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BRANCHING RANDOM WALKS ON RELATIVELY HYPERBOLIC GROUPS

MATTHIEU DUSSAULE, LONGMIN WANG, AND WENYUAN YANG

ABSTRACT. Let I' be a non-elementary relatively hyperbolic group with a finite generating set. Consider a
finitely supported admissible and symmetric probability measure p on I" and a probability measure v on N
with mean r. Let BRW(T', v, 1) be the branching random walk on I" with offspring distribution v and base
motion given by the random walk with step distribution p. It is known that for 1 < r < R with R the radius
of convergence for the Green function of the random walk, the population of BRW (T, v, 1) survives forever,
but eventually vacates every finite subset of I'. We prove that in this regime, the growth rate of the trace
of the branching random walk is equal to the growth rate wrp(r) of the Green function of the underlying
random walk. We also prove that the Hausdorff dimension of the limit set A(r), which is the random subset
of the Bowditch boundary consisting of all accumulation points of the trace of BRW (T, v, ), is equal to a
constant times wp (7).
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1. INTRODUCTION

1.1. Background and motivation. Let (V| E) be a locally finite connected infinite graph. A Branching
Markov chain (BMC) on (V, E) is defined as follows. One starts with a single particle at a fixed vertex vy € V.
For n > 1, each particle still alive at time n dies and gives birth to an independent random number of offspring
particles, according to a probability measure v on N = {1,2,3,...}, each of them independently moving on
(V, E) according to an underlying Markov chain on (V| E) driven by a transition kernel p(x,y),z,y € V.
Sometimes in literature, the measure v is distributed on Z5 = {0,1,2,...} but we will always assume that
there is at least one offspring particle to avoid the extinction of the system. This is not serious restriction,
as conditioning on non-extinction, one can assume that v is distributed on N, see [AN04, Chapter 1]. We
will also assume that the underlying Markov chain is irreducible, i.e. every vertex of the graph can be visited
by the Markov chain with positive probability and that it is symmetric, i.e. p(z,y) = p(y,z) for all z,y € V.
There is a large body of work dedicated to branching Markov chains on the real line and we refer to [Shil2]
and references therein for more details. We also refer to [ANO4] for a general discussion and historical
perspective on branching processes.

A branching Markov chain is called recurrent if with positive probability (and thus with probability 1),
some (and thus every) vertex of the graph is visited by infinitely many particles of the BMC. It is called
transient otherwise. Recurrence or transience of the BMC is governed by the expectation of the offspring

distribution
E[v] = ) kv (k)
k>1
and by the spectral radius p of the Markov chain defined by

p= lim sup pn, (Jf, y) 1/71’
n

which is independent of x and y, provided the underlying Markov chain is irreducible. Here p,, is the n-th
convolution power of p defined by

pa(z,y) = Y, p(m,z)p(z,22) - plEn-1, ).
Z14eey2Zn—1EV
More precisely, if E[v] < p~!, then the branching Markov chain is transient, otherwise, it is recurrent, see
[BP94], [GMO6] and references therein.

Let us now restrict our attention to the following context. Consider a finitely generated group I' endowed
with a finite generating set and a probability measure p on I'. For a given probability measure v on N, the
branching random walk BRW (T, v, 1) is the branching Markov chain on the Cayley graph of I' driven by v and
by the p-random walk, which is the Markov chain whose transition probability is given by p(z,y) := u(x~1y).
Since p is assumed to be symmetric, p is symmetric in the sense that u(z) = u(z~1) for every z € I'. In this
case, irreducibility of the random walk means that the support of u generates I' as a group. We also say
that the random walk driven by p is admissible.

In the transient case, we introduce the trace P of the branching random walk, which is the set of vertices
that are ever visited by BRW(T, v, p1). It is a random subset of I" and it has been a fruitful line of research
to study the geometric properties of P. When the group I' is endowed with a geometric boundary JI', one
can define the limit set A of P as the closure of P in oI, i.e. A = cl(P) n oT'. In hyperbolic context, the
growth rate of P and the Hausdorff dimension of A for suited distance on the boundary oI" has been related
to asymptotic quantities involving I' and p as we explain below. Let us first mention that Benjamini and
Miiller [BM12] studied qualitative properties of P and listed a certain number of conjectures. They proved
in particular that P has exponential growth, while their method does not give quantitative results on the
growth rate. Hutchcroft proved in [Hut20] that on any non-amenable group, two independent branching
random walks almost surely intersect at most finitely often, which imply that P has infinitely many ends
almost surely. This answers some of the questions in [BM12]. Let us also mention that in a very recent work
[KW22], Kaimanovich and Woess studied limit behaviour of branching random walks in terms of geometric
features of I" with a very new angle.

1.2. Earlier results on hyperbolic groups. We introduce the Green function defined as

GT(x7 y) = Z p7l(x71y)rn7x’y € F'

n=0
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Its radius of convergence R is independent of x,y provided that the random walk driven by u is admissible.
We have R = p~!, where p is the spectral radius introduced above. The groups under consideration in this
paper will always be non-amenable, so by a landmark result of Kesten, R > 1, see [Woe00, Corollary 12.5].
For every r < R, we set
H.(n) = Z G (e, x)
€S,

where S, is the sphere of radius n centered at e for the word distance and

wr(r) = limsup 1 log H,.(n).
n—owo T

We call wr(r) the growth rate of the Green function. It depends both on p and on the chosen finite

generating set of I'. We also set P,, = P n S,, and M,, = §P,,. We define the growth rate of BRW(T', v, 1) as

lim sup % log M,,.

Assume that I is a finitely generated free group endowed with its standard generating set and consider a
branching random walk on I’ with E[v] = r € [1,p7!]. Let A < 1 and for z,y € T, set dy(z,y) = A", where n
is the biggest integer such that the prefixes of length n of z and y coincide. Then, dy extends to a distance
on I' U 0T, where 0T is the set of ends of T'. Liggett [Lig96] and Hueter-Lalley [HLOO] proved that whenever
the underlying random walk is a symmetric, possibly anisotropic, nearest neighbor random walk on IT", then
the limit

6(r) = lim (M,)""

n
is well defined and is almost surely a constant. Moreover, the Hausdorff dimension of the limit set A in oT'
is equal to —log, §(r). Finally, the function 6(r) is continuous and strictly increasing on [1,p~!] and has
critical exponent 1/2 at p~!, which means that there exists C' > 0 such that
b —00r) ~ CVpT—7

r—p

and
C

log0(p~") —log 6(r) e 9D

Furthermore, logf(r) < %v, where v = log(2¢ — 1) is the volume growth rate of the free group I'" with ¢
generators.

In [SWX20], the authors extended these results to all hyperbolic groups and expressed log 6 as the growth
rate of the Green function, i.e.

p~l—r.

O(r) =e“r (),

Here, T is the Gromov boundary of ' endowed with a visual distance dy satisfying d (&, ¢) = A9, where
(+|-) is the Gromov product, see [SWX20], Section 2.1] for more details. In particular, the Hausdorff dimension
of the limit set was proven there to be wr(r) for r < p~!, but the critical case r = p~! remained open. As a
particular case of our work, we will show that this is still true at » = p~!, see Corollary below.

1.3. Main results. Our goal in this paper is to generalize some of the aforementioned results to the class
of relatively hyperbolic groups, whose precise definition is recalled in Section [2| Briefly, a finitely generated
group I is called relatively hyperbolic if it admits a geometrically finite action on a proper geodesic hyperbolic
space X. The Bowditch boundary of I' is then the limit set of the orbit of a fixed base point z in the Gromov
boundary of X. It is unique up to I'-equivariant homeomorphism. We say that I' is non-elementary if its
Bowditch boundary is infinite. Since their introduction by Gromov, these groups have been extensively
studied by many authors and from different point of views. Besides the class of Gromov hyperbolic groups,
the following groups of geometric and algebraic interests are the main archetypal examples:

(1) Fundamental groups of finite volume hyperbolic manifolds, and of more general finite volume Rie-
maniann manifolds with negatively pinched sectional curvature.
(2) Infinitely ended groups, equivalently by Stalling’s theorem, all non-trivial amalgamated free products
and HNN extension over finite groups.
In particular, free products are the simplest combinatorial examples of relatively hyperbolic groups, on which
branching random walks were studied by Candellero, Gilch and Miiller [CGM12]. We recover some of their
results in this paper.



4 MATTHIEU DUSSAULE, LONGMIN WANG, AND WENYUAN YANG

A finitely generated group I' endowed with a finite generating set S is equipped with the word distance.
Its volume growth rate is the growth rate of the balls for the word distance. We again refer to Section [2] for
more details.

Theorem 1.1. Let I' be a non-elementary relatively hyperbolic group endowed with a finite generating set.
Consider a finitely supported admissible and symmetric probability measure 1 on T' and a probability measure
v on N with mean r € [1, R]. Consider a branching random walk (T, v, u) starting at e. Then, almost surely,

1
lim sup — log M,, = wr(r).
n—0o0 n
Moreover, the function r — wr(r) is increasing and continuous and satisfies that wr(r) < v/2, where v is
the volume growth rate of the group for the word distance.

We then investigate the limit behaviours of the branching random walk at infinity and we compute the
Hausdorff dimension of the limit set of the trace in various compactifications of relatively hyperbolic groups.
Introduced by Floyd [Flo80], the Floyd boundary can be constructed as a compactification for any locally
finite graph, equipped with a rescaling of the graph distance called the Floyd distance. Generalizing Floyd’s
theorem [Flo80| for geometrically finite Kleinian groups, Gerasimov [Gerl2] proved that for any relatively
hyperbolic groups, the Bowditch boundary can be realized as a quotient of the Floyd boundary of the Cayley
graph. The Floyd distance depending on a parameter A € (0, 1) is then transferred to the Bowditch boundary
as soon as A = Ao, where )\ is given by [Ger12, Map Theorem|. The corresponding distance on the Bowditch
boundary is called the shortcut distance and will be described in Section

Theorem 1.2. Under the assumption of Theorem denote by A(r) the limit set of the branching random
walk in the Bowditch boundary, endowed with the shortcut distance of parameter X € [Ao,1). Then, almost
surely,

: wr(r)

Hdim (A(r)) = “Tog N

Remark 1.3. The lower bound on the Hausdorff dimension actually holds for the whole limit set of the
branching random walk in the Floyd boundary endowed with the Floyd distance, see Proposition We
can only prove the upper bound for a subset of the Floyd boundary, see Proposition In many interesting
cases, the Floyd boundary is homeomorphic to the Bowditch boundary (eg. if parabolic subgroups are
amenable). Moreover, under the technical condition that the volume growth rate vg(P) for every parabolic
subgroup P is smaller than wr(r), the above conclusion is still true for the Floyd boundary, see Corollary
In general, the identification of the Hausdorff dimension remains open for the full limit set in the Floyd
boundary.

As above-mentioned, groups with infinitely many ends form a special class of relatively hyperbolic groups.
Such groups can be compactified with the ends boundary, introduced by Freudenthal [Fre45]. A natural
family of visual distances depending on a parameter A € (0,1) on the ends boundary will be described in
Section Along the way, we prove the following Theorem, which both extends [CGM12, Theorem 3.5] to
all groups with infinitely many ends and fix a gap in their proof, as we will explain in Section [5.2

Theorem 1.4. Under the assumption of Theorem if I' is a group with infinitely many ends and A(r)
is the limit set of the branching random walk in the ends boundary, endowed with the visual distance of
parameter A € (0,1), then almost surely,

_ wr(r)
—log A\’
Finally, for hyperbolic groups, the Bowditch boundary and the Gromov boundary coincide and the short-

cut distance is bi-Lipschitz to the visual distance. We thus deduce from Theorem the following, which
resolves [SWX20|, Conjecture 1.4].

Hdim (A(r))

Corollary 1.5. Under the assumption of Theorem if I' is a non-elementary hyperbolic group and if
A(R) is the limit set of the branching random walk with mean offspring R in the Gromov boundary of T
endowed with a visual distance of parameter X € [Ag, 1), then almost surely,

Hdim (A(R)) = frk()g
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In the course of this investigation, we obtain much more precise information on the trace P of the branching
random walk. We prove that P almost surely tracks the logarithm neighborhood of transition points along
geodesics ending at conical limit points in the limit set. Recall that a point on a geodesic is called a transition
point if it is not deep in a parabolic coset. We refer to Section [2] for a precise definition.

Theorem 1.6. Under the assumption of Theorem[I.]] there exists 0 < rk < 00 such that almost surely, for
every conical point £ € A(r), we have

|z|—00 IOg |$‘

where x is taken over the set of transition points on [e,&].

