÑ8

1

n
logMn “ ωΓprq.

Moreover, the function r ÞÑ ωΓprq is increasing and continuous and satisfies that ωΓprq ď v{2, where v is
the volume growth rate of the group for the word distance.

We then investigate the limit behaviours of the branching random walk at infinity and we compute the
Hausdorff dimension of the limit set of the trace in various compactifications of relatively hyperbolic groups.
Introduced by Floyd [Flo80], the Floyd boundary can be constructed as a compactification for any locally
finite graph, equipped with a rescaling of the graph distance called the Floyd distance. Generalizing Floyd’s
theorem [Flo80] for geometrically finite Kleinian groups, Gerasimov [Ger12] proved that for any relatively
hyperbolic groups, the Bowditch boundary can be realized as a quotient of the Floyd boundary of the Cayley
graph. The Floyd distance depending on a parameter λ P p0, 1q is then transferred to the Bowditch boundary
as soon as λ ě λ0, where λ0 is given by [Ger12, Map Theorem]. The corresponding distance on the Bowditch
boundary is called the shortcut distance and will be described in Section 2.2.

Theorem 1.2. Under the assumption of Theorem 1.1, denote by Λprq the limit set of the branching random
walk in the Bowditch boundary, endowed with the shortcut distance of parameter λ P rλ0, 1q. Then, almost
surely,

Hdim
`

Λprq
˘

“
ωΓprq

´ log λ
.

Remark 1.3. The lower bound on the Hausdorff dimension actually holds for the whole limit set of the
branching random walk in the Floyd boundary endowed with the Floyd distance, see Proposition 5.1. We
can only prove the upper bound for a subset of the Floyd boundary, see Proposition 6.1. In many interesting
cases, the Floyd boundary is homeomorphic to the Bowditch boundary (eg. if parabolic subgroups are
amenable). Moreover, under the technical condition that the volume growth rate vSpP q for every parabolic
subgroup P is smaller than ωΓprq, the above conclusion is still true for the Floyd boundary, see Corollary 6.2.
In general, the identification of the Hausdorff dimension remains open for the full limit set in the Floyd
boundary.

As above-mentioned, groups with infinitely many ends form a special class of relatively hyperbolic groups.
Such groups can be compactified with the ends boundary, introduced by Freudenthal [Fre45]. A natural
family of visual distances depending on a parameter λ P p0, 1q on the ends boundary will be described in
Section 5.2. Along the way, we prove the following Theorem, which both extends [CGM12, Theorem 3.5] to
all groups with infinitely many ends and fix a gap in their proof, as we will explain in Section 5.2.

Theorem 1.4. Under the assumption of Theorem 1.1, if Γ is a group with infinitely many ends and Λprq
is the limit set of the branching random walk in the ends boundary, endowed with the visual distance of
parameter λ P p0, 1q, then almost surely,

Hdim
`

Λprq
˘

“
ωΓprq

´ log λ
.

Finally, for hyperbolic groups, the Bowditch boundary and the Gromov boundary coincide and the short-
cut distance is bi-Lipschitz to the visual distance. We thus deduce from Theorem 1.2 the following, which
resolves [SWX20, Conjecture 1.4].

Corollary 1.5. Under the assumption of Theorem 1.1, if Γ is a non-elementary hyperbolic group and if
ΛpRq is the limit set of the branching random walk with mean offspring R in the Gromov boundary of Γ
endowed with a visual distance of parameter λ P rλ0, 1q, then almost surely,

Hdim
`

ΛpRq
˘

“
ωΓpRq

´ log λ
.
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In the course of this investigation, we obtain much more precise information on the trace P of the branching
random walk. We prove that P almost surely tracks the logarithm neighborhood of transition points along
geodesics ending at conical limit points in the limit set. Recall that a point on a geodesic is called a transition
point if it is not deep in a parabolic coset. We refer to Section 2 for a precise definition.

Theorem 1.6. Under the assumption of Theorem 1.1, there exists 0 ă κ ă 8 such that almost surely, for
every conical point ξ P Λprq, we have

lim sup
|x|Ñ8

dpx,Pq
log |x|

ď κ,

where x is taken over the set of transition points on re, ξs.

This should be compared with analogous results for random walks. Under finite first moment condition,
a random walk on a hyperbolic group almost surely sub-linearly tracks geodesics from the basepoint e to the
limit point of the random walk in the Gromov boundary. We refer to Kaimanovich [Kai00, Theorem 7.3] for
a proof, see also [Led01] for the case of trees. Sub-linear tracking of geodesics is one of the most important
result in the study of random walks on groups with hyperbolic properties and is related to a celebrated
multiplicative ergodic theorem of Furstenberg and Kesten [FK60]. It was first coined by Kaimanovich in
the context of symmetric spaces [Kai87] and was then extended to groups with non-positive curvature by
Karlsson and Margulis [KM99] and to more general classes of group by Tiozzo [Tio15], including mapping
class groups. If the random walk has finite support, then the tracking is in fact logarithmic and this is
true for all weakly hyperbolic groups, i.e. groups admitting a non-elementary action by isometries on a
Gromov hyperbolic space, see [MT18, Theorem 1.3]. If the group is relatively hyperbolic, then the random
walk actually sub-linearly tracks transition points on the word geodesic in the Cayley graphs, see [DY20,
Proposition 3.2]. Theorem 1.6 can thus be thought as a generalization of these results to branching random
walks on relatively hyperbolic groups and is new, even for hyperbolic groups.

Let us finally say that we will not investigate the problem of the critical exponent of ωΓprq in this paper.
In [CGM12], the authors show that for free products this critical exponent is not always 1{2, depending
on µ and more precisely depending on whether the first derivative of the Green function is finite or infinite
at its radius of convergence, see [CGM12, Theorem 3.10]. It might be possible to prove that it is in fact
1{2 whenever the underlying random walk is spectrally non-degenerate, combining techniques of [SWX20],
[Dus22b] and of the present paper. We refer to Definition 3.11 for the definition of spectral degeneracy of a
random walk.

1.4. Parabolic gap and purely exponential growth of Green functions. Among the results of
[CGM12], the authors claimed that the Hausdorff dimension of the limit set intersected with the set of
ends of each free factor is strictly less than that of the whole limit set of the branching random walk (see
their Corollary 3.7). However, their proof is incorrect on assuming that the quantity Hrpnq as defined above
is sub-multiplicative; we refer to Remark 3.17 for more details. In our study, the sub-multiplicativity of
Hrpnq turns out to be a subtle property and we propose a sufficient criterion called a parabolic gap condi-
tion, which is inspired by the work of [DOP00] and that we now introduce. Note that assuming that the
parabolic gap condition holds, we recover their result [CGM12, Corollary 3.7], see Remark 5.4.

Let Γ be a non-elementary relatively hyperbolic group. Let P be a parabolic subgroup. We set

HP,rpnq “
ÿ

xPSnXP

Grpe, xq

and

ωP prq “ lim sup
nÑ8

1

n
logHP,rpnq.

Thus, ωΓprq is the growth rate of the sum of the Green functions along spheres, while ωP prq is the similarly
defined growth rate, but restricted to the parabolic subgroup P . It follows from the definition that ωP ď ωΓ.

Definition 1.7. If ωP prq ă ωΓprq, we say that Γ has a parabolic gap along P for the Green function at r.
If for every P , for every r P p1, Rs, ωP prq ă ωΓprq, then we say that Γ has a parabolic gap for the Green
function.

Note that this notion only depends on the underlying random walk driven by µ, not on the offspring
distribution of the branching random walk.
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Theorem 1.8. Let Γ be a non-elementary relatively hyperbolic group. Consider a finitely supported admissi-
ble and symmetric probability measure µ on Γ. If Γ has a parabolic gap for the Green function, then the sum
of Green functions along spheres is roughly multiplicative and has purely exponential growth, in the sense
that for all 1 ď r ď R, there exist C “ Cprq ě 1 and C 1 “ C 1prq ě 1 such that for all n,

1

C
Hrpn`mq ď HrpnqHrpmq ď CHrpn`mq

and
1

C 1
enωΓprq ď Hrpnq ď C 1enωΓprq.

Remark 1.9. Actually, C and C 1 can be chosen independently of r in the two upper bounds, which do not
require a parabolic gap to hold by Lemma 3.2.

We will prove two criteria for having a parabolic gap, see Corollary 3.9 and Proposition 3.10. In particular,
we prove that whenever parabolic subgroups are amenable, ωP prq ă ωΓprq for all r ă R. Moreover, if
parabolic subgroups have sub-exponential growth, then we also have ωP pRq ă ωΓpRq.

Let us compare our notion of parabolic gap to similar notions in different settings. Consider a finitely
generated group Γ acting via isometries on a metric space pX, dq. Then, one can endow Γ with a left-invariant
pseudo-distance by declaring

dpg, hq “ dpg ¨ x0, h ¨ x0q,

where x0 is a fixed point in X. We define the volume growth rate for any subgroup P ă Γ as follows:

vXpP q “ lim sup
nÑ8

1

n
log

`

7Bpe, nq X P
˘

“ lim sup
nÑ8

1

n
log

`

7 tg P P : dpx0, g ¨ x0q ď nu
˘

.

Choosing X to be the Cayley graph associated with a finite generating set S, endowed with the graph
distance, we recover the word distance on Γ. Then the volume growth rate of a subgroup P , also denoted
by vSpP q, is the standard terminology.

If Γ is relatively hyperbolic, then it acts by isometries on a proper geodesic hyperbolic space pX, dq. We
say in this context that Γ has a parabolic gap (also referred as critical gap in literature) if for every parabolic
subgroup P , vXpP q ă vXpΓq. This definition makes sense in larger contexts than relatively hyperbolic groups
and this property was studied a lot in literature, see for instance [DOP00], [DPPS11], [PS18], [PTV20],
[Rob03], [ST21], [Vid19] and references therein. For typical cases, we have vXpP q ă vXpΓq. On the other
hand, exotic examples of geometrically finitely groups acting on a negatively-pinched Cartan-Hadamard
manifold with the critical gap property, i.e. vXpΓq “ vXpP q for some P , were first constructed in [DOP00],
see [Pei11] for other examples.

On the contrary, when endowing Γ with a word distance given by a finite generating set S, this cannot
happen, since in this context, it was proved in [DFW19] that one always has vSpP q ă vSpΓq.

Before going further, recall that the critical exponents vXpΓq and vXpP q coincide with the exponential
radius of convergence of a suited Poincaré series. Namely, define

ΘspΓq “
ÿ

gPΓ

e´sdpx0,g¨x0q “
ÿ

ně0

ÿ

nďdpx0,g¨x0qăn`1

e´sn.

Then, for s ă vXpΓq, ΘspΓq diverges and for s ą vXpΓq, it converges. Similarly, replacing Γ by any subgroup
P in the above formula defines the corresponding ΘspP q and vXpP q.

Now, consider a probability measure µ on a relatively hyperbolic group Γ and for r ą 0, set

Iprq “
ÿ

gPΓ

Grpe, gqGrpg, eq.

The following result is well-known, see for instance [GL13, Proposition 1.9]. For every r, we have

Iprq “
d

dr

`

rGrpe, eq
˘

.

Thus, for r ă R, this quantity converges and for r ą R, it diverges. Consider the r-symmetrized Green
distance dG,r defined as

dG,rpg, hq “ ´ log
Grpg, hq

Grpe, eq
´ log

Grph, gq

Grpe, eq
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which is a generalization of the Green distance introduced by Blachère and Brofferio [BB07]. Then, the
quantity Iprq is exactly the Poincaré series associated with the distance dG,r. The only difference with the
previous setting is that the parameter r is part of the definition of the distance. The quantity ´ logR is
analogous to the critical exponent vXpΓq. It is more complicated to define a notion of parabolic gap, because
we cannot interpret ´ logR as the radius of convergence of the Poincaré series, which is not a power series
in r. However, the analogous notion which was coined in [DG21] is called spectral degeneracy. We will
properly introduce this notion below and we refer to [Dus22a, Section 3.3] and [DPT22, Section 1.3] for more
explanations on this analogy. Anyway, by results of Cartwright [Car88], [Car89] and of Candellero and Gilch
[CG12], it is possible to construct both a spectrally degenerate random walk and a spectrally non-degenerate
one on a relatively hyperbolic group, although every known example is in the class of free products.

Back to our critical gap condition, we will see that the critical exponent ωΓprq is the radius of convergence
of a twisted Poincaré series s ÞÑ Θr,spΓq defined by (4), involving both the Green function Grpe, xq and the
word distance. We saw above that there are sufficient conditions to have a parabolic gap, but it is difficult
to tell if one can construct an example where ωP prq “ ωΓprq. Answering this question would require new
material. However, the last example of Section 3.5 below suggests that it might happen (see the famous
examples in the geometric context in [DOP00] and [Pei11]). We prove there that if there exists a finitely
generated group P endowed with a finitely supported admissible random walk with convergent twisted
Poincaré series Θr,s at some r ď R, then for a suited random walk on the free product Γ “ P ˚ Zd, we have
ωΓpr

1q “ ωP pr
1q for some r1. See the comments at the end of Section 3.5 for further details.

1.5. Organization of the paper. We now outline the contents of the paper and explain the overall strategy
of our proofs. In Section 2, we recall the definition of relatively hyperbolic groups, of the Floyd distance and
of the Floyd boundary. The Floyd distance is then related with geometric properties of such groups via a
number of preliminary results used throughout the paper. Finally, we recall the relative Ancona inequalities
that will be a crucial tool.

In Section 3, we study the growth rate of the Green function ωΓprq. We prove in particular that it is
increasing and continuous and bounded by v{2, see Corollary 3.4, Corollary 3.5. We also prove Theorem 1.8,
i.e. purely exponential growth, assuming there is a parabolic gap, see Lemma 3.7. This is done by using
classical methods for Poincaré series, inspired by [Yan19]. Finally, we discuss the notion of parabolic gap
through examples in the last part of the section.

Section 4 is dedicated to the growth rate of the branching random walk and we prove that it is almost
surely equal to the growth rate ωΓprq of the Green function, see Proposition 4.1. In particular, this ends
the proof of Theorem 1.1. The upper-bound lim sup 1

n logMn ď ωΓprq is very general and does not involve
relative hyperbolicity. The lower-bound is more difficult to obtain and we have to restrict our attention to
points x P Γ such that a geodesic from e to x spends a uniformly bounded amount of time L in every parabolic
coset. Such geodesics are Morse in the sense of [Cor17], see also [Tra18] for a study a Morse geodesics in
relatively hyperbolic groups. It turns out Morse geodesic rays form a proper subset of the whole Bowditch
boundary, which is typically too small to serve as a model for the Poisson boundary and thus is too small to
give much information about asymptotic properties of finitely supported random walks, see in particular the
comments in the introduction of [QRT20], where a bigger boundary called the sub-linearly Morse boundary
is introduced. We can nevertheless prove that the growth rate of the Green function restricted to Morse
directions converges to the growth rate of the whole Green function, as L tends to infinity, see Lemma 4.7.
This is enough to adapt the arguments of [SWX20] for hyperbolic groups, which allows us to conclude the
proof.

Finally, in the two last sections, we study the Hausdorff dimension of the limit set and we prove Theo-
rem 1.2, Theorem 1.4 and Corollary 1.5. We start with the lower bound in Section 5. Following [SWX20], we
use the Frostman lemma and show that for every h ă ωΓprq{ ´ log λ, there exists with positive probability
a finite measure χ on the limit set Λ such that the integral

ż ż

δepx, yq
´hdχpxqdχpyq

is finite, where δe is the shortcut distance on the Bowditch boundary. However, the proof in [SWX20] has
a gap and we need to find a new strategy to construct the measure χ, which will be defined as a random
Patterson-Sullivan type measure on the limit set. The construction is performed by using convergence results
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for random finite measures, whose proofs are postponed to the Appendix. Our strategy also applies to groups
with infinitely many ends and we prove Theorem 1.4. The upper-bound for the Hausdorff dimension is proved
in Section 6. We first prove Theorem 1.6, i.e. logarithmic tracking by the trace of transition points on geodesic
rays joining the limit set, see Lemma 6.11. This allows us to cover the limit set with suited shadows and
to conclude as in [SWX20]. Note that the covering by shadows in [SWX20] only works for r ă ρ´1 and
Theorem 1.6 is one of the needed step to cover the case r “ ρ´1.

2. Relatively hyperbolic groups and random walks

2.1. Relative hyperbolic groups. Consider a finitely generated group Γ acting properly via isometries on
a proper Gromov hyperbolic space X. Define the limit set ΛΓ as the closure of Γ in the Gromov boundary
BX of X, that is, fixing a base point x0 in X, ΛΓ is the set of all possible limits of sequences gn ¨ x0 in BX,
gn P Γ. A point ξ P ΛΓ is called conical if there is a sequence gn of Γ and distinct points ξ1, ξ2 in ΛΓ such
that gnξ converges to ξ1 and gnζ converges to ξ2 for all ζ ‰ ξ in ΛΓ. A point ξ P ΛΓ is called parabolic if its
stabilizer in Γ is infinite, fixes exactly ξ in ΛΓ and contains no loxodromic element. A parabolic limit point
ξ in ΛΓ is called bounded parabolic if its stabilizer in Γ is infinite and acts co-compactly on ΛΓztξu. Say that
the action of Γ on X is geometrically finite if the limit set only consists of conical limit points and bounded
parabolic limit points.

There are in literature several equivalent definitions of relatively hyperbolic groups. Following Bowditch
[Bow12], we say that a finitely generated group Γ is relatively hyperbolic with respect to a collection of
subgroups P0 if it acts via a geometrically finite action on a proper geodesic Gromov hyperbolic space X,
such that the stabilizers of parabolic limit points for this action are exactly the conjugates of the groups in
P0, which are called maximal parabolic subgroups or simply parabolic subgroups if there is no ambiguity.
By [Bow12, Proposition 6.15], there is a finite number of conjugacy classes of parabolic subgroups, so in
other words, P0 needs to be finite.

The limit set ΛΓ is called the Bowditch boundary of Γ. It is unique up to equivariant homeomorphism
and we will denote it by BBΓ in the sequel. A relatively hyperbolic group is called non-elementary if its
Bowditch boundary is infinite; equivalently, if some parabolic subgroup P P P0 is of infinite index in Γ.

Relatively hyperbolic groups are modelled on finite co-volume Kleinian groups. In this case, the group acts
via a geometrically finite action on the hyperbolic space Hn and there is a collection of separated horoballs
such that the action on the complement of these horoballs is co-compact. The parabolic subgroups are
exactly the stabilizers of the horoballs. Moreover, the Bowditch boundary is the ideal boundary Sn´1 of Hn

and parabolic limit points are the centers of the horoballs.
In [Bow12], Bowditch gives another definition of relative hyperbolicity, mimicking the above geometric

description of Kleinian groups. Given a hyperbolic space X, one can define a coarse notion of horoballs. A
finitely generated group Γ acting properly via isometries on a proper geodesic hyperbolic space X is relatively
hyperbolic if only if there exists a Γ-invariant family of sufficiently separated horoballs centered at points
in the Gromov boundary of X such that Γ acts co-compactly on the complement of these horoballs. The
parabolic subgroups are then exactly the stabilizers of these horoballs. We also refer to [Osi06], [Far98],
[DS05] and references therein for alternative definitions of relatively hyperbolic groups.