This should be compared with analogous results for random walks. Under finite first moment condition,
a random walk on a hyperbolic group almost surely sub-linearly tracks geodesics from the basepoint e to the
limit point of the random walk in the Gromov boundary. We refer to Kaimanovich [Kai00, Theorem 7.3] for
a proof, see also [Led01] for the case of trees. Sub-linear tracking of geodesics is one of the most important
result in the study of random walks on groups with hyperbolic properties and is related to a celebrated
multiplicative ergodic theorem of Furstenberg and Kesten [FK60]. It was first coined by Kaimanovich in
the context of symmetric spaces [Kai87] and was then extended to groups with non-positive curvature by
Karlsson and Margulis [KM99] and to more general classes of group by Tiozzo [Tiol5], including mapping
class groups. If the random walk has finite support, then the tracking is in fact logarithmic and this is
true for all weakly hyperbolic groups, i.e. groups admitting a non-elementary action by isometries on a
Gromov hyperbolic space, see [MT18, Theorem 1.3]. If the group is relatively hyperbolic, then the random
walk actually sub-linearly tracks transition points on the word geodesic in the Cayley graphs, see [DY20l
Proposition 3.2]. Theorem can thus be thought as a generalization of these results to branching random
walks on relatively hyperbolic groups and is new, even for hyperbolic groups.

Let us finally say that we will not investigate the problem of the critical exponent of wr(r) in this paper.
In [CGMI12], the authors show that for free products this critical exponent is not always 1/2, depending
on u and more precisely depending on whether the first derivative of the Green function is finite or infinite
at its radius of convergence, see [CGMI12, Theorem 3.10]. It might be possible to prove that it is in fact
1/2 whenever the underlying random walk is spectrally non-degenerate, combining techniques of [SWX20],
[Dus22b|] and of the present paper. We refer to Definition for the definition of spectral degeneracy of a
random walk.

1.4. Parabolic gap and purely exponential growth of Green functions. Among the results of
[CGM12], the authors claimed that the Hausdorfl dimension of the limit set intersected with the set of
ends of each free factor is strictly less than that of the whole limit set of the branching random walk (see
their Corollary 3.7). However, their proof is incorrect on assuming that the quantity H,.(n) as defined above
is sub-multiplicative; we refer to Remark for more details. In our study, the sub-multiplicativity of
H,.(n) turns out to be a subtle property and we propose a sufficient criterion called a parabolic gap condi-
tion, which is inspired by the work of [DOP00] and that we now introduce. Note that assuming that the
parabolic gap condition holds, we recover their result [CGM12] Corollary 3.7], see Remark
Let I" be a non-elementary relatively hyperbolic group. Let P be a parabolic subgroup. We set

Hp,y(n)= >, Gp(ex)
ze€S, NP
and 1
wp(r) = limsup — log Hp »(n).

n—oowo N
Thus, wr(r) is the growth rate of the sum of the Green functions along spheres, while wp(r) is the similarly
defined growth rate, but restricted to the parabolic subgroup P. It follows from the definition that wp < wr.

Definition 1.7. If wp(r) < wr(r), we say that I has a parabolic gap along P for the Green function at r.
If for every P, for every r € (1, R], wp(r) < wr(r), then we say that I" has a parabolic gap for the Green
function.

Note that this notion only depends on the underlying random walk driven by p, not on the offspring
distribution of the branching random walk.
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Theorem 1.8. Let T' be a non-elementary relatively hyperbolic group. Consider a finitely supported admissi-
ble and symmetric probability measure p on I'. If ' has a parabolic gap for the Green function, then the sum
of Green functions along spheres is roughly multiplicative and has purely exponential growth, in the sense
that for all 1 <r < R, there exist C = C(r) =2 1 and C' = C'(r) = 1 such that for all n,

éHr(n +m) < Hy(n)H,(m) < CH,(n + m)

and

éenwr(r) < HT(TL) < C/e”wr(?”)_
Remark 1.9. Actually, C and C’ can be chosen independently of r in the two upper bounds, which do not
require a parabolic gap to hold by Lemma |3.2

We will prove two criteria for having a parabolic gap, see Corollary [3.9]and Proposition[3.10] In particular,
we prove that whenever parabolic subgroups are amenable, wp(r) < wr(r) for all » < R. Moreover, if
parabolic subgroups have sub-exponential growth, then we also have wp(R) < wr(R).

Let us compare our notion of parabolic gap to similar notions in different settings. Consider a finitely
generated group I' acting via isometries on a metric space (X, d). Then, one can endow I" with a left-invariant
pseudo-distance by declaring

d(g,h) = d(g - zo, h - x0),

where xg is a fixed point in X. We define the volume growth rate for any subgroup P < I" as follows:

1 1
vx (P) = limsup - log (4B(e,n) n P) = limsgclp glog (#{g € P :d(zo,g-x0) <n}).
n—o0

n—0o0
Choosing X to be the Cayley graph associated with a finite generating set S, endowed with the graph
distance, we recover the word distance on I'. Then the volume growth rate of a subgroup P, also denoted
by vs(P), is the standard terminology.

If T is relatively hyperbolic, then it acts by isometries on a proper geodesic hyperbolic space (X, d). We
say in this context that I' has a parabolic gap (also referred as critical gap in literature) if for every parabolic
subgroup P, vx (P) < vx(I'). This definition makes sense in larger contexts than relatively hyperbolic groups
and this property was studied a lot in literature, see for instance [DOP00], [DPPSTI], [PS18], [PTV20],
[Rob03], [ST21], [Vid19] and references therein. For typical cases, we have vx (P) < vx(I'). On the other
hand, exotic examples of geometrically finitely groups acting on a negatively-pinched Cartan-Hadamard
manifold with the critical gap property, i.e. vx(I') = vx(P) for some P, were first constructed in [DOPQ0],
see [Peill] for other examples.

On the contrary, when endowing I" with a word distance given by a finite generating set .S, this cannot
happen, since in this context, it was proved in [DFW19] that one always has vg(P) < vg(T).

Before going further, recall that the critical exponents vx (T') and vx(P) coincide with the exponential
radius of convergence of a suited Poincaré series. Namely, define

R S
gel n=20n<d(zg,9-z0)<n+1

Then, for s < vx (), O4(T) diverges and for s > vx (I'), it converges. Similarly, replacing I" by any subgroup
P in the above formula defines the corresponding ©,(P) and vx (P).
Now, consider a probability measure p on a relatively hyperbolic group I' and for r» > 0, set

I(T) = Z Gr(eag)GT(gv 6).
gel

The following result is well-known, see for instance [GL13, Proposition 1.9]. For every r, we have

I(r) = % (rGr(e,e€)).

Thus, for » < R, this quantity converges and for » > R, it diverges. Consider the r-symmetrized Green
distance dg , defined as
Gr(g,h) Gy (h,g)

de.r(g,h) = —log — — log =~
ar(g,h) %G lee) B Gieo)




BRANCHING RANDOM WALKS ON RELATIVELY HYPERBOLIC GROUPS 7

which is a generalization of the Green distance introduced by Blachére and Brofferio [BB07]. Then, the
quantity I(r) is exactly the Poincaré series associated with the distance dg . The only difference with the
previous setting is that the parameter r is part of the definition of the distance. The quantity —log R is
analogous to the critical exponent vx (I"). It is more complicated to define a notion of parabolic gap, because
we cannot interpret — log R as the radius of convergence of the Poincaré series, which is not a power series
in . However, the analogous notion which was coined in [DG21] is called spectral degeneracy. We will
properly introduce this notion below and we refer to [Dus22al, Section 3.3] and [DPT22, Section 1.3] for more
explanations on this analogy. Anyway, by results of Cartwright [Car88], [Car89] and of Candellero and Gilch
[CG12], it is possible to construct both a spectrally degenerate random walk and a spectrally non-degenerate
one on a relatively hyperbolic group, although every known example is in the class of free products.

Back to our critical gap condition, we will see that the critical exponent wr(r) is the radius of convergence
of a twisted Poincaré series s — O, 4(T") defined by , involving both the Green function G, (e,z) and the
word distance. We saw above that there are sufficient conditions to have a parabolic gap, but it is difficult
to tell if one can construct an example where wp(r) = wr(r). Answering this question would require new
material. However, the last example of Section below suggests that it might happen (see the famous
examples in the geometric context in [DOPOQ] and [Peill]). We prove there that if there exists a finitely
generated group P endowed with a finitely supported admissible random walk with convergent twisted
Poincaré series O, s at some r < R, then for a suited random walk on the free product I' = P = Z¢, we have
wr(r') = wp(r’) for some /. See the comments at the end of Section [3.5| for further details.

1.5. Organization of the paper. We now outline the contents of the paper and explain the overall strategy
of our proofs. In Section [2| we recall the definition of relatively hyperbolic groups, of the Floyd distance and
of the Floyd boundary. The Floyd distance is then related with geometric properties of such groups via a
number of preliminary results used throughout the paper. Finally, we recall the relative Ancona inequalities
that will be a crucial tool.

In Section [3] we study the growth rate of the Green function wr(r). We prove in particular that it is
increasing and continuous and bounded by v/2, see Corollary Corollary We also prove Theorem
i.e. purely exponential growth, assuming there is a parabolic gap, see Lemma (3.7} This is done by using
classical methods for Poincaré series, inspired by [Yan19]. Finally, we discuss the notion of parabolic gap
through examples in the last part of the section.

Section [4 is dedicated to the growth rate of the branching random walk and we prove that it is almost
surely equal to the growth rate wr(r) of the Green function, see Proposition In particular, this ends
the proof of Theorem The upper-bound lim sup % log M,, < wr(r) is very general and does not involve
relative hyperbolicity. The lower-bound is more difficult to obtain and we have to restrict our attention to
points x € I such that a geodesic from e to z spends a uniformly bounded amount of time L in every parabolic
coset. Such geodesics are Morse in the sense of [Corl7], see also [Tral8] for a study a Morse geodesics in
relatively hyperbolic groups. It turns out Morse geodesic rays form a proper subset of the whole Bowditch
boundary, which is typically too small to serve as a model for the Poisson boundary and thus is too small to
give much information about asymptotic properties of finitely supported random walks, see in particular the
comments in the introduction of [QRT20], where a bigger boundary called the sub-linearly Morse boundary
is introduced. We can nevertheless prove that the growth rate of the Green function restricted to Morse
directions converges to the growth rate of the whole Green function, as L tends to infinity, see Lemma [1.7]
This is enough to adapt the arguments of [SWX20] for hyperbolic groups, which allows us to conclude the
proof.

Finally, in the two last sections, we study the Hausdorff dimension of the limit set and we prove Theo-
rem [1.2] Theorem [1.4]and Corollary [1.5] We start with the lower bound in Section [5] Following [SWX20], we
use the Frostman lemma and show that for every h < wr(r)/ — log A, there exists with positive probability
a finite measure y on the limit set A such that the integral

” 3ol )" dx(x)dx(y)

is finite, where 6. is the shortcut distance on the Bowditch boundary. However, the proof in [SWX20] has
a gap and we need to find a new strategy to construct the measure y, which will be defined as a random
Patterson-Sullivan type measure on the limit set. The construction is performed by using convergence results
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for random finite measures, whose proofs are postponed to the Appendix. Our strategy also applies to groups
with infinitely many ends and we prove Theorem The upper-bound for the Hausdorff dimension is proved
in Section[f] We first prove Theorem|[T.6] i.e. logarithmic tracking by the trace of transition points on geodesic
rays joining the limit set, see Lemma [6.11] This allows us to cover the limit set with suited shadows and
to conclude as in [SWX20]. Note that the covering by shadows in [SWX20] only works for r < p~! and
Theorem is one of the needed step to cover the case r = p~1.

2. RELATIVELY HYPERBOLIC GROUPS AND RANDOM WALKS

2.1. Relative hyperbolic groups. Consider a finitely generated group I' acting properly via isometries on
a proper Gromov hyperbolic space X. Define the limit set Ar as the closure of I" in the Gromov boundary
0X of X, that is, fixing a base point xg in X, Ar is the set of all possible limits of sequences g, - xg in 0.X,
gn € T'. A point £ € Ar is called conical if there is a sequence g,, of I" and distinct points &1, & in Ar such
that g,& converges to £ and g, converges to & for all ¢ # £ in Ap. A point € € Ar is called parabolic if its
stabilizer in I" is infinite, fixes exactly & in Ar and contains no loxodromic element. A parabolic limit point
& in Ar is called bounded parabolic if its stabilizer in T is infinite and acts co-compactly on Ar\{¢}. Say that
the action of I on X is geometrically finite if the limit set only consists of conical limit points and bounded
parabolic limit points.

There are in literature several equivalent definitions of relatively hyperbolic groups. Following Bowditch
[Bow12|, we say that a finitely generated group I' is relatively hyperbolic with respect to a collection of
subgroups Py if it acts via a geometrically finite action on a proper geodesic Gromov hyperbolic space X,
such that the stabilizers of parabolic limit points for this action are exactly the conjugates of the groups in
Py, which are called maximal parabolic subgroups or simply parabolic subgroups if there is no ambiguity.
By [Bowl2, Proposition 6.15], there is a finite number of conjugacy classes of parabolic subgroups, so in
other words, Py needs to be finite.

The limit set Ar is called the Bowditch boundary of I'. It is unique up to equivariant homeomorphism
and we will denote it by dgI' in the sequel. A relatively hyperbolic group is called non-elementary if its
Bowditch boundary is infinite; equivalently, if some parabolic subgroup P € Py is of infinite index in T.

Relatively hyperbolic groups are modelled on finite co-volume Kleinian groups. In this case, the group acts
via a geometrically finite action on the hyperbolic space H™ and there is a collection of separated horoballs
such that the action on the complement of these horoballs is co-compact. The parabolic subgroups are
exactly the stabilizers of the horoballs. Moreover, the Bowditch boundary is the ideal boundary S®~! of H”
and parabolic limit points are the centers of the horoballs.

In [Bowl2], Bowditch gives another definition of relative hyperbolicity, mimicking the above geometric
description of Kleinian groups. Given a hyperbolic space X, one can define a coarse notion of horoballs. A
finitely generated group I' acting properly via isometries on a proper geodesic hyperbolic space X is relatively
hyperbolic if only if there exists a I'-invariant family of sufficiently separated horoballs centered at points
in the Gromov boundary of X such that I' acts co-compactly on the complement of these horoballs. The
parabolic subgroups are then exactly the stabilizers of these horoballs. We also refer to [Osi06], [Far98]|,
IDS05] and references therein for alternative definitions of relatively hyperbolic groups.

We set

P={gP:gel,PePy}
and we call P the collection of all parabolic cosets.

Let us also fix some notations. Given a finite generating S on I, let Cay (T, S) be the Cayley graph with
respect to S. The graph combinatorial distance is called the word distance. We denote the n-sphere centered
at the identity e by S, = {x € T : d(e,x) = n}. We will frequently write |z| := d(e,z). Finally, we will
denote by v the volume growth rate of T' with respect to S, which is defined by

1
v = limsup — log §B(e, n).
n
The word distance on relatively hyperbolic groups has purely exponential growth in the following sense.

Lemma 2.1. [Yan22, Theorem 1.9] There exists ¢ > 0 such that for every n = 0, we have

1
—e" < 1S, < ce’.
c
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2.2. Floyd boundary. We first recall the definition of the Floyd boundary and their relation with the
Bowditch boundary. This boundary was introduced by Floyd in [Flo80] and we also refer to [Kar03] for more
details.

Let T be a finitely generated group and let Cay(I",S) denote its Cayley graph associated with a finite
generating set S. Let f: N — R>g be a function satisfying that

Zf(n)<oo

n=0

and that there exists A € (0,1) such that
1= fln+1)/f(n) = A

for all n € N. The function f is then called the rescaling function or the Floyd function. In the following, we
will always choose an exponential Floyd function, that is f(n) = A™ for some A € (0, 1). Fix a basepoint 0 € T
and rescale Cay(T", S) by declaring the length of an edge o to be f(d(o0,0)). The induced length distance on
Cay (T, S) is called the Floyd distance with respect to the basepoint o and Floyd function f and is denoted
by 0f.0(.,.). Whenever f is of the form f(n) = A", we will write dx , = 05, and if A is fixed, §o = 03 0.

The Floyd compactification I is the Cauchy completion of Cay(T', S) endowed with the Floyd distance.
The Floyd boundary is then defined as 0xI' = T'#\Cay(T,S). Different choices of base-points yield bi-
Lipschitz Floyd distances because

(1) Va,y e T, 67.0(z,y) < A5, (2, y)

so the corresponding Floyd compactifications are bi-Lipschitz. Note that the topology may depend on the
choice of the rescaling function and the generating set.
The following fact proved in [Kar03|] plays a crucial role in understanding the Floyd geometry.

Lemma 2.2. [Kar(3, Lemma 1] For any 6 > 0, there exists a function k = k() with the following property.
If x,y,z € T are three points so that 6,(y,z) = § then d(x, [y, z]) < k.

If 07T > 3, Karlsson proved in [Kar03] that I' acts by homeomorphism on éxI" as a convergence group
action. By the general theory of convergence groups, the elements in I' are subdivided into the classes of
elliptic, parabolic and loxodromic elements. The latter two being infinite order elements have exactly one
and two fixed points in 0" accordingly. Moreover, in this case the Floyd boundary contains uncountable
many points and so the cardinality of 0z is either 0, 1, 2 or uncountably infinite. By [Kar03l Proposition 7],
f0FI' = 2 exactly when the group I' is virtually infinite cyclic. Following Karlsson, we say that the Floyd
boundary is trivial if it is finite. The non-triviality of Floyd boundary does not depend on the choice of
generating sets [YanI4l Lemma 7.1]. We will only have to deal with groups with non-trivial Floyd boundary.

We now assume that I' is non-elementary relatively hyperbolic. We denote by 0gI" its Bowditch boundary.
The following is due to Gerasimov.

Theorem 2.3. [Gerl2] Map Theorem| There exists Ao € (0,1) such that for every X € [, 1), the identity
on I' extends to a continuous and equivariant surjection ¢ from the Floyd compactification to the Bowditch
compactification of T'.

Actually, Gerasimov only stated the existence of the map ¢ for one Floyd function fy = Af, but then
Gerasimov and Potyagailo proved that the same result holds for any Floyd function f > fy, see [GP13|
Corollary 2.8]. They also proved that the preimage of a conical limit point is reduced to a single point and
described the preimage of a parabolic limit point in terms of the action of T' on 0T, see precisely [GP13|
Theorem A]. From now on, the parameter A will always be assumed to be contained in [Ag, 1).

The Floyd distance can be transferred to a distance on the Bowditch boundary using the map ¢. The
resulting distance is called the shortcut distance and we denote it by &y or &, if A is fixed. It is the largest
distance on the Bowditch boundary satisfying that for every &, € 0£T,

(2) 5@,)\(¢(€)7 ¢(<)) < 6@,)\(57 C)
We refer to [GP15] Section 4] for more details on its construction.

If T is hyperbolic, then the Gromov, Bowditch and Floyd boundary all coincide. Thus, the shortcut
distance and the Floyd distance are the same. Furthermore, by [PY19, Proposition 6.1], the visual distance
and the Floyd distance are bi-Lipschitz.



10 MATTHIEU DUSSAULE, LONGMIN WANG, AND WENYUAN YANG

The next couple of lemmas will be used later on.

Lemma 2.4. Suppose that " admits a non-trivial Floyd boundary. Then there exist a finite set F' of elements
and constants ¢ = 1,6 > 0 with the following property:
for any two elements g, h € T', there exists f € F such that gfh labels a c-quasi-geodesic and

max{d(g,[e,gfh]), d(gf,[e,gfh])} < €
and dq(e,gfh) = 0.

Proof. Note that if the Floyd boundary of I" is nontrivial, then I' is not virtually cyclic, and every hyperbolic
element is strongly contracting [YanI4]. Thus, the extension lemma in [Yan19] applies in this setting. Namely,
let F' any set of three independent hyperbolic elements. Set F™ = {f" : f € F'} for given n > 1. Then for
any sufficiently large ng, and for any g, h € I" there exists f € F™ such that gfh labels a c-quasi-geodesic
for a uniform constant c.

It remains to prove that d4(e, gf*"h) has a uniformly lower bound ¢ when ng is large. Indeed, since
every f € F is a hyperbolic element with two distinct fixed points, there exists § = §(F) > 0 such that
Se(f~m0, fm0) > § for any f € F and n > 1. Since gf>"h labels a c—quasi-geodesic, we see that d(e, f™[e, h])
and d(e, f~"[e, g~!]) increase to o0 as n — 0. By Lemma [2.2] we have for n = ng d.(f", fh) < 6/4 and
Se(fmo, fmmog=l) < §/4. Thus, 6.(f~™0 g™, f*h) > §/2, and then d,n0 (e, gf*"h) = 6/2. Consequently,
there exists 0’ = §(, ng) such that d (e, gf?"0h) >4’ O

Floyd and Bowditch boundaries are visual: any two distinct points can be connected by a geodesic. This
enables us to define the notion of shadows on both of them, that will be used in our arguments. Given
K > 0 and z € T, let IIx(x) be the set of boundary points £ for which some geodesic between e and ¢
intersects B(z, K). We call ITx (z) the big shadow at x of width K. Balls and shadows are related by [PY19l
Lemmas 4.13, 4.14, 4.15]. We prove here a slight generalization of these results.

Lemma 2.5. There exists C such that the diameter of the big shadow I (g) is bounded by CKN*I=K for
either the Floyd distance on the Floyd boundary or the shortcut distance on the Bowditch boundary.

Proof. By we only need to give the proof for the Floyd boundary. Let £, ¢ in Ik (g) and let [e,£] and
[e, (] be two geodesics intersecting B(z, K) at y and z respectively. Then, following back [e, {] from & to y,
then following a path from y to z that stays inside B(z, K) and finally following the geodesic [e, (] from z
to ( yields a path from £ to ¢ of Floyd length at most

DA 2RAER L 3 A < oRAIEE,
k>|z|—K k>|z|—K

This concludes the proof. (Il

2.3. Transition points and Floyd geometry. In contrast with hyperbolic groups, the Cayley graph
of relatively hyperbolic groups is not Gromov hyperbolic anymore, so the thin triangle property and the
Morse property do not hold in general. However, a certain kind of “relative” Morse property persists and is
manifested in a notion of transition points introduced in [Hrul0] (see also [DS05, [GP15]).

Recall that P = {gP : g€ T', P € Py} is the collection of all parabolic cosets.

Definition 2.6. Let P € P be a parabolic coset and 7, L > 0 be fixed constants. A point p on a geodesic «
is called (n, L)-deep in P if B(p,2L) n a < N, (P). It is called (n, L)-transitional if it is not (1, L)-deep in
any parabolic coset P € P.

According to the definition, it is clear that an (1, Lq)-transition point is an (n, Ly)-transition point for
L, < Ly. The parameters 1, L > 0 are usually chosen via the bounded intersection property of the collection
P (see [DS05, Lemma 4.7]): for any n > 0 there exists L = L(n) > 0 such that for any two P # P’ € P we
have diam (N, (P) n N, (P')) < L.

Lemma 2.7. [GP15 Proposition 5.6], [DS05, Theorem 4.1]. For large enough n, there exists L = L(n) such
that any point of a geodesic a can be (n, L)-deep in at most one P € P. Moreover, if it is (n, L)-deep in P,
the entry and exit points of o at Ny (P) are (n, L)-transitional.

The following result which refines Lemma explains the application of the Floyd geometry in relatively
hyperbolic groups.
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Lemma 2.8. [GP15] Corollary 5.10] For every large enough ), there exist L = L(n) and § = 6(n) > 0 such
that if © is an (n, L)-transition point on a geodesic o with endpoints a— and cy, then dz(—, a4 ) = 9.

The following is called the relative thin triangle property for transition points. It is folklore and was
proved at several places, using different terminology, see for instance [GP15, Proposition 7.1.1], [SisI2l
Proposition 4.6]. It can also be derived from [DS05, Theorem 1.12], [Hrul0, Section 8], [Osi06, Proposi-
tion 3.15]. Usually, it is stated for points x,y, z in the I". The following version for points in the boundary
is proved in [DG20, Lemma 2.4].

Lemma 2.9. For large enough n, there exist L(n) such that for every L = L(n), there exists C = C(n, L) such
that for every triple of points (z,y, z) that are either conical limit points or elements of T, any (n, L)-transition
point on one of the side of the geodesic triangle with vertices x,y, z is within C of an (n, L)-transition point
on one of the two other sides.

In what follows, we fix n and L(n) so that any pair (1, L) satisfies the above lemmas for L > L(n).

2.4. Random walks on relatively hyperbolic groups. Let I' be a relatively hyperbolic group and let p
be a finitely supported symmetric admissible probability measure on I'. Let p be the spectral radius of the
random walk and R its inverse. We collect here some results that will be used all along the paper. Recall
that n and L(n) are fixed such that for every L > L(n), any (7, L)-transition point satisfies the results in
Section 2.3

A very useful set of inequalities relating the Green functions along geodesics were first proved by Ancona
[Anc88] in hyperbolic groups and used to identify the Martin boundary with the Gromov boundary. These
inequalities were recently extended up to the spectral radius by Gouézel-Lalley in co-compact Fuchisan groups
[GLI13] and by Gouézel in general hyperbolic groups [Gould]. They state that there exists C, depending
only on the hyperbolicity parameters of the group, such that for every x,y, z € I such that y is on a geodesic
from x to z, for every r < R,

1
5Gr(x,y)Gr(y,Z) < Gr(z,2) < CGr(z,y)Gr(y, 2).

The only non-trivial part is the upper-bound. In relatively hyperbolic groups, a relative version of Ancona
inequalities in terms of Floyd distance was obtained in [GGPY2I] to establish a surjective map from the
Martin boundary to the Floyd boundary.

Ancona inequalities are one of the main ingredient in [SWX20] for studying branching random walks on
hyperbolic groups. In the present paper, we will make very crucial use of the relative Ancona inequalities
extended up to the spectral radius in [DG21].

Proposition 2.10 (Relative Ancona inequalities). [DG21 Theorem 3.6] For every L = L(n) and K = 0,
there exists C = C(n, K) such that the following holds. Let x,y,z € T’ and assume that y is within K of an
(n, L)-transition point on [x, z]. Then for every r < R, we have

1
6Gr(xvy)Gr(va) < Gr(z,2) < CGr(z,y)Gr(y, 2).

Note that there also exists a strong form of relative Ancona inequalities in [DG21], although we will not
need them in this paper. The following result is one of the step into proving relative Ancona inequalities in
[DG21]. It will be useful in this paper. If A < T and if z,y € T, for every r < R we denote by G, (x,y; A)
the Green function from z to y restricted to trajectories staying in A, except maybe at the end points, i.e.