We set

P “ tgP : g P Γ, P P P0u

and we call P the collection of all parabolic cosets.
Let us also fix some notations. Given a finite generating S on Γ, let CaypΓ, Sq be the Cayley graph with

respect to S. The graph combinatorial distance is called the word distance. We denote the n-sphere centered
at the identity e by Sn “ tx P Γ : dpe, xq “ nu. We will frequently write |x| :“ dpe, xq. Finally, we will
denote by v the volume growth rate of Γ with respect to S, which is defined by

v “ lim sup
1

n
log 7Bpe, nq.

The word distance on relatively hyperbolic groups has purely exponential growth in the following sense.

Lemma 2.1. [Yan22, Theorem 1.9] There exists c ą 0 such that for every n ě 0, we have

1

c
evn ď 7Sn ď cevn.
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2.2. Floyd boundary. We first recall the definition of the Floyd boundary and their relation with the
Bowditch boundary. This boundary was introduced by Floyd in [Flo80] and we also refer to [Kar03] for more
details.

Let Γ be a finitely generated group and let CaypΓ, Sq denote its Cayley graph associated with a finite
generating set S. Let f : N Ñ Rě0 be a function satisfying that

ÿ

ně0

fpnq ă 8

and that there exists λ P p0, 1q such that

1 ě fpn` 1q{fpnq ě λ

for all n P N. The function f is then called the rescaling function or the Floyd function. In the following, we
will always choose an exponential Floyd function, that is fpnq “ λn for some λ P p0, 1q. Fix a basepoint o P Γ
and rescale CaypΓ, Sq by declaring the length of an edge σ to be fpdpo, σqq. The induced length distance on
CaypΓ, Sq is called the Floyd distance with respect to the basepoint o and Floyd function f and is denoted
by δf,op., .q. Whenever f is of the form fpnq “ λn, we will write δλ,o “ δf,o and if λ is fixed, δo “ δλ,o.

The Floyd compactification ΓF is the Cauchy completion of CaypΓ, Sq endowed with the Floyd distance.
The Floyd boundary is then defined as BFΓ “ ΓFzCaypΓ, Sq. Different choices of base-points yield bi-
Lipschitz Floyd distances because

(1) @x, y P Γ, δf,opx, yq ď λ´dpo,o
1
qδf,o1px, yq

so the corresponding Floyd compactifications are bi-Lipschitz. Note that the topology may depend on the
choice of the rescaling function and the generating set.

The following fact proved in [Kar03] plays a crucial role in understanding the Floyd geometry.

Lemma 2.2. [Kar03, Lemma 1] For any δ ą 0, there exists a function κ “ κpδq with the following property.
If x, y, z P Γ are three points so that δxpy, zq ě δ then dpx, ry, zsq ď κ.

If 7BFΓ ě 3, Karlsson proved in [Kar03] that Γ acts by homeomorphism on BFΓ as a convergence group
action. By the general theory of convergence groups, the elements in Γ are subdivided into the classes of
elliptic, parabolic and loxodromic elements. The latter two being infinite order elements have exactly one
and two fixed points in BFΓ accordingly. Moreover, in this case the Floyd boundary contains uncountable
many points and so the cardinality of BFΓ is either 0, 1, 2 or uncountably infinite. By [Kar03, Proposition 7],
7BFΓ “ 2 exactly when the group Γ is virtually infinite cyclic. Following Karlsson, we say that the Floyd
boundary is trivial if it is finite. The non-triviality of Floyd boundary does not depend on the choice of
generating sets [Yan14, Lemma 7.1]. We will only have to deal with groups with non-trivial Floyd boundary.

We now assume that Γ is non-elementary relatively hyperbolic. We denote by BBΓ its Bowditch boundary.
The following is due to Gerasimov.

Theorem 2.3. [Ger12, Map Theorem] There exists λ0 P p0, 1q such that for every λ P rλ0, 1q, the identity
on Γ extends to a continuous and equivariant surjection φ from the Floyd compactification to the Bowditch
compactification of Γ.

Actually, Gerasimov only stated the existence of the map φ for one Floyd function f0 “ λn0 , but then
Gerasimov and Potyagailo proved that the same result holds for any Floyd function f ě f0, see [GP13,
Corollary 2.8]. They also proved that the preimage of a conical limit point is reduced to a single point and
described the preimage of a parabolic limit point in terms of the action of Γ on BFΓ, see precisely [GP13,
Theorem A]. From now on, the parameter λ will always be assumed to be contained in rλ0, 1q.

The Floyd distance can be transferred to a distance on the Bowditch boundary using the map φ. The
resulting distance is called the shortcut distance and we denote it by δe,λ or δe if λ is fixed. It is the largest
distance on the Bowditch boundary satisfying that for every ξ, ζ P BFΓ,

(2) δ̄e,λpφpξq, φpζqq ď δe,λpξ, ζq.

We refer to [GP15, Section 4] for more details on its construction.
If Γ is hyperbolic, then the Gromov, Bowditch and Floyd boundary all coincide. Thus, the shortcut

distance and the Floyd distance are the same. Furthermore, by [PY19, Proposition 6.1], the visual distance
and the Floyd distance are bi-Lipschitz.
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The next couple of lemmas will be used later on.

Lemma 2.4. Suppose that Γ admits a non-trivial Floyd boundary. Then there exist a finite set F of elements
and constants c ě 1, δ ą 0 with the following property:

for any two elements g, h P Γ, there exists f P F such that gfh labels a c-quasi-geodesic and

maxtdpg, re, gfhsq, dpgf, re, gfhsqu ď ε

and δgpe, gfhq ě δ.

Proof. Note that if the Floyd boundary of Γ is nontrivial, then Γ is not virtually cyclic, and every hyperbolic
element is strongly contracting [Yan14]. Thus, the extension lemma in [Yan19] applies in this setting. Namely,
let F any set of three independent hyperbolic elements. Set Fn “ tfn : f P F u for given n ě 1. Then for
any sufficiently large n0, and for any g, h P Γ there exists f P Fn0 such that gfh labels a c-quasi-geodesic
for a uniform constant c.

It remains to prove that δgpe, gf
2n0hq has a uniformly lower bound δ when n0 is large. Indeed, since

every f P F is a hyperbolic element with two distinct fixed points, there exists δ “ δpF q ą 0 such that
δepf

´n0 , fn0q ě δ for any f P F and n ě 1. Since gf2n0h labels a c´quasi-geodesic, we see that dpe, fn0re, hsq
and dpe, f´n0re, g´1sq increase to 8 as n Ñ 8. By Lemma 2.2, we have for n ě n0 δepf

n, fnhq ă δ{4 and
δepf

´n0 , f´n0g´1q ă δ{4. Thus, δepf
´n0g´1, fn0hq ą δ{2, and then δgfn0 pe, gf2n0hq ě δ{2. Consequently,

there exists δ1 “ δ1pδ, n0q such that δgpe, gf
2n0hq ě δ1. �

Floyd and Bowditch boundaries are visual: any two distinct points can be connected by a geodesic. This
enables us to define the notion of shadows on both of them, that will be used in our arguments. Given
K ą 0 and x P Γ, let ΠKpxq be the set of boundary points ξ for which some geodesic between e and ξ
intersects Bpx,Kq. We call ΠKpxq the big shadow at x of width K. Balls and shadows are related by [PY19,
Lemmas 4.13, 4.14, 4.15]. We prove here a slight generalization of these results.

Lemma 2.5. There exists C such that the diameter of the big shadow ΠKpgq is bounded by CKλ|x|´K for
either the Floyd distance on the Floyd boundary or the shortcut distance on the Bowditch boundary.

Proof. By (2) we only need to give the proof for the Floyd boundary. Let ξ, ζ in ΠKpgq and let re, ξs and
re, ζs be two geodesics intersecting Bpx,Kq at y and z respectively. Then, following back re, ξs from ξ to y,
then following a path from y to z that stays inside Bpx,Kq and finally following the geodesic re, ζs from z
to ζ yields a path from ξ to ζ of Floyd length at most

ÿ

kě|x|´K

λk ` 2Kλ|x|´K `
ÿ

kě|x|´K

λk ď CKλ|x|´K .

This concludes the proof. �

2.3. Transition points and Floyd geometry. In contrast with hyperbolic groups, the Cayley graph
of relatively hyperbolic groups is not Gromov hyperbolic anymore, so the thin triangle property and the
Morse property do not hold in general. However, a certain kind of “relative” Morse property persists and is
manifested in a notion of transition points introduced in [Hru10] (see also [DS05, GP15]).

Recall that P “ tgP : g P Γ, P P P0u is the collection of all parabolic cosets.

Definition 2.6. Let P P P be a parabolic coset and η, L ą 0 be fixed constants. A point p on a geodesic α
is called pη, Lq-deep in P if Bpp, 2Lq X α Ď NηpP q. It is called pη, Lq-transitional if it is not pη, Lq-deep in
any parabolic coset P P P.

According to the definition, it is clear that an pη, L1q-transition point is an pη, L2q-transition point for
L1 ď L2. The parameters η, L ą 0 are usually chosen via the bounded intersection property of the collection
P (see [DS05, Lemma 4.7]): for any η ą 0 there exists L “ Lpηq ą 0 such that for any two P ‰ P 1 P P we
have diam

`

NηpP q XNηpP
1q
˘

ď L.

Lemma 2.7. [GP15, Proposition 5.6], [DS05, Theorem 4.1]. For large enough η, there exists L “ Lpηq such
that any point of a geodesic α can be pη, Lq-deep in at most one P P P. Moreover, if it is pη, Lq-deep in P ,
the entry and exit points of α at NηpP q are pη, Lq-transitional.

The following result which refines Lemma 2.2 explains the application of the Floyd geometry in relatively
hyperbolic groups.
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Lemma 2.8. [GP15, Corollary 5.10] For every large enough η, there exist L “ Lpηq and δ “ δpηq ą 0 such
that if x is an pη, Lq-transition point on a geodesic α with endpoints α´ and α`, then δxpα´, α`q ě δ.

The following is called the relative thin triangle property for transition points. It is folklore and was
proved at several places, using different terminology, see for instance [GP15, Proposition 7.1.1], [Sis12,
Proposition 4.6]. It can also be derived from [DS05, Theorem 1.12], [Hru10, Section 8], [Osi06, Proposi-
tion 3.15]. Usually, it is stated for points x, y, z in the Γ. The following version for points in the boundary
is proved in [DG20, Lemma 2.4].

Lemma 2.9. For large enough η, there exist Lpηq such that for every L ě Lpηq, there exists C “ Cpη, Lq such
that for every triple of points px, y, zq that are either conical limit points or elements of Γ, any pη, Lq-transition
point on one of the side of the geodesic triangle with vertices x, y, z is within C of an pη, Lq-transition point
on one of the two other sides.

In what follows, we fix η and Lpηq so that any pair pη, Lq satisfies the above lemmas for L ě Lpηq.

2.4. Random walks on relatively hyperbolic groups. Let Γ be a relatively hyperbolic group and let µ
be a finitely supported symmetric admissible probability measure on Γ. Let ρ be the spectral radius of the
random walk and R its inverse. We collect here some results that will be used all along the paper. Recall
that η and Lpηq are fixed such that for every L ě Lpηq, any pη, Lq-transition point satisfies the results in
Section 2.3.

A very useful set of inequalities relating the Green functions along geodesics were first proved by Ancona
[Anc88] in hyperbolic groups and used to identify the Martin boundary with the Gromov boundary. These
inequalities were recently extended up to the spectral radius by Gouëzel-Lalley in co-compact Fuchisan groups
[GL13] and by Gouëzel in general hyperbolic groups [Gou14]. They state that there exists C, depending
only on the hyperbolicity parameters of the group, such that for every x, y, z P Γ such that y is on a geodesic
from x to z, for every r ď R,

1

C
Grpx, yqGrpy, zq ď Grpx, zq ď CGrpx, yqGrpy, zq.

The only non-trivial part is the upper-bound. In relatively hyperbolic groups, a relative version of Ancona
inequalities in terms of Floyd distance was obtained in [GGPY21] to establish a surjective map from the
Martin boundary to the Floyd boundary.

Ancona inequalities are one of the main ingredient in [SWX20] for studying branching random walks on
hyperbolic groups. In the present paper, we will make very crucial use of the relative Ancona inequalities
extended up to the spectral radius in [DG21].

Proposition 2.10 (Relative Ancona inequalities). [DG21, Theorem 3.6] For every L ě Lpηq and K ě 0,
there exists C “ Cpη,Kq such that the following holds. Let x, y, z P Γ and assume that y is within K of an
pη, Lq-transition point on rx, zs. Then for every r ď R, we have

1

C
Grpx, yqGrpy, zq ď Grpx, zq ď CGrpx, yqGrpy, zq.

Note that there also exists a strong form of relative Ancona inequalities in [DG21], although we will not
need them in this paper. The following result is one of the step into proving relative Ancona inequalities in
[DG21]. It will be useful in this paper. If A Ă Γ and if x, y P Γ, for every r ď R we denote by Grpx, y;Aq
the Green function from x to y restricted to trajectories staying in A, except maybe at the end points, i.e.

Grpx, y;Aq “
ÿ

ně0

ÿ

z1,...,zn´1PA

µpx´1z1qµpz
´1
1 z2q ¨ ¨ ¨µpz

´1
n´1yqr

n.

Lemma 2.11. [DG21, Proposition 3.5] For every L ě Lpηq, there exist δ ą 1 and K0 ą 0 such that the
following holds. For every x, y, z P Γ such that y is an pη, Lq-transition point on rx, zs and for every K ě K0,
we have

GRpx, z;Bpy,Kq
cq ď e´e

δK

.

Finally, we will also use the following result, proved in [DG21]. If P P P is a parabolic coset, η ě 0 and
x P Γ, we denote by

πNηpP qpxq :“ ty P NηpP q : dpx, yq “ dpx,NηpP qqu
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the set of its shortest projections on the η-neighborhood NηpP q of P . For x, y P Γ, we set

dNηpP qpx, yq :“ diam
`

πNηpP qpxq Y πNηpP qpyq
˘

.

It follows from [Hru10, Corollary 8.2] that the shortest projection is coarsely Lipschitz:

dNηpP qpx, yq ď kdpx, yq ` k

for a fixed k ě 1 depending only on η. Thus, πNηpP qpxq has bounded diameter.

Lemma 2.12. Let P P P be a parabolic coset. For every M ě 0, there exists η0 such that for η ě η0, we
have

GRpe, x;NηpP q
cq ď e´MdNηpP qpe,xq.

Proof. In [DG21, Lemma 4.6] this result is stated for the first return kernel to NηpP q, i.e. the quantity
GRpx0, x;NηpP q

cq where x0 P NηpP q, but the proof can be applied here. Indeed it is shown without
assuming that x0 P NηpP q that the whole contribution of trajectories from x0 to x staying outside NηpP q

is bounded by e´lhpηqGRpx0, xq, where 1
c l ď dNηpP qpx0, xq ď cl for some c ą 0 and hpηq is a function of η

going to infinity as η goes to infinity, see the before last equation of the proof of [DG21, Lemma 4.6]. In
particular, applying this to x0 “ e, we get that for large enough η,

GRpe, x;NηpP q
cq ď e´MdNηpP qpe,xq.

This concludes the proof. �

3. The growth rate of the Green function

3.1. Preliminary results. Recall the following definitions from the introduction. Let Γ be a finitely gen-
erated group endowed with a finite generating set. Let µ be a symmetric probability measure whose finite
support generates Γ. Denote by ρ the spectral radius of µ and by R its inverse. Set pnpx, yq “ µ‹npx´1yq
for n ě 1 and p0px, yq “ δxpyq. Then, R is the radius of convergence of the Green function

Grpx, yq :“
8
ÿ

n“0

rnpnpx, yq.

For 1 ď r ď R, we consider the sum of the r-Green function over the n-sphere

Hrpnq :“
ÿ

xPSn

Grpe, xq

and define the growth rate of the Green function as follows

ωΓprq :“ lim sup
nÑ8

logHrpnq

n

We first record a few simple facts about Hrpnq.

Lemma 3.1. The following statements are true:

(1) There exists C ą 1 such that for any 1 ď r ď R and n ě 1

C´1Hrpn` 1q ď Hrpnq ď CHrpn` 1q.

(2) There exists a constant C ą 0 such that 1
C ď H1pnq ď C for any n ě 1. In particular, ωΓp1q “ 0.

(3) The function r ÞÑ ωΓprq is strictly increasing on r1, Rs and continuous on r1, Rq. Consequently,
ωΓprq ą 0 for r ą 1.

Proof. Since the random walk is irreducible and Γ-invariant, there exist l ě 1 and a uniform number p0 ą 0
such that plpx, yq ą p0 for any x, y P Γ with dpx, yq “ 1. Thus, if x ‰ 1 ‰ y, we have pnpe, xq ě p0 ¨pn´lpe, yq
for n ě l. This implies Grpe, xq ě p0Grpe, yq. Thus, we have Hrpn ` 1q ě p0Hrpnq. For the other
inequality, note that every y P Sn`1 is adjacent to at most N “ 7S1 elements x P Sn. We then obtain
Hrpn` 1q ď N

p0
Hrpnq. This proves the first statement.

We introduce the partial shadow rΠKpxq of width K at x as the set of limit points such that some geodesic
re, ξs intersects the ball Bpx,Kq at a transition point. By the Shadow Lemma [DG20, Proposition 4.4]

for harmonic measures, there exists K ą 0 such that G1pe, xq — νprΠKpxqq for any x P Γ, which means
that the ratio of these two quantities is bounded away from 0 and infinity. Note that for each n ě 1, any
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conical limit point can be covered in a uniform number of shadows at x P Sn. We thus obtain that the sum
ř

xPSn
νprΠKpxqq coarsely gives the measure of the whole set of conical limit points, so is uniformly bounded

from above and below. The second statement follows.
Finally let us prove the third statement. Let 1 ď s ă r. Since the random walk is finitely supported,

there exists c1 ą 0 such that for every x, pmpe, xq “ 0 for every m ď c1|x|. Thus, we have

Gspe, xq “
ÿ

měc1|x|

smpmpe, xq ď
´s

r

¯c1|x| ÿ

měc1|x|

rmpmpe, xq “
´s

r

¯c1|x|

Grpe, xq

and so

(3) Gspe, xq ď
´s

r

¯c1|x|

Grpe, xq.

Thus, Hspnq ď
`

s
r

˘c1n
Hrpnq and ωΓprq ´ωΓpsq ě c1 plog r ´ log sq. Therefore ωΓprq is strictly increasing on

r1, Rs.
For δ ą 0 we choose c2 so that v ď c2 plogR´ logpR´ δqq. Note that since the underlying random walk

is symmetric, for every x and every m, we have pmpe, xqpmpe, xq ď p2mpe, eq and by [Woe00, Lemma 1.9],
p2mpe, eq ď R´2m. Thus, pmpe, xq ď R´m for every x P Γ and n ě 0. Consequently, by Lemma 2.1, we have
for 1 ď r ď R´ δ,

ÿ

|x|“n

ÿ

mąc2n

rmpmpe, xq ď cevn
ÿ

mąc2n

´ r

R

¯m

ď c3

for some constant c3 ą 0. Now for 1 ď s ă r ď R´ δ,

Hspnq “
ÿ

|x|“n

8
ÿ

m“0

smpmpe, xq ě
´s

r

¯c2n ÿ

|x|“n

c2n
ÿ

m“0

rmpmpe, xq

ě

´s

r

¯c2n

pHrpnq ´ c3q .