Gz, A) =Y, Y ()l z) -z )
n=02z1,...,2p_1€A
Lemma 2.11. [DG2I] Proposition 3.5] For every L = L(n), there exist § > 1 and Ky > 0 such that the

following holds. For every x,y,z € I such that y is an (n, L)-transition point on [z, z] and for every K = Ky,
we have ]
K
GR('JJ, Z3 B(y7 K)c) <e
Finally, we will also use the following result, proved in [DG21]. If P € P is a parabolic coset, n = 0 and
x € I', we denote by

TN, () (2) = {y € Ny(P) = d(z,y) = d(z, Ny (P))}



12 MATTHIEU DUSSAULE, LONGMIN WANG, AND WENYUAN YANG

the set of its shortest projections on the n-neighborhood N, (P) of P. For z,y € I, we set
dNT,(P) (z,y) = diam(WNn(P) (z) U 7TN,7(13)(Z/))-
It follows from [Hrul(), Corollary 8.2] that the shortest projection is coarsely Lipschitz:
dn,p)(2,y) < kd(z,y) + k
for a fixed k > 1 depending only on 7. Thus, 7y, (p)(z) has bounded diameter.

Lemma 2.12. Let P € P be a parabolic coset. For every M = 0, there exists ng such that for n = ng, we
have
Grle, 7 Ny (P)°) < e~ Mwy(r(eaa)

Proof. In [DG21, Lemma 4.6] this result is stated for the first return kernel to N, (P), i.e. the quantity
Gr(zo,x; N, (P)°) where zy € N,(P), but the proof can be applied here. Indeed it is shown without
assuming that zo € N, (P) that the whole contribution of trajectories from xy to x staying outside N, (P)
is bounded by e "M G g(zo, z), where 11 < dn, (p)(z0, ) < cl for some ¢ > 0 and h(n) is a function of n
going to infinity as n goes to infinity, see the before last equation of the proof of [DG2Il Lemma 4.6]. In
particular, applying this to zg = e, we get that for large enough 7,

Grle, 33 Ny(P)°) < o~ M (exa)
This concludes the proof. -

3. THE GROWTH RATE OF THE GREEN FUNCTION

3.1. Preliminary results. Recall the following definitions from the introduction. Let I' be a finitely gen-
erated group endowed with a finite generating set. Let u be a symmetric probability measure whose finite
support generates I'. Denote by p the spectral radius of u and by R its inverse. Set p,(z,y) = p*"(z~1y)
for n = 1 and po(x,y) = 6,(y). Then, R is the radius of convergence of the Green function

0
For 1 < r < R, we consider the sum of the r- Green functlon over the n-sphere
= Z G,(e, )
TES,

and define the growth rate of the Green function as follows
log H,(n)

wr(r) ;= lim Sololp
n—

We first record a few simple facts about H,(n).

Lemma 3.1. The following statements are true:
(1) There exists C > 1 such that for any 1 <r < R andn > 1

C'H,(n+1) < H.(n) < CH,(n +1).

(2) There exists a constant C > 0 such that & < Hy(n) < C for any n > 1. In particular, wr(1) = 0.
(8) The function r — wr(r) is strictly mcreasmg on [1, R] and continuous on [1,R). Consequently,
wr(r) >0 forr> 1.

Proof. Since the random walk is irreducible and I'-invariant, there exist [ > 1 and a uniform number py > 0
such that p;(x,y) > po for any x,y € T with d(z,y) = 1. Thus, if z # 1 # y, we have p,(e,x) = po - pn_i(e,y)
for n = [. This implies G,(e,x) = poGr(e,y). Thus, we have H.(n + 1) = poH,(n). For the other
inequality, note that every y € S,4+1 is adjacent to at most N = 57 elements x € S,,. We then obtain
H.(n+1) < pﬂOHr(n). This proves the first statement.

We introduce the partial shadow Il K () of width K at x as the set of limit points such that some geodesic
[e,&] intersects the ball B(z, K) at a transition point. By the Shadow Lemma [DG20, Proposition 4.4]
for harmonic measures, there exists K > 0 such that Gi(e,z) = v(Ilx(x)) for any = € T, which means
that the ratio of these two quantities is bounded away from 0 and infinity. Note that for each n > 1, any
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conical limit point can be covered in a uniform number of shadows at z € S,,. We thus obtain that the sum
Diwes, v(Ilk (z)) coarsely gives the measure of the whole set of conical limit points, so is uniformly bounded
from above and below. The second statement follows.

Finally let us prove the third statement. Let 1 < s < r. Since the random walk is finitely supported,
there exists ¢; > 0 such that for every z, pp,(e,x) = 0 for every m < ¢;|z|. Thus, we have

c1|z] c1l|z|
Gs(e,x) = Z s"pm (e, z) < (;) Z " pm (e, x) = (;) G.(e,x)
m=cy|z| m=cy |z
and so
3) Guler) < ()" o).

Thus, Hs(n) < (%)Cln H,.(n) and wr(r) —wr(s) = ¢1 (logr — log s). Therefore wr(r) is strictly increasing on
[1, R].

For 6 > 0 we choose ¢y so that v < ¢3 (log R — log(R — §)). Note that since the underlying random walk
is symmetric, for every x and every m, we have p,, (e, 2)pm (e, ) < pam(e,e) and by [Woe00, Lemma 1.9],
pam(e,e) < R72™. Thus, p,(e,z) < R~™ for every x € I' and n > 0. Consequently, by Lemma we have

forl<r<R-96,
2 Z " (e, ) < e’ Z (%)m<cg

\x\:n m>can m>can

for some constant c¢g > 0. Now for 1 < s <r < R -,

C2M

Hg(n) = Z i s pm (e, x) = (;)an 2 Z " pm (e, x)

|:t‘:'n,m=0 "r|:n m=0

> (;)" (H,(n) —c3).

It follows that wr(r) —wr(s) < ¢z (logr —log s). Since § > 0 is arbitrary, we prove that wp(r) is continuous
inl<r<R O

Our goal in the remainder of this section is to compare H,.(n) with e™r ().

3.2. Upper bound. We start with the following lemma.

Lemma 3.2. There exists constants C,C’ > 1 such that for any 1 < r < R and any integer n,m = 1, we
have

H,.(m)H,(n) < CH.(m + n),
and H,.(n) < C'e™r ("), In particular, the following limit exists
log H. 1 -0
lim 20 rih) r() = sup 70g0 r(n)
n—00 n n n

Set I = max{d(e, f) : f € F}+4e, where F is a finite set given by Lemma andlet A(n,l) = |J Snii

—l<i<l

wr(r) =

be the annulus of width [ and radius n and define

OS5, xS, — A(n+m,l)
by setting ®(g,h) = gfh, where f € F is provided by Lemma
Lemma 3.3. The map ® is uniformly bounded to one.

Proof. Indeed, assume that ®(g,h) = gf1h and ®(x,y) = xfoy for f1, fo € F. If &(g,h) = ®(x,y), we obtain
d(g,r),d(h~1,y~1) < 4e from Lemma Thus, there are at most 3(§B(e, 4¢))? pairs of elements (z,y) such
that ®(g,h) = ®(z,y). O

Proof of Lemma[3.3. For any g € Sy, h € Sp,, we have
Gr(e,9)Gr(e h) < c1Gy(e,9)Gr(e, f)Gr(e h) < 2Gy(e,gfh)
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Thus,

H,.(n)H,(m) < co Z Gr(e, 2).
zeA(n+m,l)

Note that cz ' H,(n + 1) < H,(n) < c3H,(n + 1) by Lemma Thus, we have
H.(n)H.(m) < c4Hp(n +m).

This proves the first part of the lemma. The second part follows from the Fekete sub-additive lemma. [

Corollary 3.4. The function r € [1, R] — wr(r) is increasing and continuous.

Proof. We proved in Lemma that wr is increasing and continuous on [1, R). By Lemma it can be
expressed as a supremum of continuous functions, hence it is lower semi-continuous by [AB06, Lemma 2.41].
We deduce that it is left continuous at R. O

Corollary 3.5. For every r < R, wr(r) < v/2.

Proof. By the Cauchy-Schwarz inequality,

(2 Gr(evx)> < ‘Sn| Z Gr(evx)Q'

€S, z€S,

For any r < R, by [GL13| Proposition 1.9],

s0
1 1
wr(r) < limsup o (log c(r) +log |S,|) = V-

This proves the desired inequality for » < R. By Corollary r — wr(r) is continuous, so the inequality
also holds at R. 0

3.3. Lower bound via parabolic gap. For 1 < r < R and s > 0, we consider the following Poincaré
series:

(4) Ors() := D] Grle, h)e*4eh),

hel

We can rearrange the terms in ©, 4(I') as follows

0,+(T) = Y Hy(n)e ™

n=0

so that H,.(n) appears in the place of #5, in the usual Poincare series. Thus, for each r fixed, wr(r) is the
exponential radius of convergence of the series O, 4(T) in s.
Similarly, for any subgroup P < I', we can consider the associated Poincaré series

O, (P) = Z Z G (e, z)e™ )
n=0zePnS,
and its growth rate

1
wp(r) = limsup — log Z G.(e,x),
n xePNS,

which is the exponential radius of convergence of the series s — O, s(P).

Definition 3.6. We say that I' has parabolic gap for the Green functions if for every parabolic subgroup
P € Py, wp(r) <wp(r) for every 1 < r < R.
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Lemma 3.7. Suppose that T has a parabolic gap for the Green function. For every 1 <r < R, there exists
C =C(r) > 1 such that

H,(n+m) < CH,(n)H,(m)
and there exists a constant C' = C'(r) > 1 such that for any 1 <r < R,,, we have
1
Eenwr(r) < Hr(n) < Clenwr(r)
for everyn = 1.

Proof. Let Pgy be the finite set of maximal parabolic subgroup up to conjugacy. Set
K.(n) = max Z G.(e,x).
zeS , NP
Step 1. First, the following holds
(5) He(n+m)< > > coHp(k) He(j) - Ke(n+m —k — j)
0<k<n 0<j<m
for any n,m > 0.
Indeed, for given x € S, 4m, consider a geodesic v = [e, ] and the point y € v such that d(e,y) =n. If y
is a transition point, then by the relative Ancona inequalities, we have
Gr(e,z) < CG.(e,y)Gr(e,y ).
This corresponds to the case k = j = 0.
If y is deep in some P-coset X, let u,v be the entry and exit points of v in N, (X) (possibly u = e or
v = ). Then u,v are transition points so again the relative Ancona inequalities show

Gr(e,z) < CG.(e,u)Gy(e,u™ )G, (e, v ).

Summing up G, (e, z) over all z € S,, according to k = d(u,y) and I = d(y,v), we obtain .
Step 2. By assumption, wp(r) < wr(r) for every P € Py. Then for any given wr(r) > w > wp(r), there
exists ¢; = ¢1(r) > 0 such that K,.(i) < c1e"“ for any i > 1. For w > 0, we define

a“(n) =e *" . H.(n).

Then a re-arrangement of gives rise to the form as follows:

(6) a“’(n+m)<cl< > a“’(k)>~< > a“(j)>,

1<k<n 1<jsm

for any n,m = 0. We conclude as in [Yanl9, Theorem 5.3]. O

Theorem [T.8]is now a consequence of Lemma [3.1] for the lower bound at » = 1, Lemma [3.7] for the upper
bound and Lemma [3.2] for the lower bound at r > 1.

3.4. Criteria for Green parabolic gap. A possible way to get this parabolic gap is the following divergence
criterion based on [YanI9l Lemma 2.23].

Let A, B be two subsets of G. Denote by W(A, B) the set of all words over the alphabet set A L B with
letters alternating in A and B.

Lemma 3.8. Assume that there exists an injective map ¢ : W(A) — W(A, B) such that the evaluation map
® : W(A,B) — G is injective on the subset t(W(A)) as well. Set X := ®(«(W(A, B)) and assume that
B is finite. Then O, s(A) converges at s = wx(r). In particular, if ©, 4(A) diverges at s = wa(r) then
wx (r) > wa(r).

Proof. Since ® : W(A, B) — @ is injective, each element in the image X has a unique alternating product

Gr(1,b)
GT(171)

form over A u B. Set Cy = maxpep{d(e,b)} < o0, Cp = minbeB{ } < oo where B is a finite set by

assumption. For a word W = a1bias - - - anb, € W(A, B), we have

d(e,albl T anbn) < Z (d(e,ai) + C]),

1<i<n
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and

Gr(e,arby -+ -apby,) = CF H (Gr(e7ai)).
1<i<n

As a consequence, we estimate the Poincaré series of X as follows:
Y, Grle,g)e w49

geX
0 n
> Z <Z Gr(e, a)e—s'd(e,a)) . (026—501)@
n=1 \a€A
By contradiction, assume that Y G,.(e,a)e x4 = oo Then there exists some s > wy (r) such
acA
that > G,(e,a)e™ 54 . Che™5C1 > 1. By the above estimates, this implies the series © x (r, s) diverges at
acA
s, 80 8§ < wx (r), which is a contradiction. O

Corollary 3.9. Let P € Py. If the series
0,.5(P) = Y Gr(e,p)e >
peP
diverges at s = wp(r) then wp(r) < wr(r).
Proof. For any hyperbolic element h and sufficiently large integer n > 1, the subgroup generated by P and

h™ is a free product P * (h™). Thus, the evaluation map ® : W(A, B) — G is injective on W(A) seen as a
subset of W(A, B), where A = P and B = {h",h™"}. O

Here is a second criterion for the parabolic gap.
Proposition 3.10. Let P € Py. For every 1 <r < R, if wp(r) <0, then wp(r) < wr(r).
Proof. By Lemma for every 1 < r, wp(r) > 0. |

3.5. Examples. We now give various examples of different possible situations. In Example A, we give a
criterion for having wp(r) < 0, which automatically implies that wp(r) < wr(r). In Example B, we construct
an example where wp(r) > 0, but we still have wp(r) < wr(r). Example C is devoted to construct an example
where wp(r) = wr(r), assuming that P satisfies some properties.

We first recall some terminology from [DG21]. Let » < R and let P be a parabolic subgroup. Denote by
p"F the first return transition kernel to P associated with rpu, i.e. for every z,y € P,

(7) PPl (wy) =, D, e a)p(e a2 ).

nzl zi,.,2n¢P

Also denote by G:’P its associated Green function at ¢, i.e.

Gyl (w,y) = Yo" (2, y),
n=0
where p7:¥ is the nth convolution power of p™¥. Finally, denote by Rp(r) the inverse of the spectral radius
of p”P. Then by [DG21, Lemma 4.4], G7'F (e, ) = G, (e, z) which is finite, so in particular Rp(r) > 1.

Definition 3.11. We say that the random walk is spectrally degenerate along P if Rp(R) = 1. It is called
spectrally non-degenerate if it is not spectrally degenerate along any parabolic subgroup.

3.5.1. Ezxample A.

Proposition 3.12. Let P be a parabolic subgroup. Assume that P is amenable. Then for every 1 <r < R,
wp(r) < 0. In particular, for every 1 <r < R, wp(r) < wr(r). Moreover, if the random walk is not spectrally
degenerate along P, then wp(R) <0 < wr(R).

Proof. Fix r < R and choose s such that » < s < R. Denote by p*’ the first return transition kernel to
P associated with sy and by G*F its associated Green function as above. By [DG2I, Lemma 4.15], the
spectral radius of p* ¥ is strictly less than 1, because s < R. Since the underlying random walk driven by s
is symmetric, p>* is a symmetric P-invariant transition kernel on P. By amenability, this transition kernel
is necessarily sub-Markov, see [Woe00, Corollary 12.5]. Let ¢ < 1 be such that p° = %pS’P is Markov. Then,
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letting G* be the Green function associated with p*, for any = € P we have Gi’P(e, x) = éf (e,z). We now
prove that

(8) Y Gi(e,x) < .

zeP

Consider the convolution operator

Bt ( - zﬁsu,ymy))

acting on the space of ¢; functions, i.e. summable functions on P. The ¢;-norm of P, is 1, so its ¢1-spectral
radius is bounded by 1. In particular, 1/¢ is bigger than the ¢;-spectral radius, so by definition, I — tP; is
invertible in the space of summable functions. Moreover, the inverse is of the form

@s = Z tnf)sn

n=0

Consider the function f defined by f(z) = 1 if 2 = e and 0 otherwise. Then, Q. f(z) = G5(e,2~1). Since
the function f is summable, Q,f also is summable, and so the Green function G* at ¢ is summable. This
proves (8]).

Since for x € P, Gy(e,z) = Gi (e, ) = Gi(e, z), we deduce that Yep Gs(e,x) < 0 and so wp(s) < 0.
Moreover, by (3], we have

clz|
Gole) < (5) Gulesa)
s

for every x € I'. Summing over P n S,,, we see that wp(r) < wp(s) and so wp(r) < 0.

Finally, if the random walk is not spectrally degenerate along P, then by definition the spectral radius of

pftF is strictly less than 1. The same proof shows that wp(R) < 0. O

When the parabolic subgroup P has sub-exponential growth, we do not need spectral non-degeneracy to
get that wp(R) < 0.

Proposition 3.13. Let P be a maximal parabolic subgroup. Assume that P has sub-exponential growth.
Then for every 1 <r < R, wp(r) < 0. In particular, for every 1 <r < R, wp(r) < wp(r).

Proof. Let s > 0. There exists C' = 0 such that for every x € T, Gr(e,z) < C. In particular, for every
r <R,
0,4(P) < C Y H(P  Sy)e ™ < +oo.
n=0

Thus, O, (P) is finite for every positive s and so wp(r) < 0. O

3.5.2. Adapted random walks on free products. Before giving other examples, let us briefly recall some ter-
minology and basic properties of random walks on free products. Consider a free product I' = I'g * I';. Let
o be an admissible probability measure on I'g, p1 an admissible probability measure on I'y and define

ta = apr + (1 — a)puo.
Then p, is an admissible probability measure on I'. Moreover, if both g and u; are symmetric, respectively
finitely supported, then so is .

Such a probability measure is called adapted to the free product structure and it can only move inside
one of the free factors I'yg or I'; at each step. Adapted probability measures on free products have been
considered by many authors, see [Car88], [Car89], [CG12], [CGMI2], [Woe86a] and [Woe86b| for instance.
For convenience we will assume that the random walk driven by u; on I'; is transient at the spectral radius, i.e.
the Green function is finite at its radius of convergence. This is not very restrictive, since by the Varapoulos
Theorem, only groups with quadratic growth, i.e. groups that are virtually Z or Z2, can carry an admissible
random walk which is not transient at the spectral radius. Actually, Varapoulos [Var86] proved that only
groups with quadratic growth can carry a non-transient (at r = 1) random walk, but a standard argument
due to Guivarc’h [Gui80] allows one to reduce non-transience at r = R to non-transience at r = 1 by the use
of a suited h-process, see [Woe00] for more details and in particular [Woe00, Theorem 7.8] for a complete
proof.
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Denote by G*¢ the Green function on I'; associated with p;, i = 0,1 and by R,,, the radius of convergence
of G*, i.e. the inverse of the spectral radius of ;. Also, as in the previous example, denote by p*T° the
first return kernel to I'y associated with sy, and by G 1o the associated Green function. We first relate GHo
and G*'° which are two Green functions associated with different transition kernels on the same group I'y.
Because i, is adapted to the free product structure, the first return kernel p*° can be written as

ps,Fg (6,33) = (1 - O‘)SUO + ws,ade,xv

where wj o is the weight of the first return to e, starting with a step in I';. Thus, [Woe00, Lemma 9.2] shows
that for any x,y € T'g,

s, I’ 1
(9) Gt 0 (1’7 y) = 1 _ ws,atG?g;y(;?itt (l', y)
Define
_(1—-a)s
CO(S) B 1 - ws,a .

As in the previous example, by [DG21, Lemma 4.4], G5"°(e, ) = G,(e, ), where as usual G, denotes the
Green function associated with the initial random walk driven by u, at s. So in particular, applying @ at
t=1,

s,Lo 1 0
(10) Gy(x,y) = G (x,y) = mGlZO(S)(%y)

We also set
as

b

Gi(s)

=—
1—ws7a

where wy, , is the weight of the first return to e, starting with a step in I'g. Then, by symmetry, we also have
for any x,y € I'y,

1

M1
11— aGgl(s)(xay)-

(11) Gs(z,y) =
Let R, be the inverse of the spectral radius of p, and let R, be the inverse of the spectral radius of pg
on Fo.

Lemma 3.14. As « tends to 0, R, and (o(Rs) both converge to R,,. Moreover, w, o converges to 0 and
the convergence is uniform in r < R,.

Proof. We first show that R, is a continuous function of a.. Let P, be the convolution operator

Py:f— (fc - Zua(w_ly)f(w) :

Y

Claim. In the €2 operator norm, P, is a continuous function of c.

Proof of the claim. We first show that P, is continuous in the ¢; and ¢, operator norms. Fix «g. Note that
lo has a finite support included in a fixed finite set X, so pq(x) uniformly converges to piq, () as « tends
to ag. Let f be an £, function. Then, for every x,

(-

< D Iral@™y) = pag (@ 9)] 1/ ]1e-
yel’

The only possible y such that we do not have i, (z71y) = 0 and pq(z71y) = 0 are in xX. This yields
D ia@™'y) = o (@Y = Y. [1a(y) = pa ()] -
yel’ y'eX

Therefore, for every € > 0, if « is close enough to ay,

(e

< €| fllo-
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This proves continuity for the £, operator norm. Now, let f be an ¢; function. Then,

()

D e 2) = pag (') = D [Ha(@) = pag (2)].

zel’ z'ex

< D) lraly™' ) = e (v 2) || £ ()]

z,yel’

Fix y. Then, as above,

Let € > 0. Then if « is close enough to «g this last sum is bounded by ¢, independently of y. Consequently,

()

This proves continuity for the ¢; operator norm. The Riesz-Thorin interpolation theorem [Fol99, Theo-
rem (6.27)] shows that P, converges to P,, for the ¢, operator norm, for every 1 < p < +00. This proves
the claim, taking p = 2. O

<D 1) =elflh

1 yel’

Since R, is the inverse of the spectral radius of P,, continuity of R, follows. To conclude it thus suffices
to prove that w, o uniformly converges to 0. By [Woe00), Proposition 9.18],

Wy o = Z P, (X, =e, X #¢,1 <k <n, first step chosen using au)r"

n=1

and by the Markov property,

Wy = rap(e) +r Z P.(X1 =1) Z P, (Xn =z X, 22 k< n) r’.

x#eel'y n=1
Set
(12) F.(e,x) = Z Po(Xp,=a,X; #x,k<n)r"
n=1
and for i = 0,1, z € 'y,
(13) Fi(e,x) = ZPW (Xp =2, X #x,k <n)r™.

n>1
Then, by [Woe00, Lemma 1.13 (b)], for z € T,
G,(e,z) = F.(e,x)G,(e,e)
and for z € T';,
Gi(e,x) = Fi(e,z)G (e, e).
Thus, by , we have
F.(e,z) = in(r)(e,x)

and so we recover [Woe00, Proposition 9.18]. In particular,

Wro < aRy (,ul(e) + Z Nl(f)leam (e,xl)> :

zel’y
Finally, F}im (e,z71) is finite since we assume that the random walk on T’y is transient at the spectral radius.
Thus, there exists a constant C' such that
Wy o < aC
and so w, o uniformly converges to 0. (]

Lemma 3.15. There exists ag such that for a € [0,ap], the quantity w;ya stays bounded away from 1. In

particular, as « tends to 0, (1(r) converges to 0 and the convergence is uniform in 1 <r < R,.
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Proof. By [Woe00, Proposition 9.18],
w,, <U(r) = Z P.(X,=¢Xr#e,1<k<n)r".

“ n=1
Also, by [Woe00, Lemma 1.13],
1
Grle,e) = ———.
) = =T
Note that G,.(e, e) depends on «, but according to Lemma and , G, (e, e) is uniformly bounded for
a in a fixed neighborhood of 0. Consequently, U(r) stays bounded away from 1. O

3.5.3. Ezample B. Here is now an example where wp(r) > 0 and wp(r) < wp(r). Consider the group
I' = Fy + Z%, where Fy is the free group with two generators. In other words, with the notations above, we
set Tg = Fo and T'; = Z%. Then T is hyperbolic relative to I'y and I';.

We choose d = 3 so that every finitely supported admissible random walk on I'; is transient at the spectral
radius. Choose an adapted measure p, = ap; + (1 — a)uo as above. Then, pg is a probability measure on
the non-amenable group Fy whose finite support generates Fg, hence, R,,, > 1. According to Lemma
we can thus fix a so that (o(r) > 1 for every r in a neighborhood of R,, say ro < r < R,. Now that « is
fixed, we omit it in the notations. By ,

1

>, Giler)=— ” G (e ).
zeF>n S,
Since (o(r) > 1, [GLI3, Note 1.7] shows that > ¢ o
particular, we see that wg,(r) = 0. On the other hand, by , for s > r, wr,(s) > wg, (), so for large enough
r, we, (1) > 0.

We also deduce from that wr, (1) = wy,(Co(r)), where w,,, is the growth rate of the Green function
associated with po on Fy. Since Fg is hyperbolic, by [SWX20l Theorem 3.1], the Green function has purely
exponential growth, i.e.

G’C‘;’(T)(e,x) diverges as n tends to infinity. In

> Groe,w) = e,
wGFQ F\Sn

Consequently, the Poincaré series

O, s(F2) = Z G (e, z)e= 3

zeF,

diverges at s = wg, (). By Corollary wr, (1) < wr(r).

3.5.4. Example C. Finally, here is a last example. We assume that there exists a finitely generated group
I'g endowed with an admissible finitely supported probability measure jo such that for some 7o < R,,,, the
Poincaré series
Orps(To) = O G0 (e, m)es(e)
xelp
converges at s = wy,,(ro) > 0.

We consider the free product I' = Iy * I'; where I'; = Z%, d > 3. As above, I is hyperbolic relative
to I'o and I'y. We consider the adapted measure p, = aus + (1 — @)ug. We will prove that for some r,
wr, (1) = wr(r). By Lemma Co(Ra) converges to R, as a converges to 0. Thus, for small enough «,
there exists r, such that (o(r,) = ro. Also, by Lemma ¢1(r) converges to 0 and w!. , stays bounded

r,Q

away from 1 as «a tends to 0. By 7 for every € > 0, there exists « such that for every z # e € I'y,
(14) Gr(e,z) <e.