It follows that ωΓprq ´ ωΓpsq ď c2 plog r ´ log sq. Since δ ą 0 is arbitrary, we prove that ωΓprq is continuous
in 1 ď r ă R. �

Our goal in the remainder of this section is to compare Hrpnq with enωΓprq.

3.2. Upper bound. We start with the following lemma.

Lemma 3.2. There exists constants C,C 1 ą 1 such that for any 1 ď r ď R and any integer n,m ě 1, we
have

HrpmqHrpnq ď CHrpm` nq,

and Hrpnq ď C 1enωΓprq. In particular, the following limit exists

ωΓprq “ lim
nÑ8

logHrpnq

n
“ sup

n

logC´1Hrpnq

n
.

Set l “ maxtdpe, fq : f P F u`4ε, where F is a finite set given by Lemma 2.4. and let Apn, lq “
Ť

´lďiďl

Sn`i

be the annulus of width l and radius n and define

Φ : Sm ˆ Sn Ñ Apn`m, lq

by setting Φpg, hq “ gfh, where f P F is provided by Lemma 2.4.

Lemma 3.3. The map Φ is uniformly bounded to one.

Proof. Indeed, assume that Φpg, hq “ gf1h and Φpx, yq “ xf2y for f1, f2 P F . If Φpg, hq “ Φpx, yq, we obtain
dpg, xq, dph´1, y´1q ď 4ε from Lemma 2.4. Thus, there are at most 3p7Bpe, 4εqq2 pairs of elements px, yq such
that Φpg, hq “ Φpx, yq. �

Proof of Lemma 3.2. For any g P Sn, h P Sm, we have

Grpe, gqGrpe, hq ď c1Grpe, gqGrpe, fqGrpe, hq ď c2Grpe, gfhq
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Thus,

HrpnqHrpmq ď c2
ÿ

zPApn`m,lq

Grpe, zq.

Note that c´1
3 Hrpn` 1q ď Hrpnq ď c3Hrpn` 1q by Lemma 3.1. Thus, we have

HrpnqHrpmq ď c4Hrpn`mq.

This proves the first part of the lemma. The second part follows from the Fekete sub-additive lemma. �

Corollary 3.4. The function r P r1, Rs ÞÑ ωΓprq is increasing and continuous.

Proof. We proved in Lemma 3.1 that ωΓ is increasing and continuous on r1, Rq. By Lemma 3.2, it can be
expressed as a supremum of continuous functions, hence it is lower semi-continuous by [AB06, Lemma 2.41].
We deduce that it is left continuous at R. �

Corollary 3.5. For every r ď R, ωΓprq ď v{2.

Proof. By the Cauchy-Schwarz inequality,
˜

ÿ

xPSn

Grpe, xq

¸2

ď |Sn|
ÿ

xPSn

Grpe, xq
2.

For any r ă R, by [GL13, Proposition 1.9],

cprq “
ÿ

xPΓ

Grpe, xq
2 ă 8,

so

ωΓprq ď lim sup
1

2n
plog cprq ` log |Sn|q “

1

2
v.

This proves the desired inequality for r ă R. By Corollary 3.4, r ÞÑ ωΓprq is continuous, so the inequality
also holds at R. �

3.3. Lower bound via parabolic gap. For 1 ď r ď R and s ě 0, we consider the following Poincaré
series:

(4) Θr,spΓq :“
ÿ

hPΓ

Grpe, hqe
´sdpe,hq.

We can rearrange the terms in Θr,spΓq as follows

Θr,spΓq “
ÿ

ně0

Hrpnqe
´sn

so that Hrpnq appears in the place of 7Sn in the usual Poincare series. Thus, for each r fixed, ωΓprq is the
exponential radius of convergence of the series Θr,spΓq in s.

Similarly, for any subgroup P Ă Γ, we can consider the associated Poincaré series

Θr,spP q “
ÿ

ně0

ÿ

xPPXSn

Grpe, xqe
´sdpe,xq

and its growth rate

ωP prq “ lim sup
1

n
log

ÿ

xPPXSn

Grpe, xq,

which is the exponential radius of convergence of the series s ÞÑ Θr,spP q.

Definition 3.6. We say that Γ has parabolic gap for the Green functions if for every parabolic subgroup
P P P0, ωP prq ă ωΓprq for every 1 ă r ď R.
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Lemma 3.7. Suppose that Γ has a parabolic gap for the Green function. For every 1 ă r ď R, there exists
C “ Cprq ą 1 such that

Hrpn`mq ď CHrpnqHrpmq

and there exists a constant C 1 “ C 1prq ą 1 such that for any 1 ă r ď Rµ, we have

1

C 1
enωΓprq ď Hrpnq ď C 1enωΓprq

for every n ě 1.

Proof. Let P0 be the finite set of maximal parabolic subgroup up to conjugacy. Set

Krpnq :“ max
PPP0

ÿ

xPSnXP

Grpe, xq.

Step 1. First, the following holds

(5) Hrpn`mq ď
ÿ

0ďkďn

ÿ

0ďjďm

c0Hrpkq ¨Hrpjq ¨Krpn`m´ k ´ jq

for any n,m ě 0.
Indeed, for given x P Sn`m, consider a geodesic γ “ re, xs and the point y P γ such that dpe, yq “ n. If y

is a transition point, then by the relative Ancona inequalities, we have

Grpe, xq ď CGrpe, yqGrpe, y
´1xq.

This corresponds to the case k “ j “ 0.
If y is deep in some P -coset X, let u, v be the entry and exit points of γ in NηpXq (possibly u “ e or

v “ x). Then u, v are transition points so again the relative Ancona inequalities show

Grpe, xq ď CGrpe, uqGrpe, u
´1vqGrpe, v

´1xq.

Summing up Grpe, xq over all x P Sn according to k “ dpu, yq and l “ dpy, vq, we obtain (5).
Step 2. By assumption, ωP prq ă ωΓprq for every P P P0. Then for any given ωΓprq ą ω ą ωP prq, there

exists c1 “ c1prq ą 0 such that Krpiq ď c1e
i¨ω for any i ě 1. For ω ą 0, we define

aωpnq “ e´ωn ¨Hrpnq.

Then a re-arrangement of (5) gives rise to the form as follows:

(6) aωpn`mq ď c1

˜

ÿ

1ďkďn

aωpkq

¸

¨

˜

ÿ

1ďjďm

aωpjq

¸

,

for any n,m ě 0. We conclude as in [Yan19, Theorem 5.3]. �

Theorem 1.8 is now a consequence of Lemma 3.1 for the lower bound at r “ 1, Lemma 3.7 for the upper
bound and Lemma 3.2 for the lower bound at r ą 1.

3.4. Criteria for Green parabolic gap. A possible way to get this parabolic gap is the following divergence
criterion based on [Yan19, Lemma 2.23].

Let A,B be two subsets of G. Denote by WpA,Bq the set of all words over the alphabet set A\ B with
letters alternating in A and B.

Lemma 3.8. Assume that there exists an injective map ι : WpAq Ñ WpA,Bq such that the evaluation map
Φ : WpA,Bq Ñ G is injective on the subset ιpWpAqq as well. Set X :“ ΦpιpWpA,Bqq and assume that
B is finite. Then Θr,spAq converges at s “ ωXprq. In particular, if Θr,spAq diverges at s “ ωAprq then
ωXprq ą ωAprq.

Proof. Since Φ : WpA,Bq Ñ G is injective, each element in the image X has a unique alternating product

form over A \ B. Set C1 “ maxbPBtdpe, bqu ă 8, C2 “ minbPB

!

Grp1,bq
Grp1,1q

)

ă 8 where B is a finite set by

assumption. For a word W “ a1b1a2 ¨ ¨ ¨ anbn P WpA,Bq, we have

dpe, a1b1 ¨ ¨ ¨ anbnq ď
ÿ

1ďiďn

`

dpe, aiq ` C1

˘

,
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and
Grpe, a1b1 ¨ ¨ ¨ anbnq ě Cn2

ź

1ďiďn

`

Grpe, aiq
˘

.

As a consequence, we estimate the Poincaré series of X as follows:
ř

gPX

Grpe, gqe
´s¨dpe,gq

ě
8
ř

n“1

ˆ

ř

aPA

Grpe, aqe
´s¨dpe,aq

˙n

¨ pC2e
´sC1qn.

By contradiction, assume that
ř

aPA

Grpe, aqe
´ωXprq¨dpe,aq “ 8. Then there exists some s ą ωXprq such

that
ř

aPA

Grpe, aqe
´s¨dpe,aq ¨C2e

´sC1 ą 1. By the above estimates, this implies the series ΘXpr, sq diverges at

s, so s ď ωXprq, which is a contradiction. �

Corollary 3.9. Let P P P0. If the series

Θr,spP q “
ÿ

pPP

Grpe, pqe
´sdpe,pq

diverges at s “ ωP prq then ωP prq ă ωΓprq.

Proof. For any hyperbolic element h and sufficiently large integer n ě 1, the subgroup generated by P and
hn is a free product P ˚ xhny. Thus, the evaluation map Φ : WpA,Bq Ñ G is injective on WpAq seen as a
subset of WpA,Bq, where A “ P and B “ thn, h´nu. �

Here is a second criterion for the parabolic gap.

Proposition 3.10. Let P P P0. For every 1 ă r ď R, if ωP prq ď 0, then ωP prq ă ωΓprq.

Proof. By Lemma 3.1, for every 1 ă r, ωΓprq ą 0. �

3.5. Examples. We now give various examples of different possible situations. In Example A, we give a
criterion for having ωP prq ď 0, which automatically implies that ωP prq ă ωΓprq. In Example B, we construct
an example where ωP prq ą 0, but we still have ωP prq ă ωΓprq. Example C is devoted to construct an example
where ωP prq “ ωΓprq, assuming that P satisfies some properties.

We first recall some terminology from [DG21]. Let r ď R and let P be a parabolic subgroup. Denote by
pr,P the first return transition kernel to P associated with rµ, i.e. for every x, y P P ,

(7) pr,P px, yq “
ÿ

ně1

ÿ

z1,...,znRP

rnµpx´1z1qµpz
´1
1 z2q...µpz

´1
n yq.

Also denote by Gr,Pt its associated Green function at t, i.e.

Gr,Pt px, yq “
ÿ

ně0

tnpr,Pn px, yq,

where pr,Pn is the nth convolution power of pr,P . Finally, denote by RP prq the inverse of the spectral radius

of pr,P . Then by [DG21, Lemma 4.4], Gr,P1 pe, xq “ Grpe, xq which is finite, so in particular RP prq ě 1.

Definition 3.11. We say that the random walk is spectrally degenerate along P if RP pRq “ 1. It is called
spectrally non-degenerate if it is not spectrally degenerate along any parabolic subgroup.

3.5.1. Example A.

Proposition 3.12. Let P be a parabolic subgroup. Assume that P is amenable. Then for every 1 ă r ă R,
ωP prq ă 0. In particular, for every 1 ă r ă R, ωP prq ă ωΓprq. Moreover, if the random walk is not spectrally
degenerate along P , then ωP pRq ď 0 ă ωΓpRq.

Proof. Fix r ă R and choose s such that r ă s ă R. Denote by ps,P the first return transition kernel to
P associated with sµ and by Gs,P its associated Green function as above. By [DG21, Lemma 4.15], the
spectral radius of ps,P is strictly less than 1, because s ă R. Since the underlying random walk driven by µ
is symmetric, ps,P is a symmetric P -invariant transition kernel on P . By amenability, this transition kernel
is necessarily sub-Markov, see [Woe00, Corollary 12.5]. Let t ă 1 be such that p̃s “ 1

t p
s,P is Markov. Then,
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letting rGs be the Green function associated with p̃s, for any x P P we have Gs,P1 pe, xq “ rGst pe, xq. We now
prove that

(8)
ÿ

xPP

rGst pe, xq ă 8.

Consider the convolution operator

rPs : f ÞÑ

˜

x ÞÑ
ÿ

y

p̃spx, yqfpyq

¸

acting on the space of `1 functions, i.e. summable functions on P . The `1-norm of rPs is 1, so its `1-spectral

radius is bounded by 1. In particular, 1{t is bigger than the `1-spectral radius, so by definition, I ´ t rPs is
invertible in the space of summable functions. Moreover, the inverse is of the form

rQs “
ÿ

ně0

tn rPns .

Consider the function f defined by fpxq “ 1 if x “ e and 0 otherwise. Then, rQsfpxq “ rGst pe, x
´1q. Since

the function f is summable, rQsf also is summable, and so the Green function rGs at t is summable. This
proves (8).

Since for x P P , Gspe, xq “ Gs,P1 pe, xq “ rGst pe, xq, we deduce that
ř

xPP Gspe, xq ă 8 and so ωP psq ď 0.
Moreover, by (3), we have

Grpe, xq ď
´r

s

¯c|x|

Gspe, xq

for every x P Γ. Summing over P X Sn, we see that ωP prq ă ωP psq and so ωP prq ă 0.
Finally, if the random walk is not spectrally degenerate along P , then by definition the spectral radius of

pR,P is strictly less than 1. The same proof shows that ωP pRq ď 0. �

When the parabolic subgroup P has sub-exponential growth, we do not need spectral non-degeneracy to
get that ωP pRq ď 0.

Proposition 3.13. Let P be a maximal parabolic subgroup. Assume that P has sub-exponential growth.
Then for every 1 ď r ď R, ωP prq ď 0. In particular, for every 1 ă r ď R, ωP prq ă ωΓprq.

Proof. Let s ą 0. There exists C ě 0 such that for every x P Γ, GRpe, xq ď C. In particular, for every
r ď R,

Θr,spP q ď C
ÿ

ně0

7pP X Snqe
´sn ă `8.

Thus, Θr,spP q is finite for every positive s and so ωP prq ď 0. �

3.5.2. Adapted random walks on free products. Before giving other examples, let us briefly recall some ter-
minology and basic properties of random walks on free products. Consider a free product Γ “ Γ0 ˚ Γ1. Let
µ0 be an admissible probability measure on Γ0, µ1 an admissible probability measure on Γ1 and define

µα “ αµ1 ` p1´ αqµ0.

Then µα is an admissible probability measure on Γ. Moreover, if both µ0 and µ1 are symmetric, respectively
finitely supported, then so is µα.

Such a probability measure is called adapted to the free product structure and it can only move inside
one of the free factors Γ0 or Γ1 at each step. Adapted probability measures on free products have been
considered by many authors, see [Car88], [Car89], [CG12], [CGM12], [Woe86a] and [Woe86b] for instance.
For convenience we will assume that the random walk driven by µi on Γi is transient at the spectral radius, i.e.
the Green function is finite at its radius of convergence. This is not very restrictive, since by the Varapoulos
Theorem, only groups with quadratic growth, i.e. groups that are virtually Z or Z2, can carry an admissible
random walk which is not transient at the spectral radius. Actually, Varapoulos [Var86] proved that only
groups with quadratic growth can carry a non-transient (at r “ 1) random walk, but a standard argument
due to Guivarc’h [Gui80] allows one to reduce non-transience at r “ R to non-transience at r “ 1 by the use
of a suited h-process, see [Woe00] for more details and in particular [Woe00, Theorem 7.8] for a complete
proof.
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Denote by Gµi the Green function on Γi associated with µi, i “ 0, 1 and by Rµi the radius of convergence
of Gµi , i.e. the inverse of the spectral radius of µi. Also, as in the previous example, denote by ps,Γ0 the

first return kernel to Γ0 associated with sµα and by Gs,Γ0

t the associated Green function. We first relate Gµ0

and Gs,Γ0 which are two Green functions associated with different transition kernels on the same group Γ0.
Because µα is adapted to the free product structure, the first return kernel ps,Γ0 can be written as

ps,Γ0pe, xq “ p1´ αqsµ0 ` ws,αδe,x,

where ws,α is the weight of the first return to e, starting with a step in Γ1. Thus, [Woe00, Lemma 9.2] shows
that for any x, y P Γ0,

(9) Gs,Γ0

t px, yq “
1

1´ ws,αt
Gµ0
p1´αqst
1´ws,αt

px, yq.

Define

ζ0psq “
p1´ αqs

1´ ws,α
.

As in the previous example, by [DG21, Lemma 4.4], Gs,Γ0

1 pe, xq “ Gspe, xq, where as usual Gs denotes the
Green function associated with the initial random walk driven by µα at s. So in particular, applying (9) at
t “ 1,

(10) Gspx, yq “ Gs,Γ0

1 px, yq “
1

1´ ws,α
Gµ0

ζ0psq
px, yq.

We also set

ζ1psq “
αs

1´ w1s,α
,

where w1s,α is the weight of the first return to e, starting with a step in Γ0. Then, by symmetry, we also have
for any x, y P Γ1,

(11) Gspx, yq “
1

1´ w1s,α
Gµ1

ζ1psq
px, yq.

Let Rα be the inverse of the spectral radius of µα and let Rµ0
be the inverse of the spectral radius of µ0

on Γ0.

Lemma 3.14. As α tends to 0, Rα and ζ0pRαq both converge to Rµ0
. Moreover, wr,α converges to 0 and

the convergence is uniform in r ď Rα.

Proof. We first show that Rα is a continuous function of α. Let Pα be the convolution operator

Pα : f ÞÑ

˜

x ÞÑ
ÿ

y

µαpx
´1yqfpyq

¸

.

Claim. In the `2 operator norm, Pα is a continuous function of α.

Proof of the claim. We first show that Pα is continuous in the `1 and `8 operator norms. Fix α0. Note that
µα has a finite support included in a fixed finite set Σ, so µαpxq uniformly converges to µα0

pxq as α tends
to α0. Let f be an `8 function. Then, for every x,

ˇ

ˇ

ˇ

ˇ

ˆ

Pα ´ Pα0

˙

fpxq

ˇ

ˇ

ˇ

ˇ

ď
ÿ

yPΓ

ˇ

ˇµαpx
´1yq ´ µα0

px´1yq
ˇ

ˇ }f}8.

The only possible y such that we do not have µα0px
´1yq “ 0 and µαpx

´1yq “ 0 are in xΣ. This yields
ÿ

yPΓ

ˇ

ˇµαpx
´1yq ´ µα0px

´1yq
ˇ

ˇ “
ÿ

y1PΣ

ˇ

ˇµαpy
1q ´ µα0py

1q
ˇ

ˇ .

Therefore, for every ε ą 0, if α is close enough to α0,
ˇ

ˇ

ˇ

ˇ

ˆ

Pα ´ Pα0

˙

fpxq

ˇ

ˇ

ˇ

ˇ

ď ε}f}8.
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This proves continuity for the `8 operator norm. Now, let f be an `1 function. Then,
›

›

›

›

ˆ

Pα ´ Pα0

˙

f

›

›

›

›

1

ď
ÿ

x,yPΓ

ˇ

ˇµαpy
´1xq ´ µα0

py´1xq
ˇ

ˇ|fpyq|.

Fix y. Then, as above,
ÿ

xPΓ

ˇ

ˇµαpy
´1xq ´ µα0

py´1xq
ˇ

ˇ “
ÿ

x1PΣ

ˇ

ˇµαpx
1q ´ µα0

px1q
ˇ

ˇ.

Let ε ą 0. Then if α is close enough to α0 this last sum is bounded by ε, independently of y. Consequently,
›

›

›

›

ˆ

Pα ´ Pα0

˙

f

›

›

›

›

1

ď ε
ÿ

yPΓ

|fpyq| “ ε}f}1.