Every element x € I' can be written as © = a1b;y...axbg, where a; € 'y, b; € I'1 and a; # e except maybe
a1 and b; # e except maybe b,. Moreover, since the random walk is adapted to the free product structure,
it has to pass through a1b...a; before reaching aqb;...axb;. Consequently,

G,(e,x) _ Gr(e,arby...a) Gr(e, by)

Gr(e,e) Grle.e)  Grlee)’
see also [Woe86al, (3.3)]. Note that this is an exact version of the relative Ancona inequalities in the specific
case of adapted random walks on free products. We thus get
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0, () = Z G, (e, z)esdem)

zel’
(15) <Q ( ) Z Z GT(67 a’) efsd(e a) ' Z GT(67 b) efsd(e b) '
< G.(e e — ' —_— ’
k=0 \ aelo\{e} Gr(e,e) bel';\{e} Gr(ee)
By ., wry(Ta) = Wy (10), 80 wr(ra) = wy,(ro) > 0. Therefore,
Z Gra (eax) epr ro)d(e, ) Z GZO 2 .13 e~ Who (ro)d(e,x)
0
o G, (e e) oo G (e, e)

1

= m@mw“o(m)(m) < +00.

If z € I'y, then as explained above, we have

Grle,x) e
m =F(e,x) = Fgl(r)(eax)

where F and F! are defined by and . Since the random walk on I’y = Z¢ is transient at the spectral
radius, there exists C such that

FCll(T’)(e’x) < Fll%ul (e,x) < Cy.

Also, since I'; = Z% has polynomial growth, there exists a constant Cs such that

Z G 7wp(ra)d(e,w) e Z e*‘“uo("'o)d(e,z) < Cs.

xely zel’y

We now choose € > 0 such that

97"0 Wy (7o) (FO)
Wi _ 1
Glee) S

and we fix « such that by (14)),

bel';\{e}

Consequently, by ,
O

Ta,wr(m)(r) < 2 C§~

k=0
This proves that the Poincaré series ©, .. (r.)(I') is convergent. According to Lemma we deduce that

wp(ry) = wr(ry) for some parabolic group P. Since I'y = Z? has polynomial growth, by Proposition
we necessarily have P =T'y.

Remark 3.16. We assumed that the Poincaré series of 'y was convergent at its critical exponent for some
ro < R,,. However, this was only for convenience. If this Poincaré series is convergent for r = R, , then
we can make the same construction and choose instead ro = R,. We only need to know that {o(Ra) = Ry,
for small enough . The fact that (o(Ra) = Ry, is equivalent to the fact that u. is spectrally degenerate
along I'g, so we just need to ensure that for small enough «, . is spectrally degenerate along I'y. Now, if
the Poincaré series is convergent for r = R, then >, ¢ Gl;?io (e,x) < Ce“ro(Fuo) and so

Y, GR (e 2)GR (w,e) < Oy, (ro) < 0.

x€ely

By [GL13| Proposition 1.9], this implies that the first derivative of the Green function t — G4° (e, e) is finite
at R,,,. Using the work of [CG12l Section 7], we can then construct such a spectrally degenerate probability
1o along I'g for small enough a.
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Remark 3.17. In [CGMI2, Lemma 4.7], the authors prove that wp(r) < wr(r) always holds. However, their
proof is incorrect. Indeed, they use the following inequality

Z G.(e,x) < C Z G.(e,x) Z G.(e,x).

€S 4m NP zeS, NP €S, NP
Proving such an inequality would require that for any « € S,,+,, and any y € S,, on a geodesic from e to =z,
we have
Gy(e, ) < CGr(e,y)Gr(y, @)
This in turn would require Ancona inequalities for the group P. It is an open question whether the fact that

Ancona inequalities hold for any geodesic implies that the group is hyperbolic, but it is easy to prove that
they do not hold in a parabolic subgroup P if P is virtually abelian, see for instance [DG20} Section 5.2].

Let us give some final remarks to conclude this discussion. The last example raises the following question.

Question 3.18. Does there exist a finitely generated group I'g endowed with an admissible finitely supported
probability measure jig such that for some r < R, the Poincaré series ©, (I'g) is convergent at the radius
of convergence s = wr,(r) > 07

If there is a positive answer to this question, then as we saw, there exists a relatively hyperbolic group I"
endowed with an admissible finitely supported probability measure u and a parabolic subgroup P for which
wp(r) = wr(r) at some r. Moreover, if the measure g is symmetric, then we can choose the measure p to
be symmetric as well.

On the contrary, if this question has a negative answer, then Corollary suggests that we always have
wp(r) < wp(r). However, this corollary requires the Poincaré series

@r,s(P) = Z Gr(eap)eisd(e’p)
peP

to be divergent, where Gg(e,p) is the Green function associated with the measure p on I'. Using [DG21]
Lemma 4.4] as above, we can rewrite this Poincaré series as

O.s(P) = Y} G17 (e, p)e P,

peP

where G;’P is the Green function at 1 associated with the first return kernel p™* defined in . Unfortunately,
this first return kernel is not in general finitely supported, so even if Question [3.18 has a negative answer,
we cannot deduce that this Poincaré series is divergent, hence we cannot deduce that wp(r) < wr(r).

4. THE GROWTH RATE OF THE TRACE OF THE BRANCHING RANDOM WALK

Recall that P,, is the set of points in S,, that are eventually visited by some particle of the branching
random walk and that M,, = §P,,. In this section, we compare the growth rate of the Green function wr(r)

with the growth rate of the branching random walk loglim sup Mrl/ ™. Our goal is to prove the following
proposition.

Proposition 4.1. Forr € [1,p7'], wp(r) = limsup, _,, = log M,, almost surely.

Theorem [I.1]is then a consequence of Proposition Corollary [3.4] and Corollary

4.1. Upper bound. We first prove the following.

Proposition 4.2. Almost surely, we have

1
lim sup — log M,, < wr(r).
n—oo 1N
The proof of [SWX20|, which relies on the Borel-Cantelli lemma uses the purely exponential growth of
the Green functions over spheres. However, only a small adaptation is needed to apply it here. We rewrite
it for convenience.
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Proof. For x € T', we denote by Z, the number of particles of the branching random walk that ever visit x.
The many-to-one formula states that
E[Z,] = G,(e, x).
17,>1, so by the Markov inequality,
E[M,] = > P(Z,>1)< ). E[Z] = H,(n).

TES, z€S,

Then, M, =3,

€S,

Let € > 0. By the Markov inequality,
E[M,] < H,(n)
(ewr(™) 4 e)n = (ewr(r) 4 ¢)n’

p (M}/" > eor(M) 4 e) <
/7 so there are at most finitely many n such that

Ho(n)V" = eor(™ 4 ¢/2.

By definition, wr(r) = loglim sup H,(n)

Therefore,

H.(n)
P4 )
n (ewF(T) + G)n
The statement of the lemma is thus a consequence of the Borel-Cantelli lemma. (|

4.2. Lower bound. Before proving the lower bound, we first recall some geometric lemmas about relatively
hyperbolic groups. Let P = {gP : g € T', P € Py} be the collection of all parabolic cosets. Recall that n and
L(n) are fixed so that for L = L(n), any (n, L)-transition point satisfies the results of Section

Definition 4.3. For L > L(5), an (n, L)-transition point on a geodesic is called an L-transition point. A
geodesic « is called L-transitional if every point on « is an L-transition point.

Lemma 4.4. Let L > L(n). There exists K such that the following holds. For every x,y,z € T, if both
[z, z] and [y, z] are L-transitional, then there exists a point w within K of an L-transition point on [z, z],
an L-transition point on [y, z] and an L-transition point on [z,y].

Proof. Let x,y,z satisfy the statement of the lemma. Applying Lemma [2.9] consider the last point wy
on [z,z] which is within C of [z,y] and let w be the next point on [z,z]. Since w also is L-transitional,
by definition of wq, w is within C' of an L-transition point on [z,y]. Moreover, w is within C' + 1 of an
L-transitional point on [y, z]. O

Lemma 4.5. There exists a constant C' such that the following holds. Let xy,x1,x2 be three points in T'.
Then, there exist wg, w1, ws such that for ¢ mod 3,

d(xi, Ti41) = d(s, w;) + d(wi, wig1) + d(wigr, zi01) — C.

Moreover, w; and w;+1 are within C' of an L-transition point on [x;,x;11]. Finally, if [x;,xi41] is L-
transitional, then d(w;, w;+1) < C’, where C' only depends on L.

It will be convenient to rely on similar results proved in [Dus22a]. However, the terminology is a bit
different and [Dus22a) uses the notion of relative geodesics. Let us briefly introduce this notion. Let Py be
the chosen set of representatives of conjugacy classes of parabolic subgroups and let S be a finite generating
set of T'. Following Osin [Osi06], the relative graph is the Cayley graph of I' endowed with the (possibly
infinite) generating set S| J{Jpep, P- It is quasi-isometric to the coned-off graph introduced by Farb [Far9§]
who gave one of the first definitions of relatively hyperbolic groups. The relative graph is hyperbolic. A
relative geodesic is a geodesic in the relative graph. By [HrulQ, Proposition 8.13], if =,y € T, then any point
on a relative geodesic from z to y is within a uniformly bounded distance of a transition point on a geodesic
from z to y (in the Cayley graph of T').

Proof of Lemma[4.5. Consider the projection of zy on a relative geodesic from z; to x2 in the relative Cayley
graph. If several projections exist, choose the closest possible to x1. Denote this projection by w; and let
wy be the point on this relative geodesic just after w.

By [Dus22al, Lemma 4.16], any relative geodesic from zy to 7 passes at a point v within a bounded
distance of w;. We prove by contradiction that v is within a bounded distance of the projection of zo on
a relative geodesic from xy to x1 the closest to z;. Denote by v' such a projection. Then applying again
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[Dus22al Lemma 4.16], the relative geodesic from x5 to 27 we chose would pass at a point w} within a
bounded distance of v'. If d(v,v’) is large, then d(wy,w}) is also large. Now, if w; is before w) on the
relative geodesic, this contradicts the definition of v" and if w) is before wy, this contradicts the definition
of w1q.

Finally, denote by wg the point just before v on the relative geodesic from zg to x1. Then, applying
[Dus22al Lemma 4.16] one last time, a relative geodesic from x; to x;11 passes within a bounded distance
of w; and w; 1. Since points on a relative geodesics are within a bounded distance of transition points (see
[HrulQl, Proposition 8.13]), this proves the two first properties of the points w;.

Notice that the points w;,w;+1 are chosen within a bounded distance of successive points on a relative
geodesic from z; to z;41. If the geodesic [x;, x;11] is L-transitional, then the corresponding relative geodesic
has bounded jumps in parabolic subgroups, hence the distance between w; and w;,1 is bounded. This
concludes the last part of the lemma. (|

We define
Sy ={x €Sy [e,x] is L-transitional} .
Set M, 1, = P N Sy, .. We first consider the lower bound for the quantity lim,,_,q % log M,, 1. To this end,
mimicking the strategy of [SWX20], we need first and second moments estimates for M, . Set

H.p(n)= >, Gr(e ),
:EESW,,L
and .
wr,r(r) = limsup — log H, 1. (n).
n

n—0o0
Proposition 4.6. For every L > L(n) and r € [1,p~t], there is a constant c;, > 0 such that
cter e < H 1 (n) <cpett™ ] n>0.
Proof. For © € Sy, 1, the point y = [e,x] NS, is in S, 1, and y~!
inequalities, there is a constant ¢; > 0 such that

G (e,x) < c1Gr(e,y)Grle,y ).

x € Sy, By the relatively Ancona

Thus we have that
(16) Hop(nt+m)<ca Y, Gule,y) >, Gile,2) = crHyp(n)Hy (m).

YESn,L 2€Sm,1
Let F be the finite set given by Lemma [2.4] Set
I =max{d(e, f): fe F}+4e.
For z € Sy, 1 and y € S, 1, there is f € I such that
d(z,[e,xfy]) <€ d(zf [e,xfy]) <e
Also, there are positive constants ¢, and c3 such that
Gr(e,x)Gr(e,y) < c2Gr(e, )Gy (z, 2 f)Gr(af, x fy) < c3Gr(e, fy).

Note that 2 fy € |J_;<;<; Sn+i,r- Thus
(17) H, 1 (n)H, (m) < caH, r(n+m)
for some ¢4 > 0. This proposition follows by the Fekete Subadditive Lemma and (16]), (17). O
Lemma 4.7. Forre[1,p7 '], limp o wr 1(r) = wr(r).