This proves continuity for the `1 operator norm. The Riesz-Thorin interpolation theorem [Fol99, Theo-
rem (6.27)] shows that Pα converges to Pα0 for the `p operator norm, for every 1 ď p ď `8. This proves
the claim, taking p “ 2. �

Since Rα is the inverse of the spectral radius of Pα, continuity of Rα follows. To conclude it thus suffices
to prove that wr,α uniformly converges to 0. By [Woe00, Proposition 9.18],

wr,α “
ÿ

ně1

Pα pXn “ e,Xk ‰ e, 1 ď k ă n, first step chosen using αµ1q r
n

and by the Markov property,

wr,α “ rαµ1peq ` r
ÿ

x‰ePΓ1

PαpX1 “ xq
ÿ

ně1

Pα

`

Xn “ x´1, Xk ‰ x´1, k ă n
˘

rn.

Set

(12) Frpe, xq “
ÿ

ně1

Pα pXn “ x,Xk ‰ x, k ă nq rn

and for i “ 0, 1, x P Γi,

(13) F irpe, xq “
ÿ

ně1

Pµi pXn “ x,Xk ‰ x, k ă nq rn.

Then, by [Woe00, Lemma 1.13 (b)], for x P Γ,

Grpe, xq “ Frpe, xqGrpe, eq

and for x P Γi,

Girpe, xq “ F irpe, xqG
i
rpe, eq.

Thus, by (10), we have

Frpe, xq “ F iζiprqpe, xq

and so we recover [Woe00, Proposition 9.18]. In particular,

wr,α ď αRα

˜

µ1peq `
ÿ

xPΓ1

µ1pxqF
1
Rµ1
pe, x´1q

¸

.

Finally, F 1
Rµ1
pe, x´1q is finite since we assume that the random walk on Γ1 is transient at the spectral radius.

Thus, there exists a constant C such that

wr,α ď αC

and so wr,α uniformly converges to 0. �

Lemma 3.15. There exists α0 such that for α P r0, α0s, the quantity w1r,α stays bounded away from 1. In
particular, as α tends to 0, ζ1prq converges to 0 and the convergence is uniform in 1 ď r ď Rα.
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Proof. By [Woe00, Proposition 9.18],

w1r,α ď Uprq “
ÿ

ně1

PαpXn “ e,Xk ‰ e, 1 ď k ă nqrn.

Also, by [Woe00, Lemma 1.13],

Grpe, eq “
1

1´ Uprq
.

Note that Grpe, eq depends on α, but according to Lemma 3.14 and (10), Grpe, eq is uniformly bounded for
α in a fixed neighborhood of 0. Consequently, Uprq stays bounded away from 1. �

3.5.3. Example B. Here is now an example where ωP prq ą 0 and ωP prq ă ωΓprq. Consider the group
Γ “ F2 ˚ Zd, where F2 is the free group with two generators. In other words, with the notations above, we
set Γ0 “ F2 and Γ1 “ Zd. Then Γ is hyperbolic relative to Γ0 and Γ1.

We choose d ě 3 so that every finitely supported admissible random walk on Γ1 is transient at the spectral
radius. Choose an adapted measure µα “ αµ1 ` p1 ´ αqµ0 as above. Then, µ0 is a probability measure on
the non-amenable group F2 whose finite support generates F2, hence, Rµ0

ą 1. According to Lemma 3.14,
we can thus fix α so that ζ0prq ą 1 for every r in a neighborhood of Rα, say r0 ă r ď Rα. Now that α is
fixed, we omit it in the notations. By (10),

ÿ

xPF2XSn

Grpe, xq “
1

1´ wr

ÿ

xPF2XSn

Gµ0

ζ0prq
pe, xq.

Since ζ0prq ą 1, [GL13, Note 1.7] shows that
ř

xPF2XSn
Gµ0

ζ0prq
pe, xq diverges as n tends to infinity. In

particular, we see that ωF2
prq ě 0. On the other hand, by (3), for s ą r, ωF2

psq ą ωF2
prq, so for large enough

r, ωF2prq ą 0.
We also deduce from (10) that ωF2prq “ ωµ0pζ0prqq, where ωµ0 is the growth rate of the Green function

associated with µ0 on F2. Since F2 is hyperbolic, by [SWX20, Theorem 3.1], the Green function has purely
exponential growth, i.e.

ÿ

xPF2XSn

Gµ0
r pe, xq — enωµ0

prq.

Consequently, the Poincaré series

Θr,spF2q “
ÿ

xPF2

Grpe, xqe
´sdpe,xq

diverges at s “ ωF2prq. By Corollary 3.9, ωF2prq ă ωΓprq.

3.5.4. Example C. Finally, here is a last example. We assume that there exists a finitely generated group
Γ0 endowed with an admissible finitely supported probability measure µ0 such that for some r0 ă Rµ0

, the
Poincaré series

Θr0,spΓ0q “
ÿ

xPΓ0

Gµ0
r0 pe, xqe

´sdpe,xq

converges at s “ ωµ0
pr0q ą 0.

We consider the free product Γ “ Γ0 ˚ Γ1 where Γ1 “ Zd, d ě 3. As above, Γ is hyperbolic relative
to Γ0 and Γ1. We consider the adapted measure µα “ αµ1 ` p1 ´ αqµ0. We will prove that for some r,
ωΓ0

prq “ ωΓprq. By Lemma 3.14, ζ0pRαq converges to Rµ0
as α converges to 0. Thus, for small enough α,

there exists rα such that ζ0prαq “ r0. Also, by Lemma 3.15, ζ1prαq converges to 0 and w1r,α stays bounded
away from 1 as α tends to 0. By (11), for every ε ą 0, there exists α such that for every x ‰ e P Γ1,

(14) Grpe, xq ď ε.

Every element x P Γ can be written as x “ a1b1...akbk, where ai P Γ0, bi P Γ1 and ai ‰ e except maybe
a1 and bi ‰ e except maybe bk. Moreover, since the random walk is adapted to the free product structure,
it has to pass through a1b1...ak before reaching a1b1...akbk. Consequently,

Grpe, xq

Grpe, eq
“
Grpe, a1b1...akq

Grpe, eq

Grpe, bkq

Grpe, eq
,

see also [Woe86a, (3.3)]. Note that this is an exact version of the relative Ancona inequalities in the specific
case of adapted random walks on free products. We thus get
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Θr,spΓq “
ÿ

xPΓ

Grpe, xqe
´sdpe,xq

ď Grpe, eq
ÿ

kě0

¨

˝

ÿ

aPΓ0zteu

Grpe, aq

Grpe, eq
e´sdpe,aq

˛

‚

k¨

˝

ÿ

bPΓ1zteu

Grpe, bq

Grpe, eq
e´sdpe,bq

˛

‚

k

.

(15)

By (10), ωΓ0
prαq “ ωµ0

pr0q, so ωΓprαq ě ωµ0
pr0q ą 0. Therefore,

ÿ

xPΓ0

Grαpe, xq

Grαpe, eq
e´ωΓprαqdpe,xq ď

ÿ

xPΓ0

Gµ0
r0 pe, xq

Gµ0
r0 pe, eq

e´ωµ0
pr0qdpe,xq

“
1

Gµ0
r0 pe, eq

Θr0,ωµ0
pr0qpΓ0q ă `8.

If x P Γ1, then as explained above, we have

Grpe, xq

Grpe, eq
“ Frpe, xq “ F 1

ζ1prq
pe, xq

where F and F 1 are defined by (12) and (13). Since the random walk on Γ1 “ Zd is transient at the spectral
radius, there exists C1 such that

F 1
ζ1prq

pe, xq ď F 1
Rµ1
pe, xq ď C1.

Also, since Γ1 “ Zd has polynomial growth, there exists a constant C2 such that

ÿ

xPΓ1

Grpe, xq

Grpe, eq
e´ωΓprαqdpe,xq ď C1

ÿ

xPΓ1

e´ωµ0
pr0qdpe,xq ď C2.

We now choose ε ą 0 such that

εC2

Θr0,ωµ0 pr0q
pΓ0q

Gµ0
r0 pe, eq

“ C3 ă 1

and we fix α such that by (14),

ÿ

bPΓ1zteu

Grpe, bq

Grpe, eq
e´sdpe,bq ď ε

ÿ

xPΓ1

e´ωΓprαqdpe,xq ď εC2.

Consequently, by (15),

Θrα,ωΓprαqpΓq ď
ÿ

kě0

Ck3 .

This proves that the Poincaré series Θrα,ωΓprαqpΓq is convergent. According to Lemma 3.7, we deduce that

ωP prαq “ ωΓprαq for some parabolic group P . Since Γ1 “ Zd has polynomial growth, by Proposition 3.13,
we necessarily have P “ Γ0.

Remark 3.16. We assumed that the Poincaré series of Γ0 was convergent at its critical exponent for some
r0 ă Rµ0

. However, this was only for convenience. If this Poincaré series is convergent for r “ Rµ0
, then

we can make the same construction and choose instead rα “ Rα. We only need to know that ζ0pRαq “ Rµ0

for small enough α. The fact that ζ0pRαq “ Rµ0 is equivalent to the fact that µα is spectrally degenerate
along Γ0, so we just need to ensure that for small enough α, µα is spectrally degenerate along Γ0. Now, if
the Poincaré series is convergent for r “ Rµ0

, then
ř

xPSnXΓ0
Gµ0

Rµ0
pe, xq ď Ce´ωµ0 pRµ0 q and so

ÿ

xPΓ0

Gµ0

Rµ0
pe, xqGµ0

Rµ0
px, eq ď CΘr0,ωµ0

pr0q ă 8.

By [GL13, Proposition 1.9], this implies that the first derivative of the Green function t ÞÑ Gµ0

t pe, eq is finite
at Rµ0

. Using the work of [CG12, Section 7], we can then construct such a spectrally degenerate probability
µα along Γ0 for small enough α.
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Remark 3.17. In [CGM12, Lemma 4.7], the authors prove that ωP prq ă ωΓprq always holds. However, their
proof is incorrect. Indeed, they use the following inequality

ÿ

xPSn`mXP

Grpe, xq ď C
ÿ

xPSnXP

Grpe, xq
ÿ

xPSmXP

Grpe, xq.

Proving such an inequality would require that for any x P Sn`m and any y P Sn on a geodesic from e to x,
we have

Grpe, xq ď CGrpe, yqGrpy, xq.

This in turn would require Ancona inequalities for the group P . It is an open question whether the fact that
Ancona inequalities hold for any geodesic implies that the group is hyperbolic, but it is easy to prove that
they do not hold in a parabolic subgroup P if P is virtually abelian, see for instance [DG20, Section 5.2].

Let us give some final remarks to conclude this discussion. The last example raises the following question.

Question 3.18. Does there exist a finitely generated group Γ0 endowed with an admissible finitely supported
probability measure µ0 such that for some r ď Rµ0 , the Poincaré series Θr,spΓ0q is convergent at the radius
of convergence s “ ωΓ0

prq ą 0 ?

If there is a positive answer to this question, then as we saw, there exists a relatively hyperbolic group Γ
endowed with an admissible finitely supported probability measure µ and a parabolic subgroup P for which
ωP prq “ ωΓprq at some r. Moreover, if the measure µ0 is symmetric, then we can choose the measure µ to
be symmetric as well.

On the contrary, if this question has a negative answer, then Corollary 3.9 suggests that we always have
ωP prq ă ωΓprq. However, this corollary requires the Poincaré series

Θr,spP q “
ÿ

pPP

Grpe, pqe
´sdpe,pq

to be divergent, where Gspe, pq is the Green function associated with the measure µ on Γ. Using [DG21,
Lemma 4.4] as above, we can rewrite this Poincaré series as

Θr,spP q “
ÿ

pPP

Gr,P1 pe, pqe´sdpe,pq,

whereGr,P1 is the Green function at 1 associated with the first return kernel pr,P defined in (7). Unfortunately,
this first return kernel is not in general finitely supported, so even if Question 3.18 has a negative answer,
we cannot deduce that this Poincaré series is divergent, hence we cannot deduce that ωP prq ă ωΓprq.

4. The growth rate of the trace of the branching random walk

Recall that Pn is the set of points in Sn that are eventually visited by some particle of the branching
random walk and that Mn “ 7Pn. In this section, we compare the growth rate of the Green function ωΓprq

with the growth rate of the branching random walk log lim supM
1{n
n . Our goal is to prove the following

proposition.

Proposition 4.1. For r P r1, ρ´1s, ωΓprq “ lim supnÑ8
1
n logMn almost surely.

Theorem 1.1 is then a consequence of Proposition 4.1, Corollary 3.4 and Corollary 3.5.

4.1. Upper bound. We first prove the following.

Proposition 4.2. Almost surely, we have

lim sup
nÑ8

1

n
logMn ď ωΓprq.

The proof of [SWX20], which relies on the Borel-Cantelli lemma uses the purely exponential growth of
the Green functions over spheres. However, only a small adaptation is needed to apply it here. We rewrite
it for convenience.
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Proof. For x P Γ, we denote by Zx the number of particles of the branching random walk that ever visit x.
The many-to-one formula states that

ErZxs “ Grpe, xq.

Then, Mn “
ř

xPSn
1Zxě1, so by the Markov inequality,

ErMns “
ÿ

xPSn

PpZx ě 1q ď
ÿ

xPSn

ErZxs “ Hrpnq.

Let ε ą 0. By the Markov inequality,

P
´

M1{n
n ě eωΓprq ` ε

¯

ď
ErMns

peωΓprq ` εqn
ď

Hrpnq

peωΓprq ` εqn
.

By definition, ωΓprq “ log lim supHrpnq
1{n, so there are at most finitely many n such that

Hrpnq
1{n ě eωΓprq ` ε{2.

Therefore,
ÿ

n

Hrpnq

peωΓprq ` εqn
ă 8.

The statement of the lemma is thus a consequence of the Borel-Cantelli lemma. �

4.2. Lower bound. Before proving the lower bound, we first recall some geometric lemmas about relatively
hyperbolic groups. Let P “ tgP : g P Γ, P P P0u be the collection of all parabolic cosets. Recall that η and
Lpηq are fixed so that for L ě Lpηq, any pη, Lq-transition point satisfies the results of Section 2.3.

Definition 4.3. For L ě Lpηq, an pη, Lq-transition point on a geodesic is called an L-transition point. A
geodesic α is called L-transitional if every point on α is an L-transition point.

Lemma 4.4. Let L ě Lpηq. There exists K such that the following holds. For every x, y, z P Γ, if both
rx, zs and ry, zs are L-transitional, then there exists a point w within K of an L-transition point on rx, zs,
an L-transition point on ry, zs and an L-transition point on rx, ys.

Proof. Let x, y, z satisfy the statement of the lemma. Applying Lemma 2.9, consider the last point w0

on rz, xs which is within C of rz, ys and let w be the next point on rz, xs. Since w also is L-transitional,
by definition of w0, w is within C of an L-transition point on rx, ys. Moreover, w is within C ` 1 of an
L-transitional point on ry, zs. �

Lemma 4.5. There exists a constant C such that the following holds. Let x0, x1, x2 be three points in Γ.
Then, there exist w0, w1, w2 such that for i mod 3,

dpxi, xi`1q ě dpxi, wiq ` dpwi, wi`1q ` dpwi`1, xi`1q ´ C.

Moreover, wi and wi`1 are within C of an L-transition point on rxi, xi`1s. Finally, if rxi, xi`1s is L-
transitional, then dpwi, wi`1q ď C 1, where C 1 only depends on L.

It will be convenient to rely on similar results proved in [Dus22a]. However, the terminology is a bit
different and [Dus22a] uses the notion of relative geodesics. Let us briefly introduce this notion. Let P0 be
the chosen set of representatives of conjugacy classes of parabolic subgroups and let S be a finite generating
set of Γ. Following Osin [Osi06], the relative graph is the Cayley graph of Γ endowed with the (possibly
infinite) generating set S

ŤŤ

PPP0
P . It is quasi-isometric to the coned-off graph introduced by Farb [Far98]

who gave one of the first definitions of relatively hyperbolic groups. The relative graph is hyperbolic. A
relative geodesic is a geodesic in the relative graph. By [Hru10, Proposition 8.13], if x, y P Γ, then any point
on a relative geodesic from x to y is within a uniformly bounded distance of a transition point on a geodesic
from x to y (in the Cayley graph of Γ).

Proof of Lemma 4.5. Consider the projection of x0 on a relative geodesic from x1 to x2 in the relative Cayley
graph. If several projections exist, choose the closest possible to x1. Denote this projection by w1 and let
w2 be the point on this relative geodesic just after w1.

By [Dus22a, Lemma 4.16], any relative geodesic from x0 to x1 passes at a point v within a bounded
distance of w1. We prove by contradiction that v is within a bounded distance of the projection of x2 on
a relative geodesic from x0 to x1 the closest to x1. Denote by v1 such a projection. Then applying again
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[Dus22a, Lemma 4.16], the relative geodesic from x2 to x1 we chose would pass at a point w11 within a
bounded distance of v1. If dpv, v1q is large, then dpw1, w

1
1q is also large. Now, if w1 is before w11 on the

relative geodesic, this contradicts the definition of v1 and if w11 is before w1, this contradicts the definition
of w1.

Finally, denote by w0 the point just before v on the relative geodesic from x0 to x1. Then, applying
[Dus22a, Lemma 4.16] one last time, a relative geodesic from xi to xi`1 passes within a bounded distance
of wi and wi`1. Since points on a relative geodesics are within a bounded distance of transition points (see
[Hru10, Proposition 8.13]), this proves the two first properties of the points wi.

Notice that the points wi, wi`1 are chosen within a bounded distance of successive points on a relative
geodesic from xi to xi`1. If the geodesic rxi, xi`1s is L-transitional, then the corresponding relative geodesic
has bounded jumps in parabolic subgroups, hence the distance between wi and wi`1 is bounded. This
concludes the last part of the lemma. �

We define
Sn,L “ tx P Sn : re, xs is L-transitionalu .

Set Mn,L “ 7PnXSn,L. We first consider the lower bound for the quantity limnÑ8
1
n logMn,L. To this end,

mimicking the strategy of [SWX20], we need first and second moments estimates for Mn,L. Set

Hr,Lpnq “
ÿ

xPSn,L

Grpe, xq,

and

ωΓ,Lprq “ lim sup
nÑ8

1

n
logHr,Lpnq.

Proposition 4.6. For every L ě Lpηq and r P r1, ρ´1s, there is a constant cL ą 0 such that

c´1
L eωΓ,Lprq ď Hr,Lpnq ď cLeωΓ,Lprq, n ě 0.

Proof. For x P Sn`m,L, the point y “ re, xs X Sn is in Sn,L and y´1x P Sm,L. By the relatively Ancona
inequalities, there is a constant c1 ą 0 such that

Grpe, xq ď c1Grpe, yqGrpe, y
´1xq.

Thus we have that

(16) Hr,Lpn`mq ď c1
ÿ

yPSn,L

Grpe, yq
ÿ

zPSm,L

Grpe, zq “ c1Hr,LpnqHr,Lpmq.

Let F be the finite set given by Lemma 2.4. Set

l “ max tdpe, fq : f P F u ` 4ε.

For x P Sn,L and y P Sm,L there is f P F such that

dpx, re, xfysq ď ε, dpxf, re, xfysq ď ε.

Also, there are positive constants c2 and c3 such that

Grpe, xqGrpe, yq ď c2Grpe, xqGrpx, xfqGrpxf, xfyq ď c3Grpe, xfyq.

Note that xfy P
Ť

´lďiďl Sn`i,L. Thus

(17) Hr,LpnqHr,Lpmq ď c4Hr,Lpn`mq

for some c4 ą 0. This proposition follows by the Fekete Subadditive Lemma and (16), (17). �

Lemma 4.7. For r P r1, ρ´1s, limLÑ8 ωΓ,Lprq “ ωΓprq.

Proof. For n0 P N and xi P Sn0 , 1 ď i ď m, we can choose fi P F so that the conditions in Lemma 2.4 hold
with g, h replaced by x1f1x2 ¨ ¨ ¨xi´1fi´1xi, xi`1. In particular,

x “ x1f1x2 ¨ ¨ ¨ fm´1xm P

pn0`lqm
ď

k“pn0´lqm

Sk, L

for L sufficiently large, where l “ max tdpe, fq : f P F u ` 4ε. Since F is a fixed finite set, we have that

Grpe, xq ě cm1 Grpe, x1q ¨ ¨ ¨Grpe, xmq
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with c1 “ minfPF
Grpe, fq
Grpe, eq

. By Lemma 3.3, there is c2 ą 0 such that each x has at most cm2 possible

representations in the form of x “ x1f1x2 ¨ ¨ ¨ fm´1xm. Therefore

pn0`lqm
ÿ

k“pn0´lqm

Hr,Lprq ě cm3
ÿ

x1,...,xmPSn0

Grpe, x1q ¨ ¨ ¨Grpe, xmq “ cm3 rHrpn0qs
m

with c3 “ c1c
´1
2 . This and Proposition 4.6 imply that

2cLlmepn0`lqmωΓ,Lprq ě cm3 rHrpn0qs
m
.

Letting first mÑ8 and then LÑ8, we have for every n0 P N,

lim inf
LÑ8

ωΓ,Lprq ě
1

n0 ` l
plog c3 ` logHrpn0qq ,

which completes the proof of this lemma. �

Now we are ready to estimate the second moment of Mn,L, which will help us find a lower bound. Let x
and y be in Sn,L. By Lemma 4.4, there exists w “ wpx, yq P Γ such that w is within a bounded distance of
transition points of re, xs and re, ys respectively.

Lemma 4.8. For 1 ď r ă ρ´1 and x, y P Sn,L, there exists a positive constant c ą 0 such that
ÿ

zPΓ

Grpe, zqGrpz, xqGrpz, yq ď cGrpe, wqGrpw, xqGrpw, yq.

Proof. Let κ “ C `K where C and K are given by Lemma 2.9 and Lemma 4.4. Define

Ω1 “ tz P Γ: dpw, uq ď κ for some transition point u P re, zsu ,

and
Ω2 “ tz P Γ: dpw, uiq ď κ for transition points u1 on rz, xs and u2 on rz, ysu .

By Lemma 2.9 and Lemma 4.4, Γ “ Ω1 Y Ω2.
Assume z P Ω1. Applying Lemma 4.5 to px, y, zq, we get the existence of transition points v, v1 on rx, ys

such that v is within a bounded distance of a transition point on rz, xs and v1 is within a bounded distance of a
transition point on rz, ys. Moreover, since re, xs and re, ys are L-transitional, dpv, v1q is bounded. Combining
all this, we see that v is within a bounded distance of transition points on rx, ys, rx, zs and ry, zs.

Now, applying Lemma 4.4 to pw, x, yq, we have that v is within a bounded distance of either a transition
point on rw, xs or on rw, ys. We assume without loss of generality that the latter holds.

e

w

x

z

v

v1

y
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Claim. For every given K, there exists K 1 such that if w is within K of a transition point on rv, ys, then
dpv, wq ď K 1.

Proof of the claim. Since v is within a bounded distance of a transition point on rw, ys by assumption, we
have

dpw, yq ě dpw, vq ` dpv, yq ´ C.

Thus, if dpw, rv, ysq ď K, then

dpv, yq ě dpdpw, vq ` dpw, yq ´ 2K

and so

2dpv, wq ď C ` 2K,

which proves the claim. �

Claim. For every given K, there exists K 1 such that if v is within K of a transition point on rw, xs, then
dpv, wq ď K 1.

Proof of the claim. By the previous claim, we can assume that w is far from a transition point on rv, ys. But
then, since w is within a bounded distance of a transition point on rx, ys, applying Lemma 4.4 to pv, x, yq
shows that w is within a bounded distance of a transition point on rv, xs. Therefore,

dpv, xq ě dpv, wq ` dpw, xq ´ C.

Thus, if dpv, rw, xsq ď K, then

dpw, xq ě dpv, wq ` dpv, xq ´ 2K

and so

2dpv, wq ď c` 2K,

which proves the claim. �

These two claims show that either dpv, wq is bounded or w is far from a transition point on rv, ys and v is
far from a transition point on rw, xs. Applying Lemma 4.4 to pv, x, yq and then to pz, w, xq, in every case we
get that w is within a bounded distance of a transition point on rv, xs and v is within a bounded distance of
a transition point on rw, zs.

By the relatively Ancona inequalities, we thus have

Grpe, zq ď c1Grpe, wqGrpw, vqGrpv, zq,

Grpz, xq ď c1Grpz, vqGrpv, wqGrpw, xq,

Grpz, yq ď c1Grpz, vqGrpv, yq.

Consequently,
ÿ

zPΩ1

Grpe, zqGrpz, xqGrpz, yq

ď c31Grpe, wqGrpw, xq
ÿ

zPΩ1

Grpv, yqGrpw, vqGrpv, wqGrpv, zqGrpz, vq
2.

Note that Grpw, vqGrpv, yq ď c2Grpw, yq. Therefore,
ÿ

zPΩ1

Grpe, zqGrpz, xqGrpz, yq ďc3Grpe, wqGrpw, xqGrpw, yq

ÿ

vPrw,ys

Grpw, vq
ÿ

zPΓ

Grpv, zqGrpz, vq
2

ď c4Grpe, wqGrpw, xqGrpw, yq.

Here we used the facts that for r ă ρ´1, Grpw, vq is decaying exponentially in dpw, vq, which is a direct
consequence of (3) and that

ÿ

zPΓ

Grpv, zqGrpz, vq
2 ď C

ÿ

zPΓ

Grpv, zqGrpz, vq ă 8

by [GL13, Proposition 1.9].
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Now we consider the case z P Ω2. Using Lemma 4.5 again, there exists v P Γ such that v is within a
bounded distance of a transition point on re, zs, a transition point on rz, ws and a transition point on re, ws.

e

v

z

y

x

w

By the same argument as in the case z P Ω1, we have that
ÿ

zPΩ2

Grpe, zqGrpz, xqGrpz, yq ď c5Grpe, wqGrpw, xqGrpw, yq

This completes the proof of the lemma. �

This lemma will help us estimate E
“

M2
n,L

‰

. We first recall the following result from [SWX20] whose proof
has nothing to do with hyperbolicity and holds for any finitely generated group Γ. As above, for every x P Γ,
we denote by Zx the number of particles that ever visit x.

Lemma 4.9. Assume that ν has finite second moment. Then, there exists C such that for every x, y P Γ,

ErZxZys ď C
ÿ

zPΓ

Grpe, zqGrpz, xqGrpz, yq.

We deduce the following result.

Proposition 4.10. Assume that ν has finite second moment and that r ă ρ´1. Then there exists CL such
that

ErMn,Ls ě CLenωΓ,Lprq.

Proof. As in the proof of [SWX20, Lemma 4.4], we deduce from Lemma 4.9 that

PpZx ě 1q ě cGrpe, xq.

Since ErMn,Ls “
ř

xPSn,L
PpZx ě 1q, the result follows from Proposition 4.6. �

Corollary 4.11. Assume that ν has finite second moment. For r P p1, ρ´1q and L sufficiently large, there
exists a positive constant c such that

E
“

M2
n,L

‰

ď c pErMn,Lsq
2
.
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Proof. By Lemma 4.7 and the fact that ωΓprq ą 1, we have ωΓ,Lprq ą 1 for sufficiently large L. Applying
Proposition 4.6 and Lemma 4.8,

E
“

M2
n,L

‰

ďc1
ÿ

x,yPSn,L

ÿ

zPΓ

Grpe, zqGrpz, xqGrpz, yq

ďc2

n
ÿ

k“0

ÿ

wPSk,L

ÿ

x,yPSn,L

Grpe, wqGrpw, xqGrpw, yq

ďc3

n
ÿ

k“0

ep2n´kqωΓ,Lprq

ďc4 pErMn,Lsq
2
.

This yields the desired bound. �

We can now prove the lower bound and finish the proof of Proposition 4.1.

Proof of Proposition 4.1. We first fix r ă ρ´1 and assume that ν has finite second moment. By Proposi-
tion 4.10,

P
´

Mn,L ě
c1
2

eωΓ,Lprqn
¯

ě P

ˆ

Mn,L ě
1

2
ErMn,Ls

˙

and so, by the Paley-Zygmund inequality and Corollary 4.11, for some c2 ą 0,

P
´

Mn,L ě
c1
2

eωΓ,Lprqn
¯

ě

`

ErMn,Ls
˘2

E rM2
ns

ě c2.

Thus, with positive probability, the events
!

M
1{n
n,L ě

`

c1
2

˘1{n
eωΓ,Lprq

)

occur for infinitely many n and so,

with positive probability, lim sup 1
n logMn,L ě ωΓ,Lprq. By definition, Mn ě Mn,L, hence for every large

enough L, with positive probability (a priori depending on L), we have lim sup 1
n logMn ě ωΓ,Lprq. By

[SWX20, Lemma 4.7], lim supM
1{n
n is almost surely a constant. Thus, for every L, almost surely we have

lim sup 1
n logMn ě ωΓ,Lprq. Letting L tend to infinity along a sequence, it follows from Lemma 4.7 that

lim sup 1
n logMn ě ωΓprq. Thus by Proposition 4.2,

lim sup
1

n
logMn “ ωΓprq.

We conclude as in [SWX20]. For every ε ą 0, we can construct a probability measure ν1 with mean r ´ ε
and with finite second moment so that ν stochastically dominates ν1. Denoting by M 1

n the number of vertices
in Sn ever visited by a branching random walk driven by µ and ν1, we see that Mn stochastically dominates
M 1
n and so

P

ˆ

lim sup
1

n
logMn ě ωΓpr ´ εq

˙

ě P

ˆ

lim sup
1

n
logM 1

n ě ωΓpr ´ εq

˙

“ 1.

Since ωP prq is continuous by Corollary 3.4, we deduce that

lim sup
1

n
logMn ě ωΓprq

almost surely. �

5. A lower bound for the Hausdorff dimension of the limit set

5.1. The limit set in the Floyd and Bowditch boundaries. For r ď ρ´1, we let ΛF prq and ΛBprq
be the limit sets of the branching random walk whose offspring distribution has mean r in the Floyd and
Bowditch boundary respectively.

Proposition 5.1. Let r ď ρ´1. Almost surely,

HdimpΛF prq, δeq ě
´1

log λ
ωΓprq

and

HdimpΛBprq, δeq ě
´1

log λ
ωΓprq.
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By (2), it is enough to prove the lower bound for the shortcut distance on the Bowditch boundary. For
simplicity, we write Λ “ ΛBprq and X “ ΓY BBΓ.

Let h ă ´1
log λωΓprq. We will prove that with positive probability, there exists a positive finite measure χ

on the limit set Λ such that
ż

Λ

ż

Λ

δepx, yq
´hdχpxqdχpyq ă `8.

Recall that Pn,L is the set of L-transitional points in Sn that are ever visited by the branching random walk
and Mn,L is the cardinality of Pn,L. Using Lemma 4.7, we fix L such that

(18) h ă
´1

log λ
ωΓ,Lprq.

Let An be the event
"

Mn,L ě
1

2
ErMn,Ls

*

.

By the Paley-Zygmund inequality and Corollary 4.11, there exists p ą 0 such that PpAnq ě p. Also, for any
C ě 0, PpMn,L ě CErMn,Lsq ď 1{C. Therefore, for large enough C, the event Bn defined by

"

1

2
ErMn,Ls ďMn,L ď CErMn,Ls

*

satisfies PpBnq ě p{2. We define for every n a random measure χn by

(19) χn “ 1Bn
1

E rMn,Ls

ÿ

xPPn,L

Dpxq

where Dpxq is the Dirac measure at x.
Our goal is to apply a compactness theorem to the sequence χn and find a limit random measure χ. In

[Cra02], the author proves a compactness criterion for random probability measures. Here the measure χn
is not almost surely a probability measure, however some of the results of [Cra02] still hold in our context.
References and proofs are postponed to the Appendix.

Note that
ErχnpXqs ď C,

so χn is a random finite measure in the sense of Definition A.1. We define the measure πΩpχnq on Ω by
setting, for every event A,

πΩpχnqpAq “ E r1AχnpXqs “ E

„

1A1Bn
Mn,L

ErMn,Ls



.

Then,
πΩpχnqpAq ď CPpAq.

Since X is compact, any subset of MΩpXq is tight in the sense of Definition A.18. Moreover, any point of Γ
is isolated in X. By Corollary A.23, the closure of tχnu is compact for the weak topology on random finite
measures. This is the smallest topology such that for every random bounded continuous function, the map
µ ÞÑ µpfq is continuous, where a random bounded continuous function is a function f : px, ωq ÞÑ fpx, ωq such
that for every ω, fp¨, ωq is bounded continuous, for every x, fpx, ¨q is measurable and the map ω ÞÑ }fp¨, ωq}8
is P-essentially bounded.

Thus, there exists a sub-net pχαqαPA such that χα converges to some random finite measure χ. This
means that there exists a directed set A and a monotone final function h : AÑ N such that for every α P A,
χα “ χhpαq and such that χα eventually lies in every neighborhood of χ. We refer to [AB06, Definition 2.11,
Definition 2.15, Theorem 2.31] for more details on nets and a characterization of compactness in terms of
convergent sub-nets. This implies that for every random bounded continuous function f , we have

(20) χαpfq ÝÑ
αÑ8

χpfq.

Since
p

4
ď ErχαpXqs ď C,

the same holds for χ, applying (20) to the function 1Ω1X . Therefore, with positive probability, χ is not the
null-measure.
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Note that χαpPYΛq “ χαpXq and that PYΛ is a random closed set in the sense of Definition A.6. Thus,
by Proposition A.15, which is analogous to the classical Portmanteau theorem, we have

χpP Y Λq ě lim sup
α

χαpP Y Λq “ lim sup
α

χαpXq “ χpXq.

Also, the topology on ΓY BBΓ extends the discrete topology of Γ. Thus, any compact K Ă Γ is closed and
open, so the function 1K is continuous. Applying convergence to this function and noting that for large
enough n,we have χnpKq “ 0, hence for large enough α, χαpKq “ 0 we get that χpKq “ 0. Since Γ can be
written as a countable union of compact sets, we get that

ErχpPqs ď ErχpΓqs “ 0.

Thus, χ almost surely gives full measure to Λ.
We can now finish the proof of Proposition 5.1.

Proof of Proposition 5.1. First, as in the proof of Proposition 4.1, we can construct a branching random
walk pΓ, µ, ν1q such that ν1 has mean r ´ ε, has finite second momment and is stochastically dominated by
ν. As a consequence, we can assume that r ă ρ´1 and that ν has finite second moment.

We slightly modify the distance δe and set for x, y P ΓY BBΓ

δ̂epx, yq “

#

δepx, yq if x ‰ y

λdpe,xq if x “ y

where by definition λ8 “ 0. Note that for x, y P BBΓ, δ̂epx, yq “ δepx, yq.

Claim. The function px, yq P pΓY BBΓq ˆ pΓY BBΓq ÞÑ δ̂epx, yq is continuous.

Proof of the claim. Let xn, yn converge to x, y. If x ‰ y, then xn ‰ yn, so δ̂epxn, ynq “ δepxn, ynq for large

enough n, which converges to δepx, yq “ δ̂epx, yq.

Now if x “ y, there are two cases. First, if x P Γ, then xn “ yn “ x and so δ̂epxn, ynq “ δ̂epx, yq for large
enough n.

Second, assume that x “ y P BBΓ. We have to prove that δ̂epxn, ynq converges to 0 as n tends to infinity.
Up to extracting sub-sequences, we can assume that either xn “ yn for every n or that xn ‰ yn for every

n. In the former sub-case, δ̂epxn, ynq “ λdpe,xnq which tends to 0 since xn tends to infinity. In the latter,

δ̂epxn, ynq “ δepxn, ynq, which concludes the proof. �

Let

Wn “

ż ż

δ̂epx, yq
´hdχnpxqdχnpyq

“ 1Bn
1

E rMn,Ls
2

ÿ

x,yPPn,L

δ̂epx, yq
´h.

(21)

Claim. The expectation ErWns is uniformly bounded.

Proof of the claim. By Lemma 4.4, for every x, y P Pn,L there exists a point wn which is within a bounded
distance of transition point on re, xs and on re, ys. We denote by dn the supremum of dpe, wnq for such a point
wn. Note that re, xs and re, ys are L-transitional. A small adaptation of the proof of [PY19, Proposition 5.13]
yields that

δ̂epx, yq ě cLλ
dn .

There exists C such that dn ď n` C. Furthermore, if dn “ k, then

2n´ k ´ C ď dpx, yq ď 2n´ k ` C.
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By Lemma 4.9,

E r7 tpx, yq P Pn,L : dn “ kus

ď E

»

—

—

–

ÿ

x,yPSn,L
2n´k´Cďdpx,yqď2n´k`C

1tx,y are visited by BRWpΓ,ν,µqu

fi

ffi

ffi

fl

ď C
ÿ

zPΓ

ÿ

x,yPSn,L
2n´k´Cďdpx,yqď2n´k`C

Grpe, zqGrpz, xqGrpz, yq.

Recall that r ă ρ´1. Applying Proposition 4.6 and Lemma 4.8, we get

(22) E r7 tpx, yq P Pn,L : dn “ kus ď CLeωΓ,Lprqp2n´kq.

Combining (21), (22) and Proposition 4.6, we get

ErWns ď CLe´2nωΓ,Lprq
n`C
ÿ

k“0

λ´hkeωΓ,Lprqp2n´kq ď C 1L

n`C
ÿ

k“0

pλ´he´ωΓ,Lprqqk.

By our choice of L (18), this last quantity is uniformly bounded. �

For any κ ě 0, the function κ^ δ̂epx, yq
´h is bounded continuous on X ˆX. Thus,

E

„
ż ż

κ^ δ̂epx, yq
´hdχαpxqdχαpyq



ÝÑ
αÑ8

E

„
ż ż

κ^ δ̂epx, yq
´hdχpxqdχpyq



.

By what precedes, we have that for every α,

E

„
ż ż

δ̂epx, yq
´hdχαpxqdχαpyq



ď C

for some uniform C. By the Fatou Lemma applied to the measure πXpχq on X defined for every Borelian
subset B of X by

πXpBq “ ErχpBqs,

we have

E

„
ż ż

δ̂epx, yq
´hdχpxqdχpyq



ď lim inf
κÑ8

E

„
ż ż

κ^ δ̂epx, yq
´hdχpxqdχpyq



.

For every κ, for every α,

E

„
ż ż

κ^ δ̂epx, yq
´hdχαpxqdχαpyq



ď E

„
ż ż

δ̂epx, yq
´hdχαpxqdχαpyq



ď C

and letting α go to infinity, we get

E

„
ż ż

κ^ δ̂epx, yq
´hdχpxqdχpyq



ď C.

This bound being uniform in κ, we finally get that

E

„
ż ż

δ̂epx, yq
´hdχpxqdχpyq



ď C.