Proof. For ng € N and z; € Sy, 1 <14 < m, we can choose f; € F' so that the conditions in Lemma hold
with g, h replaced by x1 fixo - x;—1fi—1%;, T;+1. In particular,
(no+l)ym

r=x1f1T2 frm—1%Tm € U Sk, L
k=(no—l)m

for L sufficiently large, where I = max {d(e, f): f € F'} + 4e. Since F' is a fixed finite set, we have that
Grle,z) = c'Gr(e,x1) - Gr(e, xm)
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with ¢; = minger & E f)). By Lemma there is co > 0 such that each x has at most ¢4 possible

representations in the form of x = x1f1xo -+ fr_1Tm. Therefore

(no+l)m
Z H, (r) = c5' Z Gr(e,x1) - Gr(e,xm) = 5’ [Hy(no)]™
k=(no—l)m T1,..,TmE€Sn

with ¢z = cicy L This and Proposition imply that
2cp lmeMotDmer.L(r) 5 cs' [Hy(no)]™
Letting first m — o0 and then L — o0, we have for every ng € N,
1
lim inf > — (1 log H, ,
im in wp,(7) o 1 (log c3 + log H:-(no))
which completes the proof of this lemma. O

Now we are ready to estimate the second moment of M, 1, which will help us find a lower bound. Let z
and y be in S,, ;. By Lemma there exists w = w(z,y) € I" such that w is within a bounded distance of
transition points of [e, z] and [e, y] respectively.

—1

Lemma 4.8. For 1 <r <p™ and x, y € Sy, 1, there exists a positive constant ¢ > 0 such that

2 Gy (e,2)Gr(z,2)Gr(2,y) < cGr(e, w)Gr(w, 2)Gyr(w,y).

zel
Proof. Let k = C' + K where C and K are given by Lemma 2.9 and Lemma[4£:4] Define
Qy = {zeT: d(w,u) < & for some transition point u € [e, 2]},

and
= {zeT: d(w,u;) < k for transition points u; on [z,z] and uy on [z,y]}.

By Lemma |2 and Lemma @, I'=0;u Qg

Assume z € Ql. Applying Lemma to (z,y,2), we get the existence of transition points v, v’ on [z, y]
such that v is within a bounded distance of a transition point on [z, z] and v’ is within a bounded distance of a
transition point on [z, y]. Moreover, since [e,x] and [e, y] are L-transitional, d(v,v") is bounded. Combining
all this, we see that v is within a bounded distance of transition points on [z,y], [z, z] and [y, z].

Now, applying Lemma to (w, z,y), we have that v is within a bounded distance of either a transition
point on [w, z] or on [w,y]. We assume without loss of generality that the latter holds.

z
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Claim. For every given K, there exists K' such that if w is within K of a transition point on [v,y], then
d(v,w) < K'.

Proof of the claim. Since v is within a bounded distance of a transition point on [w,y] by assumption, we
have

d(w,y) = d(w,v) + d(v,y) — C.
Thus, if d(w, [v,y]) < K, then
d(v,y) = d(d(w,v) + d(w,y) — 2K
and so
2d(v,w) < C + 2K,
which proves the claim. O

Claim. For every given K, there exists K' such that if v is within K of a transition point on [w,z], then
d(v,w) < K'.

Proof of the claim. By the previous claim, we can assume that w is far from a transition point on [v, y]. But
then, since w is within a bounded distance of a transition point on [z,y], applying Lemma to (v,z,y)
shows that w is within a bounded distance of a transition point on [v, z]. Therefore,

d(v,z) = d(v,w) + d(w,z) — C.
Thus, if d(v, [w, z]) < K, then
d(w,z) = d(v,w) + d(v,z) — 2K
and so
2d(v,w) < ¢ + 2K,
which proves the claim. O
These two claims show that either d(v, w) is bounded or w is far from a transition point on [v,y] and v is
far from a transition point on [w, z]. Applying Lemma 4.4 to (v, x,y) and then to (z,w, x), in every case we
get that w is within a bounded distance of a transition point on [v,z] and v is within a bounded distance of
a transition point on [w, z].
By the relatively Ancona inequalities, we thus have
G.(e,2) < 1Gr(e,w)Gy(w,v)Gr(v, 2),
GT(Zv ,13) < ClGr(z7 U)GT(U7 IU)Gr(UJ, Jf),
Gr(za y) < ClGr(Z> U)Gr(va y)
Consequently,
S G, 2)Gr(2,2)Go(2,y)
ZEQl

< G (e, w)Gr(w, ) Z G, (v,9)Gr(w,v)Gp (v, w)Gr (v, 2)Gy (2, v)%

ZEQl

Note that G, (w,v)Gr(v,y) < c2Gr(w,y). Therefore,
Z Gr(eaz)Gr(zvx)Gr(Z7y) <C3Gr(evw)Gr(wvx)Gr(w7y)

z€Q

D Gr(w,v) Y Gr(v,2)Gy(2,0)?

ve[w,y] zel

< c4Gr(e,w)Gr(w, )G (w, y).

Here we used the facts that for r < p~!, G,(w,v) is decaying exponentially in d(w,v), which is a direct
consequence of and that

Z G, (v,2)Gr(2,0v)* < C Z G, (v,2)Gr(z,v) < 0

zel zel

by [GL13l Proposition 1.9].
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Now we consider the case z € 5. Using Lemma [4.5] again, there exists v € I" such that v is within a
bounded distance of a transition point on [e, z], a transition point on [z, w] and a transition point on [e, w].

|
fe

By the same argument as in the case z € 1, we have that

2 Gr(e,2)Gr(2,2)Gr(2,y) < c5Gr(e,w)Gr(w, 2)Gr(w,y)

ZEQQ

This completes the proof of the lemma. |

This lemma will help us estimate E [M?2 | |. We first recall the following result from [SWX20] whose proof
has nothing to do with hyperbolicity and holds for any finitely generated group I'. As above, for every x € T,
we denote by Z, the number of particles that ever visit x.

Lemma 4.9. Assume that v has finite second moment. Then, there exists C such that for every x,y e T,
E(Z,Z,]<C Z Gr(e,2)Gr(2,2)Gr(2,y).
zel
We deduce the following result.

Proposition 4.10. Assume that v has finite second moment and that r < p~'.

that

Then there exists Cg, such

E[M, 1] = Cpemrt(™),
Proof. As in the proof of [SWX20, Lemma 4.4], we deduce from Lemma that
P(Z, 2 1) = cG,(e, x).
Since E[Mn,r] = 2,5, , P(Zz = 1), the result follows from Proposition O

Corollary 4.11. Assume that v has finite second moment. For r € (1,p~) and L sufficiently large, there
exists a positive constant ¢ such that

E[MZ2,] < c(E[M,])*.
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Proof. By Lemma and the fact that wp(r) > 1, we have wp 1(r) > 1 for sufficiently large L. Applying
Proposition [4.6] and Lemma

E [M,%L] <c¢ Z Z Gr(e,2)Gr(2,2)Gr(2,y)

x,y€Sn, 1 2zl

<C2 Z Z Z Gr(evw)Gr(w’m)Gr(w7y)
k=0 weSk, 1, x,y€Sn, L

<cs e(2n—k)wr,L(7‘)

This yields the desired bound. O
We can now prove the lower bound and finish the proof of Proposition
Proof of Proposition[{.1, We first fix r < p~! and assume that v has finite second moment. By Proposi-

tion [£.10}

1

—E[M,

5 [ ,L])

and so, by the Paley-Zygmund inequality and Corollary for some ¢y > 0,

2
E[M,
P (Mn,L > C—le“FvL(”") > (BIM,..L))” ]E][M’g]]) > cy.

P (MmL > C—Qlewf=ﬂ(r)”) >P (Mn,L >

Thus, with positive probability, the events {Mi/z > (%)w ewr,L(r)} occur for infinitely many n and so,
with positive probability, lim sup % log M, 1, = wp (r). By definition, M,, > M, 1, hence for every large
enough L, with positive probability (a priori depending on L), we have lim sup % log M,, > wr (r). By
[SWX20, Lemma 4.7], lim sup Mﬁ/ " is almost surely a constant. Thus, for every L, almost surely we have
limsup = log M,, > wr,1(r). Letting L tend to infinity along a sequence, it follows from Lemma that
lim sup % log M,, = wr(r). Thus by Proposition

1
lim sup — log M,, = wr(r).
n

We conclude as in [SWX20]. For every € > 0, we can construct a probability measure ' with mean r — €
and with finite second moment so that v stochastically dominates v’. Denoting by M/, the number of vertices
in S,, ever visited by a branching random walk driven by p and v/, we see that M,, stochastically dominates
M), and so

P (limsup % log M,, = wr(r — e)> >P <limsup % log M, = wr(r — e)) =1.
Since wp(r) is continuous by Corollary we deduce that
lim sup % log M,, = wr(r)
almost surely. |

5. A LOWER BOUND FOR THE HAUSDORFF DIMENSION OF THE LIMIT SET

5.1. The limit set in the Floyd and Bowditch boundaries. For r < p~!, we let Az(r) and Ag(r)
be the limit sets of the branching random walk whose offspring distribution has mean r in the Floyd and
Bowditch boundary respectively.

Proposition 5.1. Let r < p~'. Almost surely,

. -1
Hdim(Ax(r),0e) = 710g)\wr(7")

and 1
Hdim(Ag(r),d.) = log)\wr

(r)-
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By 7 it is enough to prove the lower bound for the shortcut distance on the Bowditch boundary. For
simplicity, we write A = Ag(r) and X =T u dpT.

Let h < %wp(r). We will prove that with positive probability, there exists a positive finite measure y
on the limit set A such that

f J be(m,y)Mdx(x)dx(y) < +oo.
AJA

Recall that P, 1, is the set of L-transitional points in S, that are ever visited by the branching random walk
and M, 1, is the cardinality of P, ;. Using Lemma we fix L such that

log A

(18) h < wnL(’I“).

Let A,, be the event
1
{Mn,L = QE[MTL,L]} .

By the Paley-Zygmund inequality and Corollary there exists p > 0 such that P(A,,) = p. Also, for any
C=>0,P(M, > CE[M,]) <1/C. Therefore, for large enough C, the event B,, defined by

1
{E[Mn,L] < Mn,L < CE[Mn,L]}

2
satisfies P(B,,) = p/2. We define for every n a random measure y,, by
1
(19) Xn = 1B, == D(x)
E[M, 1] l_e;w

where D(z) is the Dirac measure at .

Our goal is to apply a compactness theorem to the sequence x,, and find a limit random measure y. In
[Cra02], the author proves a compactness criterion for random probability measures. Here the measure x,
is not almost surely a probability measure, however some of the results of [Cra02] still hold in our context.
References and proofs are postponed to the Appendix.

Note that

E[xn(X)] <C,
SO Xn is a random finite measure in the sense of Definition We define the measure mo(x,) on 2 by
setting, for every event A,

Ta(Xn)(A) = E[1axn(X)] =E [1AanE][\J4WnT,LLL]] .

Then,
Ta(Xn)(4) < CP(A).

Since X is compact, any subset of Mq(X) is tight in the sense of Definition Moreover, any point of '
is isolated in X. By Corollary the closure of {x,} is compact for the weak topology on random finite
measures. This is the smallest topology such that for every random bounded continuous function, the map
w— p(f) is continuous, where a random bounded continuous function is a function f : (z,w) — f(z,w) such
that for every w, f(-,w) is bounded continuous, for every x, f(x,-) is measurable and the map w — | f(-,w)] s
is P-essentially bounded.

Thus, there exists a sub-net (xa)aca such that x, converges to some random finite measure x. This
means that there exists a directed set A and a monotone final function h : A — N such that for every a € A,
Xa = Xh(a) and such that y, eventually lies in every neighborhood of x. We refer to [ABOG, Definition 2.11,
Definition 2.15, Theorem 2.31] for more details on nets and a characterization of compactness in terms of
convergent sub-nets. This implies that for every random bounded continuous function f, we have

(20) Xa(f) — x(f).

0

Since
L<EN(X)]<C,
the same holds for y, applying to the function 1g1x. Therefore, with positive probability, x is not the

null-measure.
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Note that xa(P UA) = xa(X) and that P U A is a random closed set in the sense of Definition [A.6] Thus,
by Proposition which is analogous to the classical Portmanteau theorem, we have

X(P U A) = limsup xo(P U A) =limsup xo(X) = x(X).

Also, the topology on I' U dgI" extends the discrete topology of I'. Thus, any compact K < I' is closed and
open, so the function 1k is continuous. Applying convergence to this function and noting that for large
enough n,we have x,(K) = 0, hence for large enough «, xo(K) = 0 we get that x(K) = 0. Since I" can be
written as a countable union of compact sets, we get that

E[x(P)] < E[x(T)] = 0.

Thus, x almost surely gives full measure to A.
We can now finish the proof of Proposition [5.1

Proof of Proposition[5.1} First, as in the proof of Proposition we can construct a branching random
walk (T, u, ") such that v/ has mean r — ¢, has finite second momment and is stochastically dominated by
v. As a consequence, we can assume that » < p~! and that v has finite second moment.

We slightly modify the distance . and set for 2,y € I' U 0gT’

A _ Joe(ayy) iz 2y
5e($,y) - {)\d(e,x) ifx = Y

where by definition A = 0. Note that for z,y € dgl, 5e(x, y) = (2, 7).
Claim. The function (z,y) € (I' U 0gL) x (D U 0gT") > be(x,y) is continuous.

Proof of the claim. Let x,,y, converge to x,y. If z # y, then z, # y,, so Se(xn,yn) = 6c(zn,yn) for large
enough n, which converges to d.(z,y) = 56(% Y).