Consequently, P-almost surely,
ż ż

δ̂epx, yq
´hdχpxqdχpyq ă `8.

Recall that δ̂e “ δe on BBΓ. Thus, with positive probability, there exists a finite measure χ on Λ which is
not the null-measure and such that

ż ż

δepx, yq
´hdχpxqdχpyq ă `8.

By Frostman Lemma for metrizable spaces (see [Sha09, Theorem 2.6]), this shows that with positive prob-
ability, h ă HdimpΛ, δeq. The same argument as in [SWX20, Lemma 4.7] shows that HdimpΛ, δeq is almost
surely a constant. This concludes the proof. �
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5.2. The limit set in the ends boundary. We prove here Theorem 1.4. We briefly introduce infinitely
ended groups and refer to [DY20, Section 4] and references therein for more details on those groups and on
the link between random walks and the end boundary. Let pV,Eq be a locally finite graph and let F be a
finite set of V . We denote by CpF q an infinite connected component of the complement of F in pV,Eq. An
end ξ of pV,Eq is a collection of infinite connected components CpF q, where F is finite, such that for any two
such F, F 1, we have that the intersection of CpF q and CpF 1q is infinite. We will also say for simplicity that
ξ lies in the connected component CpF q if CpF q is part of the collection defining ξ. We denote by BEpV,Eq
the set of ends. We can endow the end compactification V Y BEpV,Eq with a topology which extends the
discrete topology on V such that V Y BEpV,Eq is compact and V is dense in its ends compactification. If Γ
is a finitely generated group, we define its end boundary as the set of ends of a Cayley graph with respect to
a finite generating system. Its topology does not depend on the choice of the finite generating system. We
denote by BEΓ the end boundary of Γ.

Let 0 ă λ ă 1. We define the visual distance δ̃e of parameter λ on ΓYBEΓ by setting δ̃epx, yq “ λn, where
n is the minimal integer such that x and y lie in two distinct connected components of the complement of
Bpe, nq. It is well known that the end boundary is covered by the Floyd boundary, see for instance [GGPY21,
Proposition 11.1] or [Kar03]. Moreover, we can be more precise and by [DY20, Lemma 4.3], the identity of
Γ extends to an 1-Lipschitz continuous and equivariant map ψ from the Floyd compactification to the end
compactification, so in particular

δepx, yq ě δ̃epψpxq, ψpyqq.

If Γ is a group with infinitely many ends, we denote by ΛEprq the limit set of a branching random walk
pΓ, ν, µq with Erνs “ r. We prove the following.

Proposition 5.2. Let r ď ρ´1. Almost surely,

HdimpΛEprq, δ̃eq ě
´1

log λ
ωΓprq.

By a celebrated result of Stallings [Sta71], a group with infinitely many ends Γ splits as an HNN extension
A˚C or an amalgamated product A ˚C B, where C is a finite group. The action on the corresponding Bass-
Serre tree satisfies the conditions of [Bow12, Definition 2] and so Γ is relatively hyperbolic. However, there
is no clear relation between the shortcut distance on the Bowditch boundary and the visual distance on
the end boundary. Indeed, the ends boundary is in general larger than the Bowditch boundary and even if
they coincide, the shortcut distance is the largest distance on the Bowditch boundary satisfying (2), so it is
bounded from below by the visual distance. Thus, we cannot deduce Proposition 5.2 from Proposition 5.1.

Proof of Proposition 5.2. We follow the same strategy as for the Bowditch boundary. Since Γ has infinitely
many ends, it is relatively hyperbolic. It is either an HNN extension A˚C or an amalgamated product A˚CB,
where C is finite. In the former case, the parabolic subgroups are the conjugates of A and one can choose
P0 “ tAu, in the latter case, they are the conjugates of A and B and one can choose P0 “ tA,Bu. In both
cases, every element of Γ can be written uniquely in a normal form, see [Woe89, (9.2),(9.4)]. For simplicity,
we only give details of the proof when Γ “ A ˚C B. The case of an HNN extension is treated similarly. In
this situation, the normal form is described as follows. We choose a set of representatives A of A{C and a
set of representatives B of B{C. Then, any element x of Γ can be uniquely written as

(23) x “ a1b1...anbnc,

where ai P A, bi P B, c P C. Moreover, any path from e to x in the Cayley graph of Γ has to pass within
a bounded distance of every prefix of x in the normal form (23). This follows from the fact that A ˚C B is
quasi-isometric to the space X obtained by taking copies of A and B for each coset gA and hB, g, h P Γ and
connecting

‚ ga P gA to ga P gaB by adding 7C edges between the coset gaC in gA and the coset gaC in gaB.
‚ gb P gB to gb P gbA by adding 7C edges between the coset gbC in gB and the coset gbC in gbA.

The construction of the space X is performed in [SW79]. It is similar to the construction of a tree of spaces
modeling the free product A ˚ B obtained by adding one single edge between every element ga P gA and
ga P gaB and one single edge between every element gb P gB and gb P gbA. This space is also used in
[PW02] to prove that A ˚B is quasi-isometric to A ˚C B.
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In particular, if a geodesic re, xs is L-transitional in the sense of Definition 4.3, then |e, xs cannot travel
long in parabolic subgroups and thus every word ai and bi in the normal form of x (23) satisfies |ai| ď DL

and |bi| ď DL, where DL only depends on L.
Let h ă ´1

log λωΓprq. Using Lemma 4.7, we fix L such that h ă ´1
log λωΓ,Lprq. The sequence of random

finite measures χn on Γ defined by (19) converges, up to a sub-net, to a random finite measure χ on the end
boundary that gives full measure to ΛEprq and which is not the null measure with positive probability. We

slightly modify the distance δ̃e by setting δ̂epx, yq “ δ̃epx, yq if x ‰ y and δ̂epx, yq “ λ|x| if x “ y and we
define

Wn “

ż ż

δ̂epx, yq
´hdχnpxqdχnpyq

“ 1Bn
1

E rMn,Ls
2

ÿ

x,yPPn,L

δ̂epx, yq
´h.

For x, y P Pn,L, we set dn to be the maximal length of a common prefix of x and y in their normal form.

Claim. There exists cL only depending on L such that δ̂epx, yq ě cLλ
dn .

Proof of the Claim. Let wn be a common prefix of x and y of length dn and write

x “ wnx1...xmc, y “ wny1...ylc
1

where xi, yi are either in A or B and c, c1 P C. Then, any path from x to y has to pass within a bounded
distance of wnx1. Since |x1| ď DL and |wn| “ dn, we see that x and y lie in distinct components of

Bpe, dn `DL ` Cq. Thus, δ̂epx, yq ě λdn`DL`C . �

Using this claim, we prove as above that ErWns is uniformly bounded, which allows us to prove that
ż ż

δ̃epx, yq
´hdχpxqdχpyq

is almost surely finite. We then use the Frostman Lemma to conclude. �

Remark 5.3. Without involving [PW02], an alternative proof uses the bottleneck property introduced in
[DY20]. Indeed, with r, F be given in [DY20, Lemma 5.4] replacing Lemma 2.4, any two elements g, h can be
concatenated via some f P F such that any path from e to gfh intersects Bpg, rq. Such points are referred
to as bottleneck points on re, gfhs. If a path contains a sequence of bottleneck points with consecutive
distance at most L, then it is said to have the L-bottleneck property. A triangle with sides having the
L-bottleneck property satisfies the conclusion of Lemma 4.4 and Lemma 4.5. We define similarly Sn,L to be
the set of points x P Sn so that re, xs has the L-bottleneck property. Then Proposition 4.1 follows verbatim
the same argument with transition point replaced with bottleneck points. The remaining modification goes
as explained above.

A particular class of groups with infinitely many ends are free products of the form Γ “ Γ0 ˚ Γ1 where at
least one the free factors Γi is not Z{2Z. For such groups, the authors of [CGM12] prove that the Hausdorff
dimension of the limit set in the end boundary endowed with a visual distance is exactly ´1

log λωΓprq. Their

proof for the upper bound applies to any group with infinitely many ends. Indeed, it consists in saying that
for any end ξ P ΛEprq, for every n, the branching random walk has to visit some point x P

Ť

0ďlďl0
Sn`l

such that ξ and x are in the same infinite connected component of the complement of Bpe, nq. The constant
l0 only depends on the support of the measure µ. Thus, ΛEprq can be covered with Pn sets of diameter
bounded by Cλn.

For the lower bound, they first show that HdimpΛEprq, δ̃eq is bounded from below by some number z˚

and then prove that z˚ “ ωΓprq, see [CGM12, Lemma 4.7]. However, in order to prove that z˚ “ ωΓprq,
they use the same invalid argument as the one described in Section 3.5, namely that the quantity Hrpnq
is sub-multiplicative. Proposition 5.2 fills their gap and combining it with the proof for the upper bound
described above, we get Theorem 1.4.

Remark 5.4. The proof of the upper bound described above also works for the parabolic cosets. Namely,
for every P P P, the Hausdorff dimension of ΛEprq X BEP is bounded from above by ωP prq. Thus, assuming
further that the Green function has a parabolic gap, we recover [CGM12, Corollary 3.7], i.e.

HdimpΛEprq X BEP q ă HdimpΛEprqq.
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6. An upper bound for the Hausdorff dimension of the limit set

Let Γ be a relatively hyperbolic group and let ΛF prq be the limit set of the branching random walk in
the Floyd boundary of Γ, endowed with the Floyd distance δe. Recall that by Theorem 2.3, there exists a
map φ from the Floyd boundary to the Bowditch boundary such that the preimage of a conical limit point
is reduced to a single point. We can thus see the set of conical limit points BconB Γ in the Bowditch boundary
as a subset of the Floyd boundary. We set

ΛconF prq “ ΛF prq X φ
´1pBconB Γq.

We prove here the following proposition.

Proposition 6.1. Let r ď ρ´1. Almost surely,

HdimpΛconF prq, δeq ď
´1

log λ
ωΓprq.

Under additional assumption on the volume growth of parabolic subgroup, we have the upper bound on
the full limit set in Floyd boundary.

Corollary 6.2. Let r ď ρ´1. Assume that vSpP q ď ωΓprq for every parabolic subgroup P . Then almost
surely,

HdimpΛF prq, δeq ď
´1

log λ
ωΓprq.

Proof. The Bowditch boundary consists of conical points and countably many parabolic points and the
preimage of each parabolic point is exactly the limit set of a parabolic subgroup (see [GP13, Theorem A]).
So the limit set ΛF prq is contained in the union of ΛconF prq with countably many limit sets of parabolic
cosets P P P. As P is quasi-convex in the Cayley graph of Γ, any geodesic from e to the limit points of
P is contained in a fixed neighborhood of P , see for instance [DS05, Lemma 4.3]. Using a suited covering
by shadows based at Sn X P , we can see that HdimpΛFP q ď

´1
log λvSpP q (e.g. [PY19, Lemma 4.1]). The

conclusion now follows from Proposition 6.1. �

To prepare the proof for Proposition 6.1, we first need a few geometric lemmas. Denote as usual by
P “ tgP : g P Γ, P P P0u the collection of all parabolic cosets, and by `pγq the length of a path γ. Fix
a geodesic rx, zs and ε1, ε2 P r0, 1s. An rε1, ε2s-percentage of rx, zs consists of points w P rx, zs such that
ε1 ď dpx,wq{dpx, zq ď ε2.

Lemma 6.3. Let γ be a geodesic segment such that rε, 1 ´ εs-percentage of γ contains no pη, Lq-transition
point. Then there exists a unique P P P such that the entry and exit points of γ in NηpP q have distance at
most ε`pγq to the corresponding endpoints of γ.

Proof. By assumption, the middle point m P γ is pη, Lq-deep in a unique P P P. Let u, v be the corresponding
entry and exit point of γ in NηpP q. By Lemma 2.7, u, v are pη, Lq-transition points, so dpx, uq ď εdpx, yq
and dpv, yq ď εdpx, yq, which concludes the proof. �

Fix C ą 0 and x P Sn. The C-partial cone Ωpx,Cq consists of points z P G such that re, zs contains an
pη, Lq-transition point C-close to x.

Let Bprx, zsq be the ball centered at the middle point of rx, zs of radius dpx, zq{2. Define Upxq to be the
union of the partial cone Ωpx,Cq and the balls Bprx, zsq for all geodesics rx, zs between x and z P Ωpx,Cq.
That is,

Upxq :“ Ωpx,Cq Y
´

ď

tBprx, zsq : @rx, zs,@z P Ωpx,Cqu
¯

.

Note that any ball of centered at w P rx, zs of radius mintdpw, xq, dpw, zqu is contained in Bprx, zsq.
In what follows, let C ą 0 be given by Lemma 2.9.

Lemma 6.4. Let α be a path starting from e and first entering at a point z P Upxq. Let w P rx, zs be a
transition point. Set S :“ mintdpw, xq, dpw, zqu. Then Bpw, S ´ 2Cq is contained in Upxq so α has distance
at least S ´ 2C to the point w.
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Proof. We first consider the case z P Ωpx,Cq. By definition of Upxq, any ball centered at w P rx, zs of radius
S “ mintdpx,wq, dpz, wqu is contained in Upxq. The statement follows immediately.

Assume now that z lies in a ball Bprx, ẑsq where rx, ẑs is a geodesic between x and some ẑ in Ωpx,Cq. Let
ŵ P rx, ẑs be the middle point.

Consider the triangle with vertices x, ŵ, z. As w is a transition point on rx, zs, Lemma 2.9 shows that
dpw,w1q ď C for some w1 P rŵ, xsY rŵ, zs. Thus, Bpw, κ´ 2Cq Ă Bpw1, κ´Cq. As w1 is on the radius rŵ, xs
or rŵ, zs of the ball Bprx, ẑsq, we have the ball Bpw1, S ´ Cq is contained in Bpŵ, ηq Ď Upxq. �

Lemma 6.5. Let ξ P BBΓ be a conical point and consider a sequence of points zn Ñ ξ. Let x P re, ξs be an
pη, Lq-transition point. Then for for all but finitely many zn, there exists an pη, Lq-transition point xn on
re, zns such that dpxn, xq ď C. In particular, zn P Ωpx,Cq for large enough n.

Proof. If zn Ñ ξ then δxpzn, ξq ă λCδ for all large enough n, where δ “ δpη, Lq is given by Lemma 2.8.
Applying Lemma 2.9 to the triangle with vertices e, ξ, zn, there is an pη, Lq-transition point xn on rzn, ξs or
re, zns such that dpx, xnq ď C. It suffices to prove that xn P re, zns. Let y be any transition point on rzn, ξs.
Then by Lemma 2.8, δypzn, ξq ą δ. It follows from (1) that λCδ ą δxpzn, ξq ě λdpx,yqδypzn, ξq ą λdpx,yqδ and
hence dpx, yq ą C. The conclusion follows. �

Fix ε P p0, 1{2q. Let Uεpxq be the set of points z P Upxq such that rx, zs contains a transition point w
being at distance at least εdpx, zq to one of the endpoints:

maxtdpw, xq, dpw, zqu ě εdpx, zq.

By Lemma 2.7, the set UpxqzUεpxq consists of points z P Upxq such that the rε, 1´ εs-percentage of rx, zs
is contained in the η-neighborhood of a unique peripheral coset P P P. Explicitly, there exists a subsegment
of rx, zs with length at least p1´ 2εqdpx, zq contained in NηpP q.

Lemma 6.6. Let α be a path starting from e and first entering Upxq at a point z P Uεpxq. Assume that
εdpx, zq ą 10C. Then there exists a transition point y on re, zs such that α lies outside the ball around y
with radius εdpx, zq ´ 3C.

Proof. By definition of z P Uεpxq, rx, zs contains a transition point w such that

εdpx, zq ď maxtdpw, xq, dpw, zqu.

Setting S “ εdpx, zq, Lemma 6.4 implies that Bpw, κ´2Cq Ă Upxq, so α does not intersect Bpw, S´2Cq. To
conclude the proof, it remains to find a pη, Lq-transition point y P re, zs such that dpw, yq ď C. In particular,
α does not intersect Bpy, S ´ 3Cq, completing the proof.

Indeed, as in the proof of Lemma 6.4, z lies on the ball Bprx, ẑsq centered at the middle point ŵ of rx, ẑs
for some ẑ P Ωpx,Cq. By assumption, w is an pη, Lq-transition point on rx, zs. Lemma 2.9 applied for the
triangle with vertices x, ŵ, z shows that dpw,w1q ď C for some w1 P rŵ, xs Y rŵ, zs. A schematic figure is
shown below.

Similarly for the triangle with vertices e, x, z, Lemma 2.9 implies that either re, zs or re, xs contains an
pη, Lq-transition point y such that dpw, yq ď C and then dpy, w1q ď 2C. As ẑ P Ωpx,Cq, dpx, re, ẑsq ď C
holds, so the triangle inequality shows

dpe, xq ` dpx, ẑq ´ 2C ď dpe, ẑq.

In a different term, this implies that the path p :“ re, xsrx, ẑs is p2Cq-taut : `ppq ď dpp´, p`q` 2C. It follows
from triangle inequality that any subpath of a p2Cq-taut path p is p2Cq-taut.

We first claim that either w1 R rx, ŵs or y R re, xs. Otherwise, we have w1 P rx, ŵs and y P re, xs.
Since ry, xsrx,w1s is a p2Cq-taut subpath of p, we obtain that dpy, xq ` dpx,w1q ď dpy, w1q ` 2C ď 4C, so
dpx,wq ď dpx,w1q ` dpw1, wq ď 5C. This is a contradiction because dpx,wq ě εdpx, zq ą 5C.

Let us assume now y P re, xs to derive a contradiction. The above claim shows w1 R rx, ŵs and then
w1 P rŵ, zs. Using the p2Cq-taut path ry, xsrx, ŵs, we have

dpy, ŵq ` 2C ě dpy, xq ` dpx, ŵq.

which combined with dpx, ŵq “ dpz, ŵq ě dpw1, ŵq gives

dpy, ŵq ` 2C ě dpy, xq ` dpw1, ŵq.
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B([x, ẑ]) = B(ŵ, d(ŵ, x))

y ∈ [e, z]

P

On the other hand, |dpy, ŵq ´ dpw1, ŵq| ď dpy, w1q ď 2C. These together show that dpy, xq ď 4C and then
dpw1, xq ď dpw1, yq ` dpy, xq ď 6C. Thus, |dpx, ŵq ´ dpw1, ŵq| ď 6C. Since dpx, ŵq “ dpz, ŵq and w1 is on
rŵ, zs, we have dpw1, zq ď 6C, so dpx, zq ď 12C. This contradicts the assumption εdpx, zq ą 10C, hence we
proved that y P re, zs is impossible, so y is the desired transition point on re, zs. �

For any m ě 1, let Uεpx,mq be the set of elements z P Uεpxq such that dpx, zq ě m.

Lemma 6.7. For any ε P p0, 1{2q, there exists κ ą 0 with the following property. Almost surely, there
exists n0 ą 0 such that for all n ą n0 and all x P Sn: if BRWpΓ, ν, µq first enters Upxq at a point z, then
z P UpxqzUεpx, κ log |x|q.

Proof. Let us freeze all particles of the branching random walk when they enter Upxq at the first time.
Denote by Zpx,mq the collection of frozen particles z P Uεpx,mq. Then for z P Zpx,mq we have

(1) dpx, zq ě m,
(2) maxtdpy, xq, dpy, zqu ą εdpx, zq where y is an pη, Lq-transition point on re, zs given by Lemma 6.6.

Note that the genealogy path from e to z does not intersect Bpy, εdpx, zqq.
Let δ “ δpη, Lq be given by Lemma 2.11. Then the expected number of particles frozenat z P Uεpxq is

upper bounded by

Grpe, z; rUεpxqs
cq ď Grpe, z; rBpy, εdpx, zqqs

cq ď e´e
δεdpx,zq

.

By Lemma 2.1 there exists c ą 0 such that 7Sn ď cevn for any n ě 1. Thus, there exist ε1 “ ε1pε, δ, vq
and m0 ą 0 such that for any m ą m0, we have

Er7Zpx,mqs ď
ÿ

zPUεpx,mq

Gr
`

e, z; rBpy, εdpx, zqscq
˘

ď

8
ÿ

k“m

cekve´e
δεk

ď e´e
ε1m

.

Choose κ so that κε1 ą 1 and let m “ κ log n. Consider the event

An “ tZpx,mq ě 1 for some x P Snu ,

i.e. An is the event such that if the branching random walk visits Ux for some x P Sn, then the first frozen
particle is in Uεpx,mq. Then

PpAnq ď
ÿ

xPSn

Pp7Zpx,mq ě 1q ď
ÿ

xPSn

Er7Zpx,mqs ď cevn´e
ε1κ logn

ď cevn´n
ε1κ

.

Therefore,
ř8

n“1 PpAnq ă 8 and so the conclusion follows from the Borel-Cantelli Lemma. �

Similarly, we prove the following.

Lemma 6.8. For every K ě 0 and C ě 0, there exists κ ą 0 such that the following holds. Almost surely,
for all but finitely many x, if the branching random walk ever visits a point y with dpe, yq ď Kdpe, xq and
such that x is within C of a transition point on re, ys, then it first enters Bpx, κ log |x|q.
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Proof. Given x P Sn, we consider the set Upxq of y P Γ so that |y| ď K|x| and x is within C of a transition
point on re, ys. We freeze particles when they first reach a point y P Upxq, without entering Bpx, κ log |x|q.
We denote by Zn the set of frozen particles for all x P Sn. By Lemma 2.11, for n large enough, the expected
number of particles frozen at y P Upxq is upper bounded by

Grpe, y; rUpxqscq ď Grpe, y; rBpx, κ log |x|qscq ď e´n
δκ

.

By Lemma 2.1, there exist c ą 0 such that 7Sn ď cevn and 7Upxq ď cevKn for any n ě 1 and x P Γ. Thus,
we have

Er7Zns ď
ÿ

xPSn

ÿ

yPUpxq

Grpe, y; rUpxqscq ď cevpK`1qne´n
δκ

.

If κ is chosen large enough, then
ř8

n“1 Er7Zns ă 8, so the proof follows from the Borel-Cantelli Lemma. �

Recall that if P P P is a parabolic coset, η ě 0 and x P Γ, we denote by

πNηpP qpxq :“ ty P NηpP q : dpx, yq “ dpx,NηpP qqu

the set of its shortest projections on the η-neighborhood NηpP q of P . Also, for x, y P Γ, we denote by

dNηpP qpx, yq :“ diam
`

πNηpP qpxq Y πNηpP qpyq
˘

and [Hru10, Corollary 8.2] the shortest projection is coarsely Lipschitz,

dNηpP qpx, yq ď kdpx, yq ` k

for a fixed k ě 1 depending only on η. Thus, πNηpP qpxq has bounded diameter.

Lemma 6.9. [Sis13, Lemma 1.15] For every large enough η, there exists C “ Cpηq ą 0 such that for every
x P Γ, P P P and for every geodesic γ starting at x and entering NηpP q, we have

πNηpP qpxq Ă Bpy, Cq

where y is the entrance point of γ in NηpP q.

Lemma 6.10. There exists η0 ě 0 such that for η ě η0, the following holds. Almost surely, for all but
finitely many parabolic cosets P P P, if the branching random walk ever visits a point z satisfying both that
dNηpP qpe, zq ě dpe,NηpP qq and dpz,NηpP qq ď dNηpP qpe, zq, then it first needs to enter NηpP q at a point w
such that dNηpP qpe, wq ď dpe,NηpP qq.

In particular, if the branching random walk ever enters NηpP q, then the first entrance point must be within
dpe,NηpP qq of the projection of e on NηpP q.

Proof. Given P P P, we freeze particles when they first visit some point z P Γ with

dNηpP qpe, zq ě dpe,NηpP qq

and

dpz,NηpP qq ď dNηpP qpe, zq,

without having entered tw P NηpP q : dNηpP qpe, wq ď dpe,NηpP qqu. Denote by Pk the collection of parabolic
cosets P with dpe,NηpP qq “ k. We denote by Zk the set of such frozen particles for those P P Pk. Then,

Er7Zks ď
ÿ

PPPk

ÿ

xPNηpP q
dNηpP q

px,eqěk

ÿ

y : πNηpP qpyq“x
dpx,yqďk

GRpe, y;NηpP q
cq.

As x P πNηpP qpzq, there exists a trajectory for the µ-random walk from z to x that stays outside NηpP q of
linear length in dpx, zq, since the support of µ is finite. In particular,

GRpz, x;NηpP q
cq ě e´αdpx,zq ě e´αk

for some positive α. Note that by Lemma 2.1, for a fixed x, the set of such elements z being contained in a
ball of radius k grows as an exponential function in k. Thus,

(24) Er7Zks ď
ÿ

PPPk

ÿ

xPNηpP q
dpx,πNηpP q

peqqěk

GRpe, x;NηpP q
cqeβk,
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where β depends both on α and on the growth rate v of the word distance. By Lemma 2.12, for every M ě 0,
there exists η0 such that for all η ě η0,

GRpe, x;NηpP q
cq ď Ce´Mdpx,πη,P peqq.

Choosing M ą v ` β, where v is the growth rate of the word distance, we have by Lemma 2.1 and by (24)
that for η ě η0,

Er7Zks ď Ce´kpM´v´βq.

By the choice of M , the sum
ř

kě0 Er7Zksis finite. The result again follows from the Borel-Cantelli lemma.
�

Lemma 6.11. There exists κ such that almost surely, for any conical limit point ξ in Λ and for all but
finitely many transition point x on re, ξs, P intersects Bpx, κ log |x|q.

Proof. Let ξ P Λ be a conical point. Then re, ξs contains infinitely many pη, Lq-transition points (see [Yan22,
Lemma 2.20]). Consider any pη, Lq-transition point x P re, ξs so that |x| ą n0. According to Lemma 6.5, for
Ωpx,Cq Ă Upxq, the branching random walk must enter Upxq.

Set ε P p0, 1{2q so that K “ ε´1 ě 4. Let κ be given by Lemmas 6.7 and 6.8. Up to enlarging η, we may
assume that it is big enough to apply Lemma 6.10.

Let z P UεpxqzUεpx, κ log |x|q be the first entrance point by Lemma 6.7, so one of the following statements
is true:

(1) dpz, xq ď κ log |x|,
(2) the rε, 1´ εs-percentage of rx, zs does not contain any pη, Lq-transition point.

If the case (1) happens, then we are done. We now assume dpx, zq ą κ log |x|.
By Lemma 6.3, there exist a unique coset P P P such that if y1, y2 are the entrance and exit points of

rx, zs in NηpP q, then

maxtdpx, y1q, dpy2, zqu ď εdpx, zq,

so

dpy1, y2q ě p1´ 2εqdpx, zq ě p1´ 2εqκ log n0.

By definition, z is contained in a ball Bprx, ẑsq centered at ŵ for some ẑ P Ωpx,Cq.
By definition of Ωpx,Cq, there exists a transition point x̂ on re, ẑs such that dpx, x̂q ď C. By Lemma 2.9

for the triangle with vertices e, z, ẑ, we see that x̂ is within C and so x is within 2C of a transition point on
re, zs. According to Lemma 6.8, if the branching random walk does not enter Bpx, κ log |x|q, then we have
|z| ą K|x| “ ε´1|x|. Noting as above that x is within 2C of a transition point on re, zs, Lemma 6.9 implies
that πNηpP qpeq is within a bounded distance of the entry point y1 of rx, zs into NηpP q, which implies that
dpy1, y2q ď dNηpP qpe, zq ` C 1 for some constant C 1 depending on C. Moreover, if n0 is large enough, then
dpy1, y2q ě C 1{2, so we get dpy1, y2q ď 2dNηpP qpe, zq, hence

dpz,NηpP qq ď
2ε

1´ 2ε
dNηpP qpe, zq.

Furthermore, dpe,NηpP qq ď |x| ` dpx, y1q. Since |x| ď ε|z| and dpx, y1q ď εdpx, zq, we get

dpe,NηpP qq ď

ˆ

ε

1´ ε
` ε

˙

dpx, zq ď

ˆ

ε

1´ ε
` ε

˙

p1´ 2εq2dNηpP qpe, zq.

Thus, if ε is small enough, the conditions of Lemma 6.10 holds, hence the branching random walk first
enters NηpP q at a point w such that dpπNηpP qpeq, wq ď dpe,NηpP qq. Since x is within 2C of a transition
point on re, ws, dpe,NηpP qq ě |x| ` dpx,NηpP qq ´ 2C and so

dpx,wq ď dpx,NηpP qq ` dNηpP qpe, wq ď 2dpe,NηpP qq ` 2C ď 2dpe, wq ` 2C.

Thus, for n0 large enough, we have dpe, wq ě dpe, xq ´ 2C ě C so dpx,wq ď 4dpe, wq. Applying Lemma 6.8
with K ě 4 again, we see that the branching random walk necessarily enters Bpx, κ log |x|q. This concludes
the proof. �

We can now end the proof of the upper-bound.
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Proof of Proposition 6.1. Let r ď ρ´1 and fix h such that

h ą
ωΓprq

´ log λ
.

Let 0 ă ε ă 1{2. Let ξ P ΛconF prq and let x be a transition point on re, ξs. By Lemma 6.11, almost
surely, there exists n0 such that if |x| ě n0, we can find z P P such that z P Bpx, κ log |x|q. In particular,
|x| ď |z| ` κ log |x| and if |x| is large enough, then |z| ě p1´ εq|x|, hence

x P B

ˆ

z, κ log
|z|

1´ ε

˙

.

Consequently, for every m,

ΛconF prq Ă
ď

něm

ď

zPPn

Π

ˆ

z, κ log
|z|

1´ ε

˙

.

By Lemma 2.5, the diameter of Π
´

z, κ log |z|
1´ε

¯

is bounded by Cλ|z||z|α log |z|. Thus,

ÿ

něm

ÿ

zPPn

diam

ˆ

Π

ˆ

z, κ log
|z|

1´ ε

˙˙h

ď C
ÿ

něm

Mnλ
hnnhαplog nqh.

Since lim sup 1
n logMn ď ωΓprq, by the choice of h, this last quantity converges to 0 as m tends to infinity.

This concludes the proof. �

We deduce the following result. We denote by ΛBprq the limit set of the branching random walk inside
the Bowditch boundary, endowed with the shortcut distance δe.

Corollary 6.12. Let r ď ρ´1. Almost surely,

HdimpΛBprq, δeq ď
´1

log λ
ωΓprq.

Proof. Combining Proposition 6.1 and (2), we get that

HdimpΛBprq X B
con
B Γ, δeq ď

´1

log λ
ωΓprq.

The complement of the set of conical limit points in the Bowditch boundary is the set of parabolic limit
points, which is countable. This yields the desired upper-bound. �

Theorem 1.2 is a consequence of Proposition 5.1 and Corollary 6.12. Recall that if Γ is hyperbolic, then
it is also relatively hyperbolic and its Bowditch, Floyd and Gromov boundaries coincide. Moreover, the
shortcut distance and the visual distance are bi-Lipschitz by [PY19, Proposition 6.1]. Thus, Corollary 1.5
follows from Theorem 1.2.

Appendix A. Convergence of random finite measures

A.1. Random finite measures. Let pX,Bq be a Polish space endowed with its Borelian σ-algebra. Let
pΩ,F ,Pq be a probability space.

Definition A.1. A random finite measure on X is a map

µ : pω,Bq P Ωˆ B ÞÑ µωpBq P R

such that

(a) for every B P B, the map ω ÞÑ µωpBq is measurable,
(b) for P-almost every ω, ω ÞÑ µω is a finite Borelian measure on X,
(c) the expectation ErµωpXqs is finite,

We identify µ with the family of maps µω : B Ñ R and we write µ “ pµωqω.
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We denote by MΩpXq the set of random finite measure on X and by MpXq the set of finite measures on
X. Given a random finite measure µ “ pµωqω, we define the measure πXpµq on X by

πXpµqpBq “ E rµωpBqs

for every Borelian set B P B. We also define the measure πΩpµq on Ω by

πΩpµqpAq “ Er1AµωpXqs.

We call πXpµq, respectively πΩpµq, the X-marginal, respectively the Ω-marginal of µ.
If µ “ pµωqω is a random finite measure, then one can define a finite measure µ̃ on X ˆ Ω by setting for

every measurable set A of X ˆ Ω

µpAq “ E

„
ż

1Apx, ωqdµωpxq



.

Then, πXpµq and πΩpµq are the push-forward measures of µ by the canonical projections πX : X ˆ Ω Ñ X
and πΩ : X ˆ Ω Ñ Ω.

Definition A.2. A random finite measure µ is called P-regular if P and πΩpµq are absolutely continuous
with respect to each other.

Lemma A.3. Let µ “ pµωqω be a random finite measure. Then πΩpµq is absolutely continuous with respect
to P. Moreover, µ is P-regular if and only if for P-almost every ω, µω is not the null measure.

Proof. If A is such that PpAq “ 0, then P-almost surely, 1AµωpXq “ 0, so πΩpµqpAq “ Er1AµωpXqs “ 0.
This concludes the first part of the lemma.

For the second part, assume that the event A “ tω, µωpXq “ 0u has positive probability. Then,
Er1AµωpXqs “ 0. So πΩpµqpAq “ 0, but PpAq ą 0. Conversely, assume that P-almost surely, µωpXq ą 0
and let A be such that πΩpµqpAq “ 0, hence P-almost surely, 1AµωpXq “ 0. Then, we necessarily have
1A “ 0 P-almost surely, i.e. PpAq “ 0. �

Remark A.4. In fact, by definition of πΩpµq, we have that the Radon-Nikodym derivative of πΩpµq with
respect to P is given by

dπΩpµq

dP
pωq “ µωpXq.

Thus, P is absolutely continuous with respect to πΩpµq if and only if this Radon-Nikodym derivative is
almost surely positive and then,

dP

dπΩpµq
pωq “

1

µωpXq

P-almost surely.

If µ “ pµωqω is a random probability measure, i.e. P-almost surely, µω is a probability measure on X,
then the Ω-marginal of µ is P. Thus, P-regularity is automatic in this context. However, it is easy to
construct an example where P-regularity fails, since one only needs that PpµωpXq “ 0q ą 0. Indeed, let µ
be any random finite measure and let A be an event such that PpAq ď 1{2, then 1Aµ is also a random finite
measure and Pp1AµpXq “ 0q ě 1{2. Restricting our attention to P-regular measures will be important in
the following, mainly because of the following result.

Proposition A.5. Every finite measure µ on X ˆΩ such that πΩpµq and P are absolutely continuous with
respect to each other is defined by a random finite measure.

Proof. Let µ be a finite measure on X ˆ Ω and denote by }µ} “ µpX ˆ Ωq its mass. Then, ν “ µ{}µ}
is a probability measure on X ˆ Ω with marginal Q “ πΩpµq{}µ}. By the disintegration theorem [Cra02,
Proposition 3.6], there exists a map

pB,ωq P B ˆ Ω ÞÑ νωpBq

such that ω ÞÑ νω is Q-almost surely a probability measure on X and for every Borelian B P B, ω ÞÑ νωpBq
is measurable.

By assumption, the probability measure Q is absolutely continuous with respect to P. Let f “ dQ{dP be
the corresponding Radon-Nikodym derivative. Define then µω “ }µ}fpωqνω. Then, µω is Q-almost surely,
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hence P-almost surely, a finite measure on X, for every Borelian set B, the map ω ÞÑ µωpBq is measurable
and for every non-negative measurable function φ on X ˆ Ω, we have

µpφq “ }µ}νpφq

“ }µ}

ż ż

φpx, ωqdνωpxqdQpωq

“

ż ż

φpx, ωq}µ}dνωpxqfpωqdPpωq

“ E

„
ż

φpx, ωqdµωpxq



.

Thus, µ is defined by the random finite measure pµωqω. �

In general, the disintegration theorem allows one to decompose a finite measure on X ˆ Ω along its Ω-
marginal, so without assuming P-regularity, it cannot be seen as a random finite measure in the sense of
Definition A.1.

We now introduce some definitions based on [Cra02].

Definition A.6. A random closed set is a map ω P Ω ÞÑ Cpωq P 2X taking values in closed subsets of X and
such that the map ω ÞÑ dpx,Cpωqq is measurable for every x P X. A random open set is a map ω ÞÑ Upωq
such that the complement map ω ÞÑ U cpωq is a random closed set.

Let C “ ω ÞÑ Cpωq be a random closed set, U “ ω ÞÑ Upωq a random open set and µ “ pµωqω a random
finite measure. We set

µpCq “ E rµωpCpωqqs

and
µpUq “ E rµωpUpωqqs .

Definition A.7. A random bounded continuous function is a map f : X ˆ Ω Ñ R such that

(a) for every x P X, ω ÞÑ fpx, ωq is measurable,
(b) for every ω P Ω, x ÞÑ fpx, ωq is continuous and bounded,
(c) There exists C ě 0 such that for P-almost every ω, }fp¨, ωq}8 ď C.

Remark A.8. The third condition can be reformulated as }fp¨, ωq}8 is in L8pΩ,Pq. In [Cra02], the author
introduces several spaces of random functions, replacing the third condition by }fp¨, ωq}8 P LppΩ,Pq. For
p “ 1 the corresponding space of function is called the space of random continuous functions there.

We denote by CΩ,bpXq the space of random bounded continuous functions and endow CΩ,bpXq with the
L8 ˆ L8-norm } ¨ }8, defined by

}f}8 “ inf
 

C ě 0,P
`

ω, }fp¨, ωq}8 ą C
˘

“ 0
(

,

for every f P CΩ,bpXq. If f is a random bounded continuous function and µ is a random finite measure, then
the integral

µpfq “ E

„
ż

fpx, ωqdµωpxq



is well defined.
Recall that a Lipschitz function on X is a function f : X Ñ R such that

}f}L “ sup
x,yPX

|fpxq ´ fpyq|

dpx, yq

is finite. We then set
}f}BL “ supt}f}8, }f}Lu

and say that f is bounded Lipschitz if }f}BL is finite. We denote by BLpXq the set of bounded Lipschitz
functions on X.

Definition A.9. A random bounded Lipschitz function is a random bounded continuous function f such
that there exists C ě 0 such that for P-almost every ω, the map x ÞÑ fpx, ωq is bounded Lipschitz and
}fp¨, ωq}BL ď C.
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Remark A.10. In [Cra02], random bounded Lipschitz functions are called random Lipschitz functions. We
changed the terminology to insist on the fact that random functions we are considering here are P-essentially
bounded.

We denote by BLΩpXq the set of random bounded Lipschitz functions on X.

Lemma A.11. If two random finite measures pµωqω and pνωqω coincide on random bounded Lipschitz
functions, i.e. for every f P BLΩpXq, µpfq “ νpfq, then for P-almost every ω, µω “ νω.

Proof. For every closed set C P X, the sequence of functions

fn : x ÞÑ 1´ p1^ ndpx,Cqq

is non-increasing and converges to 1C . Moreover, for every n, fn is bounded Lipschitz. Therefore, for
every event A, the maps px, ωq ÞÑ 1Apωqfnpxq are random bounded Lipschitz functions. Thus by monotone
convergence, it suffices to prove that if for all closed set C, for all event A, µpCˆAq “ νpCˆAq, then pµωqω
and pνωqω coincide P-almost surely. Since closed sets are closed under finite intersection and the measures
we are considering are finite, this follows from the monotone class theorem [Bil86, Theorem 3.4]. �

A.2. The weak topology on random finite measures. Recall that the weak topology on MpXq is the
smallest topology such that for all bounded continuous function f : X Ñ R, the map µ ÞÑ µpfq is continuous.

Definition A.12. The weak topology on MΩpXq is the topology generated by the maps µ ÞÑ µpfq, for
every f P CΩ,bpXq, i.e. it is the smallest topology on MΩpXq such that for every f P CΩ,bpXq, the map
µ PMΩpXq ÞÑ µpfq P R is continuous.

Remark A.13. In [Cra02], the author defines the narrow topology on the space of random probability mea-
sures as the topology generated by the maps µ ÞÑ µpfq for every random continuous function f . Recall
that a random continuous function as defined there is a function f such that for all ω, fp¨, ωq is bounded
continuous and }fp¨, ωq}8 is in L1pΩ,Pq.

‚ First, we preferred to use the terminology weak topology which is more common, although both
exist in literature.

‚ Second, by [Cra02, Lemma 3.16], for random probability measures, the induced weak topology on the
set of measures is the same when choosing either random bounded continuous functions or random
continuous functions. However, in our context, the proof of this lemma does not apply and it seems
that choosing different spaces of functions can yield different notions of weak topologies.

Lemma A.14. The weak topology is generated by the maps µ ÞÑ µpfq for every f P BLΩpXq, i.e. it is
the smallest topology on MΩpXq such that for every random bounded Lipschitz function f , µ ÞÑ µpfq is
continuous.

Proof. This follows from the fact that bounded continuous functions can be approximated by bounded
Lipschitz functions, see [Cra02, Proposition 4.9] for more details. �

We now prove the following generalization of the classical Portmanteau theorem in terms of convergent
nets. We refer to [AB06, Definition 2.11, Definition 2.15] for more details on nets.

Proposition A.15. Let µα “ ppµαqωqω be a net of random finite measures and let µ “ pµωqω be a random
finite measure. Then, the following assertions are equivalent.

(1) The net µα converges to µ for the weak topology.
(2) For all random closed set C “ ω ÞÑ Cpωq, lim supα µαpCq ď µpCq and µαpX ˆ Ωq converges to

µpX ˆ Ωq.
(3) For all random open set U “ ω ÞÑ Upωq, lim infα µnpUq ě µpUq and µαpX ˆ Ωq converges to

µpX ˆ Ωq.

Proof. Taking complements, the second and third assertions are equivalent. Also, if µα converges to µ,
applying the definition of the weak topology to the constant function 1, we see that µαpX ˆ Ωq converges
to µpX ˆ Ωq.

Let us assume that µα converges to µ and let C be a closed random set. For every k P N, set

fkpx, ωq “ 1´ p1^ kdpx,Cpωqqq.
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Then, for every k, fk is a random bounded Lipschitz function and the sequence fk is non-increasing and
converges to 1Cpωqpxq. Thus, for every k,

lim sup
α

µαpCq ď lim
α
µαpfkq “ µpfkq,

so
lim sup

α
µαpCq ď inf

k
pµpfqq “ µpCq.

Consequently, the first assertion implies the second one.
Assume now that for all closed random set C, lim supµαpCq ď µpCq and that µαpX ˆ Ωq converges to

µpX ˆ Ωq. We show that for every non-negative random bounded continuous function f ,

(25) lim supµαpfq ď µpfq.

Fix m P N and set for every 0 ď k ď m

Ckpωq “

"

x P X, fpx, ωq ě
k

m
}fp¨, ωq}8

*

.

Then, Ck “ ω ÞÑ Ckpωq is a random closed set. By [Cra02, Lemma 1.4], for every random finite measure
pνωqω,

1

m

m
ÿ

k“1

νpCkq ď νpfq ď
1

m

m
ÿ

k“0

νpCkq.

Applying this both to µα and µ, we get

µpfq ě
1

m

m
ÿ

k“1

µpCkq ě lim sup
α

1

m

m
ÿ

k“1

µαpCkq

“ lim sup
α

˜

1

m

m
ÿ

k“0

µαpCkq ´
µαpX ˆ Ωq

m

¸

ě lim sup
α

µαpfq ´
µpX ˆ Ωq

m
.

Since m is arbitrary, this proves (25). Using that µαp1q “ µαpX ˆ Ωq converges to µp1q “ µpX ˆ Ωq and
applying (25) to the function }f}8´f , we get that µαpfq converges to µpfq. This is true for all non-negative
random bounded continuous function, so µα converges to µ for the weak topology. �

Remark A.16. By Lemma A.11, the weak topology is Hausdorff. We do not attempt to study metrizability of
the weak topology in here to avoid lengthily arguments, but in [Cra02, Theorem 4.16], the author proves that
the weak topology on the space of random probability measures is metrizable, provided that the probability
space pΩ,F ,Pq is countably generated (mod. P). This might also holds in our situation.

A.3. A compactness criterion for random finite measures. In all this section, MpXq and MΩpXq
are endowed with the weak topology. Let us recall the following definition.

Definition A.17. A subset M of MpXq is tight if for every ε ą 0, there exists a compact subset of X such
that for every µ PM , we have

µpKcq ď ε.

Following [Cra02], we define tightness for random finite measures as tightness under the projection map
πX .

Definition A.18. A subset MΩ of MΩpXq is tight if πXpMΩq is tight, i.e. for every ε ą 0, there exists a
compact subset of X such that for all pµωqω PMΩ, we have

ErµωpK
cqs ď ε.

The classical Prokhorov theorem states that a set M of probability measures on X is relatively compact
if and only if it is tight. The following generalizes this result to finite measures.

Theorem A.19. Prokhorov Theorem for finite measures [Kal17, Lemma 4.4]. A subset M of MpXq
is relatively compact if and only if M is tight and uniformly bounded, in the sense that supµPM µpXq is finite.
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Our goal is to generalize this to random finite measures. Unfortunately, we will not get a necessary and
sufficient condition for compactness as in the Prokhorov Theorem but only a sufficient condition.

We follow the strategy of [Cra02, Theorem 4.4] and first prove the following representation result. Recall
that BLΩpXq denotes the set of random bounded Lipschitz functions and BLpXq denotes the set of bounded
Lipschitz functions on X. Then, if f P BLpXq, f can be viewed as an element of BLΩpXq by setting
fpx, ωq “ fpxq. Similarly, if f is P -essentially bounded, i.e. f P L8pΩ,Pq, then f can be viewed as an
element of BLΩpXq by setting fpx, ωq “ fpωq. If L : BLΩpXq Ñ R is a function, we denote by πXpLq,
respectively πΩpLq its restriction to bounded Lipschitz functions, respectively to P-essentially bounded
functions.

Lemma A.20. Let L : BLΩpXq Ñ R. be a function. Assume that the following conditions hold

(a) L is linear,
(b) L is non-negative, i.e. for every non-negative function f in BLΩpXq, we have Lpfq ě 0,
(c) there exists κ PMpXq such that for every f P BLpXq, we have

πXpLqpfq “ κpfq “

ż

fdκ,

(d) there exists a constant C ą 0 such that for every f P L8pΩ,Pq, we have

1

C
πΩpLqpfq ď Erf s ď CπΩpLqpfq.

Then, there exists a random finite measure µ “ pµωqω such that Lpfq “ µpfq for every f P BLΩpXq.

Proof. The proof relies on the general Stone-Daniell representation theorem. We claim that if fn is a non-
increasing sequence of functions of BLΩpXq converging to 0, then Lpfnq is non-increasing and converges to
0. By [Cra02, Theorem 4.11], we deduce that there exists a measure µ on X ˆΩ such that Lpfq “ µpfq for
every f P BLΩpXq. Conditions (c) and (d) ensure that µ is finite. Moreover, the Ω-marginal πΩpµq of µ is
πΩpLq and so the fourth condition shows πΩpµq and P are absolutely continuous with respect to each other.
Therefore, we can apply Proposition A.5, so that µ is defined by a random finite measure.

We just need to prove the claim to conclude the proof. Let fn be a non-increasing sequence of random
bounded Lipschitz functions converging to 0. Since L is linear and non-negative, we get that Lpfnq is
non-inscreasing. We need to prove that Lpfnq converges to 0. Fix ε ą 0. Let K be a compact such that
κpKcq ď ε. For every n, there exists Cn such that }fnp¨, ωq}BL ď Cn, for P-almost every ω. Set δn “ ε{Cn
and consider the function

χn : x ÞÑ χnpxq “ 1´
`

1^ δ´1
n dpx,Kq

˘

.

Then, χn vanishes outside the δn-neighborhood of K. Moreover, the function gn : px, ωq ÞÑ fnpx, ωqχnpxq is
in BLΩpXq. Now, fn “ gn ` fnp1´ χnq and so

(26) Lpfnq “ Lpgnq ` Lpfnp1´ χnqq.

We first deal with the second term in the right-hand side of (26). Since fn is non-increasing, we have
that fnpx, ωq ď }f1p¨, ωq}8 Moreover, there exists M ě 0 such that the event A “ t}f1p¨, ωq}8 ď Mu
satisfies PpAcq “ 0. Note that we can write fnp1´ χnq ď Mp1´ χnq1A ` }f1p¨, ωq}1Ac . By Condition (d),
Lp}f1p¨, ωq}1Acq “ 0. Thus,

Lpfnp1´ χnqq ďMLp1´ χnq “M

ż

p1´ χnqdκ.

Note that 1´ χn vanishes in K, so

(27) Lpfnp1´ χnqq ďMκpKcq ďMε.

We now deal with the first term in the right-hand side of (26). For every ω such that }fnp¨, ωq}BL ď Cn
and for every x, y P X, we have

|gnpx, ωq ´ gnpy, ωq| ď Cndpx, yq ` 2fnpy, ωq.

If x is in the δn-neighborhood of K, choose y P K such that dpx, yq ď δn. Then, by what precedes,

gnpx, ωq ď 3 sup
yPK

fnpy, ωq ` Cnδn ď 3 sup
yPK

fnpy, ωq ` ε.
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Since χn vanishes outside the δn-neighborhood of K, this yields

sup
xPX

gnpx, ωq ď 3 sup
yPK

fnpy, ωq ` ε.

We write hnpωq “ supyPK fnpy, ωq. The event An “ tω, }fnp¨, ωq}BL ą Cnu satisfies PpAnq “ 0, hence the
same manipulation as above shows that

(28) Lpgnq ď 3Lphnq ` εLp1q ď 3CEphnq ` κpXqε,

using Conditions (c) and (d).
Combining (26), (27) and (28), we get

Lpfnq ď 3CEphnq ` pκpXq `Mqε.

Using that fn is non-increasing and converges to 0, that for all ω, fnp¨, ωq is continuous and that K is
compact, we get that hn is non-increasing and converges to 0. By monotone convergence, Ephnq converges
to 0, so for large enough n, Ephnq ď ε. Thus, for large enough n,

Lpfnq ď p3C ` κpXq `Mqε.

Since ε is arbitrary, this concludes the proof of the claim. �

The main ingredient in proving a compactness criterion for random finite measures is the following propo-
sition.

Proposition A.21. Let C ą 0. If K is compact in MpXq, then

π´1
X pKq X

"

µ PMΩpXq,
1

C
πΩpµq ď P ď CπΩpµq

*

is compact in MΩpXq.

Proof. Let f P BLΩpXq and set

M`
f “ sup

µPπ´1
X pKq

µpfq,

M´
f “ inf

µPπ´1
X pKq

µpfq.

Recall that if f P BLΩpXq, then in particular, f P CΩ,bpXq and so for P-almost every ω, |fp¨, ωq| is bounded
and Er}fp¨, ωq}8s is bounded. Thus, πXpµqpfq is finite. Since K is compact, this proves that M`

f and M´
f

are finite.
We set

C “
ź

fPBLΩpXq

rM´
f ,M

`
f s

and we endow C with the product topology. Then C is compact by the Tychonoff Theorem [AB06, Theo-
rem 2.61]. We can identify C with the set of all functions L : BLΩpXq Ñ R such that Lpfq P rM´

f ,M
`
f s. A

neighborhood basis of an element L0 of C is given by

Uδpf1, ...fnqpL0q “ tL P C, |Lpfkq ´ L0pfkq| ă δ, 1 ď k ď nu,

where δ ą 0 and f1, ..., fn P BLΩpXq. We define the map

I : µ P π´1
X pKq ÞÑ pµpfqqfPBLΩpXq P C.

Then, I is one-to-one and continuous. Moreover, by Lemma A.14, a neighborhood basis of an element
µ0 P π

´1
X pKq for the weak topology is given by

Vδpf1, ..., fnqpµ0q “ tµ P π
´1
X pKq, |µpfkq ´ µ0pfkq| ă δ, 1 ď k ď nu,

where δ ą 0 and f1, ..., fn P BLΩpXq. Since

I
`

Vδpf1, ..., fnqpµ0q
˘

“ Uδpf1, ..., fnqpIpµ0qq,

we see that I is an open map and thus a homeomorphism onto its image in C.
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We make a similar construction for non-random finite measures. Recall that BLpXq is the set of (non-
random) bounded Lipschitz functions on X and that BLpXq can be seen as a subset of BLΩpXq by setting
fpx, ωq “ fpxq for any f P BLpXq. We define

c “
ź

fPBLpXq

rM´
f ,M

`
f s

and
ipκq “ pκpfqqfPBLpXq.

Then, i is a homeomorphism onto its image in c. If L P C, denote by πpLq P c its restriction to non-random
bounded Lipschitz functions.

For every f P BLpXq, seen as an element of BLΩpxq and for every random finite measure µ, we have

µpfq “ E

„
ż

fpxqdµωpxq



“ πXpµqpfq.

Thus, π ˝ I “ i ˝ πX . Now, fix C ą 0. By Lemma A.20, we have

I

ˆ

π´1
X pKq X

"

µ,
1

C
ď πΩpµq ď P ď CπΩpµq

*˙

“ π´1pipKqq X tL linearu X tL non-negativeu

X

"

L,
1

C
πΩpLq ď Er¨s ď CπΩpLq

*

.

The four sets on the right-hand side are closed. Since C is compact and I is a homeomorphism onto its
image, we get that

π´1
X pKq X

"

µ,
1

C
ď πΩpµq ď P ď CπΩpµq

*

is compact. �

Corollary A.22. Consider a subset MΩ of MΩpXq. Assume that MΩ is tight. Also assume that there
exists C ě 0 such that for every µ PMΩ,

1

C
πΩpµq ď P ď CπΩpµq.

Then, MΩ is relatively compact.

Proof. If MΩ satisfies the assumptions of the corollary, then πXpMΩq ĂMpXq is tight. Also, the condition
πΩpµq ď CP can be reformulated by

dπωpµq

dP
pωq “ µωpXq ď C

P-almost surely. In particular,
πXµpXq “ ErµωpXqs ď C,

so πXpµqpXq is uniformly bounded. By Theorem A.19, πXpMΩq is relatively compact, i.e. clpπXpMΩqq is
compact. Moreover,

MΩ Ă π´1
X

`

clpπXpMΩqq
˘

X

"

µ,
1

C
πΩpµq ď P ď CπΩpµq

*

.

Thus, clpMΩq is compact. �

This corollary does not give a necessary and sufficient condition for compactness, but only a sufficient
one. On the contrary, [Cra02, Theorem 4.4] gives a necessary and sufficient condition for compactness in
the context of random probability measures : a set is relatively compact if and only if it is tight. However,
assuming that for P-almost every ω, µω is a probability measure, we get that πXpµq is a probability measures
and that the Ω-marginal of µ is exactly P. This ensures that the others conditions of Corollary A.22 are
automatically satisfied and so tightness is sufficient to get compactness.

Recall that the Radon-Nikodym derivative of πΩpµq with respect to P is given by µωpXq. In our context,
on the one hand, the assumption

1

C
πΩpµq ď P ď CπΩpµq
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which is equivalent to

1

C
ď µωpXq ď C

for P-almost every ω seems strong. Assuming only P-regularity, there is no reason for this Radon-Nikodym
derivative to be P-essentially bounded from above and below. Even when restricting our attention to random
finite measures satisfying this property, the maps

µ ÞÑ P´ ess supµωpXq

and

µ ÞÑ P´ ess inf µωpXq

have no reason to be continuous. Thus, compactness for the weak topology does not seem to imply the
existence of a uniform C such that the condition

1

C
πΩpµq ď P ď CπΩpµq

holds. On the other hand, it is not realistic to expect a sufficient condition for compactness without assuming
anything on the Ω-marginals.

In the particular case where X has an isolated point x0, then the following trick allows us to weaken a
bit this assumption. For any subset of MΩ of MΩpXq, define

ĂMΩ “ tν PMΩpXq, ν “ Dpx0q ` µ, µ PMΩu ,

where D is the Dirac measure on x0. Assume that for every µ P MΩ, we have µωpXq ď C for P-almost

every ω, for some constant C. Then for every ν P ĂMΩ,

(29) 1 ď νωpXq ď 1` C

for P-almost every ω.

Corollary A.23. Assume that X has an isolated point x0. Consider a subset MΩ of MΩpXq. Assume that
MΩ is tight and that there exists C ě 0 such that for every µ P MΩ, πΩpµq ď CP. Then, MΩ is relatively
compact.

Proof. The set MΩ is tight, so there is a compact K0 such that for every µ PMΩ, πXpµqpK
c
0q ď ε. Then, the

set K “ K0 Y tx0u is also compact and for every ν P ĂMΩ, πXpνqpK
cq ď ε. Thus, ĂMΩ is also tight. By (29),

ĂMΩ satisfies the assumptions of Corollary A.22, so it is relatively compact.

Let ν P clpĂMΩq. By [AB06, Theorem 2.14], there exists a net pναqαPA converging to ν. Assume by
contradiction that Ppνωptx0uq ă 1q ą 0. Then, there exists c ă 1 such that the event A “ tνωptx0uq ď cu
satisfies PpAq ą 0. Since x0 is isolated and X is Hausdorff, tx0u is both closed and open, hence the function
1x0

is bounded continuous and px, ωq ÞÑ 1Apωq1x0
pxq is a random bounded continuous function. Since for

every α, ναptx0uq ě 1, applying convergence to this function, we get that

PpAq ď Er1Aναptx0uqs ÝÑ
αÑ8

Er1Aνptx0uqs ď cPpAq,

which is a contradiction. Thus,

µω “ νω ´Dpx0q

is a well-defined random finite measure on X. In other words, the map

F : ν P clpĂMΩq ÞÑ ν ´Dpx0q PMΩpXq

is well defined. Moreover, it is continuous, therefore F pclpĂMΩqq is compact and by Lemma A.11, the weak

topology is Hausdorff, so F pclpĂMΩqq is closed. Now, MΩ Ă F pclpĂMΩqq and so clpMΩq Ă F pclpĂMΩqq. Thus,
clpMΩq is compact, i.e. MΩ is relatively compact. �
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