Now if x = y, there are two cases. First, if z € T, then z,, = y,, = = and so Se(xn, Yn) = Se(x,y) for large
enough n.

Second, assume that x = y € dgl'. We have to prove that ge(xn, yn) converges to 0 as n tends to infinity.
Up to extracting sub-sequences, we can assume that either x,, = vy, for every n or that z,, # y, for every
n. In the former sub-case, 5e(xn,yn) = \¥e@n) which tends to 0 since z, tends to infinity. In the latter,
ge(zn, Yn) = 0¢(Zn, Yn), which concludes the proof. |

Let
W, = f f be(r,y) P dxn () dxn(y)
(21) 1 . h
> dela,y) "

= 1Bn72
E [Mn7L] xayEPn,L
Claim. The ezpectation E[W,,] is uniformly bounded.

Proof of the claim. By Lemma for every z, y € P, 1, there exists a point w,, which is within a bounded
distance of transition point on [e, 2] and on [e, y]. We denote by d,, the supremum of d(e, w,) for such a point
wy,. Note that [e, 2] and [e, y] are L-transitional. A small adaptation of the proof of [PY19, Proposition 5.13]
yields that

de(z, y) = cp A%,
There exists C such that d,, < n + C. Furthermore, if d,, = k, then

2n—k—-C<d(z,y) <2n—k+C.
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By Lemma [£.9]
E[t{(z,y) € Pnr: dn = k}]

<E Z 1{z,y are visited by BRW(T",v,u)}
wvyesn,L
2n—k—C<d(z,y)<2n—k+C
<C 2 2 Gr(e,2)Gr(z,2)Gr(2,y).
zel Z,YESn, L

2n—k—C<d(z,y)<2n—k+C
Recall that r < p~!. Applying Proposition and Lemma we get

(22) E[t{(z,y) € Por: dp = k}] < Cpe*r ek,
Combining (21)), and Proposition [4.6] we get
n+C n+C
E[Wn] < CLe—2nwF,L(7") Z A—hkewF,L(r)(Q"_k) < Ci Z ()\—he—wr,L(T)yc.
k=0 k=0
By our choice of L @ this last quantity is uniformly bounded. O

h is bounded continuous on X x X. Thus,

[“’“5 7 y) " dxa()dxaly ]M mmé z,y)~"dx(@)dx(y) |

By what precedes, we have that for every «,

E U J Oc(, y)hdxa(x)dxa(y)] <C

for some uniform C. By the Fatou Lemma applied to the measure wx () on X defined for every Borelian
subset B of X by

EUJSS(fc,y)_th(x)dX(y)] hﬂ%fEUJ“M (z,y) " dx(x)dx(y )]

For every k, for every «,

[”“5 (2, 9) " dxa()dxaly ] [”5 (2.9)~"dxa(2)dxa(y )]\c

and letting a go to infinity, we get

E Ufn A 36(w7y)‘hdx($)dx(y)] <C.

This bound being uniform in &, we finally get that
B| [ [d@aaei] <c

Hée@,yrhdx(x)dx(y) < +o.

Recall that &, = d. on dgl. Thus, with positive probability, there exists a finite measure x on A which is
not the null-measure and such that

For any « > 0, the function x A 6, (z,y)~

we have

Consequently, P-almost surely,

fj&(wyy)_hdx(x)dx(y) < +oo.

By Frostman Lemma for metrizable spaces (see [Sha09l Theorem 2.6]), this shows that with positive prob-
ability, h < Hdim(A, d.). The same argument as in [SWX20, Lemma 4.7] shows that Hdim(A, d.) is almost
surely a constant. This concludes the proof. O
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5.2. The limit set in the ends boundary. We prove here Theorem We briefly introduce infinitely
ended groups and refer to [DY20, Section 4] and references therein for more details on those groups and on
the link between random walks and the end boundary. Let (V, E) be a locally finite graph and let F be a
finite set of V. We denote by C(F') an infinite connected component of the complement of F' in (V, E). An
end £ of (V, E) is a collection of infinite connected components C(F’), where F' is finite, such that for any two
such F, F’, we have that the intersection of C(F) and C(F”) is infinite. We will also say for simplicity that
¢ lies in the connected component C(F) if C(F) is part of the collection defining £&. We denote by ¢ (V, E)
the set of ends. We can endow the end compactification V' u 0¢(V, E) with a topology which extends the
discrete topology on V' such that V u dg(V, E) is compact and V is dense in its ends compactification. If T
is a finitely generated group, we define its end boundary as the set of ends of a Cayley graph with respect to
a finite generating system. Its topology does not depend on the choice of the finite generating system. We
denote by 0¢I" the end boundary of T'.

Let 0 < A < 1. We define the visual distance d, of parameter A on ' U d¢T' by setting Se(m, y) = A", where
n is the minimal integer such that x and y lie in two distinct connected components of the complement of
B(e,n). It is well known that the end boundary is covered by the Floyd boundary, see for instance [GGPY21],
Proposition 11.1] or [Kar03]. Moreover, we can be more precise and by [DY20, Lemma 4.3], the identity of
I' extends to an 1-Lipschitz continuous and equivariant map 1 from the Floyd compactification to the end
compactification, so in particular

Oe(w,y) = be(v(x), ¥(y))-
If T is a group with infinitely many ends, we denote by Ag(r) the limit set of a branching random walk
(T, v, u) with E[v] = r. We prove the following.

Proposition 5.2. Let r < p~'. Almost surely,

. 2 -1
Hdim(Ag(r),d.) = @wp (r).

By a celebrated result of Stallings [Sta71], a group with infinitely many ends I" splits as an HNN extension
Agco or an amalgamated product A x¢ B, where C' is a finite group. The action on the corresponding Bass-
Serre tree satisfies the conditions of [Bow12], Definition 2] and so T is relatively hyperbolic. However, there
is no clear relation between the shortcut distance on the Bowditch boundary and the visual distance on
the end boundary. Indeed, the ends boundary is in general larger than the Bowditch boundary and even if
they coincide, the shortcut distance is the largest distance on the Bowditch boundary satisfying , so it is
bounded from below by the visual distance. Thus, we cannot deduce Proposition from Proposition [5.1

Proof of Proposition[5.4 We follow the same strategy as for the Bowditch boundary. Since I' has infinitely
many ends, it is relatively hyperbolic. It is either an HNN extension A& or an amalgamated product Ax¢ B,
where C is finite. In the former case, the parabolic subgroups are the conjugates of A and one can choose
Po = {4}, in the latter case, they are the conjugates of A and B and one can choose Py = {A, B}. In both
cases, every element of I" can be written uniquely in a normal form, see [Woe89, (9.2),(9.4)]. For simplicity,
we only give details of the proof when I' = A #¢ B. The case of an HNN extension is treated similarly. In
this situation, the normal form is described as follows. We choose a set of representatives 2 of A/C and a
set of representatives B of B/C. Then, any element x of T' can be uniquely written as

(23) T = aibi...apbye,

where a; € U, b; € B, c € C. Moreover, any path from e to x in the Cayley graph of I' has to pass within
a bounded distance of every prefix of z in the normal form . This follows from the fact that A «¢ B is
quasi-isometric to the space X obtained by taking copies of A and B for each coset gA and hB, g,h € I" and
connecting

e ga € gA to ga € gaB by adding #C edges between the coset gaC in gA and the coset gaC in gaB.
e gbe gB to gbe gbA by adding $C edges between the coset gbC in gB and the coset gbC in gbA.

The construction of the space X is performed in [SW79]. It is similar to the construction of a tree of spaces
modeling the free product A = B obtained by adding one single edge between every element ga € gA and
ga € gaB and one single edge between every element gb € gB and gb € gbA. This space is also used in
[PW0Q2] to prove that A * B is quasi-isometric to A ¢ B.
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In particular, if a geodesic [e,z] is L-transitional in the sense of Definition then |e, x] cannot travel
long in parabolic subgroups and thus every word a; and b; in the normal form of x satisfies |a;| < Dy,
and |b;| < Dy, where Dy, only depends on L.

Let h < @wp(r). Using Lemma , we fix L such that h < %wF,L(r). The sequence of random
finite measures x,, on I' defined by (|19) converges, up to a sub-net, to a random finite measure y on the end
boundary that gives full measure to Ag( ) and which is not the null measure with positive probability. We
slightly modify the distance . by setting 0. (z,y) = de(z,y) if  # y and d,(z,y) = Nl if z = y and we
define

W, = j f 5. (@, y) " dxn (2)dxn(y)

1 N
=1, —— Z belx,y) ™"
E [MnyL] z,yE’Pn,L

For z,y € P, 1, we set d,, to be the maximal length of a common prefix of x and y in their normal form.

Claim. There exists ¢y, only depending on L such that be (z,9) = cp A%,
Proof of the Claim. Let w, be a common prefix of x and y of length d,, and write
T = WnT1. - T Cy Y = WplY1--YC
where x;,y; are either in 2 or B and c,¢’ € C. Then, any path from z to y has to pass within a bounded

distance of wyx;. Since |z1| < Dy and |w,| = d,, we see that x and y lie in distinct components of
Ble,d, + Dy + C). Thus, 0.(z,y) = \dn+DPr+C, O

Using this claim, we prove as above that E[WV,,] is uniformly bounded, which allows us to prove that

fjé () "dx(z)dx(y)

is almost surely finite. We then use the Frostman Lemma to conclude. O

Remark 5.3. Without involving [PW02], an alternative proof uses the bottleneck property introduced in
IDY20]. Indeed, with r, F' be given in [DY20, Lemma 5.4] replacing Lemma any two elements g, h can be
concatenated via some f € F such that any path from e to gfh intersects B(g,r). Such points are referred
to as bottleneck points on [e,gfh]. If a path contains a sequence of bottleneck points with consecutive
distance at most L, then it is said to have the L-bottleneck property. A triangle with sides having the
L-bottleneck property satisfies the conclusion of Lemma @ and Lemma [4.5| . We define similarly S, 1, to be
the set of points x € S, so that [e, z] has the L-bottleneck property. Then Proposition E 4.1| follows verbatim
the same argument with transition point replaced with bottleneck points. The remaining modification goes
as explained above.

A particular class of groups with infinitely many ends are free products of the form I' = I'y * I'; where at
least one the free factors I'; is not Z/2Z. For such groups, the authors of [CGM12] prove that the Hausdorff
dimension of the limit set in the end boundary endowed with a visual distance is exactly %wr(r). Their
proof for the upper bound applies to any group with infinitely many ends. Indeed, it consists in saying that
for any end § € Ag(r), for every n, the branching random walk has to visit some point z € | Jyg;<;, Sn+i
such that £ and x are in the same infinite connected component of the complement of B(e,n). The constant
lop only depends on the support of the measure . Thus, Ag(r) can be covered with P, sets of diameter
bounded by CA\™.

For the lower bound, they first show that Hdim(Ag(r),d.) is bounded from below by some number z*
and then prove that z* = wr(r), see [CGMI12, Lemma 4.7]. However, in order to prove that z* = wr(r),
they use the same invalid argument as the one described in Section namely that the quantity H,.(n)
is sub-multiplicative. Proposition fills their gap and combining it with the proof for the upper bound
described above, we get Theorem

Remark 5.4. The proof of the upper bound described above also works for the parabolic cosets. Namely,
for every P € P, the Hausdorff dimension of Ag(r) n dg P is bounded from above by wp(r). Thus, assuming
further that the Green function has a parabolic gap, we recover [CGM12| Corollary 3.7], i.e

Hdim(Ag(r) n 0g P) < Hdim(Ag(r)).
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6. AN UPPER BOUND FOR THE HAUSDORFF DIMENSION OF THE LIMIT SET

Let T be a relatively hyperbolic group and let Ax(r) be the limit set of the branching random walk in
the Floyd boundary of I', endowed with the Floyd distance d.. Recall that by Theorem [2.3] there exists a
map ¢ from the Floyd boundary to the Bowditch boundary such that the preimage of a conical limit point
is reduced to a single point. We can thus see the set of conical limit points 0g’"I" in the Bowditch boundary
as a subset of the Floyd boundary. We set

AE"(r) = Ax(r) 0 67 (@),
We prove here the following proposition.

Proposition 6.1. Let r < p~'. Almost surely,

: con -1
Hdim(AZ" (1), de) < @wp(r).

Under additional assumption on the volume growth of parabolic subgroup, we have the upper bound on
the full limit set in Floyd boundary.

L. Assume that vs(P) < wr(r) for every parabolic subgroup P. Then almost

Corollary 6.2. Letr < p~
surely,
-1

Hdim(A#(r), de) < log/\wp(r).

Proof. The Bowditch boundary consists of conical points and countably many parabolic points and the
preimage of each parabolic point is exactly the limit set of a parabolic subgroup (see [GP13, Theorem A]).
So the limit set Arx(r) is contained in the union of A®"(r) with countably many limit sets of parabolic
cosets P € P. As P is quasi-convex in the Cayley graph of I', any geodesic from e to the limit points of
P is contained in a fixed neighborhood of P, see for instance [DS05, Lemma 4.3]. Using a suited covering
by shadows based at S, n P, we can see that Hdim(AxP) < %vS(P) (e.g. [PY19, Lemma 4.1]). The
conclusion now follows from Proposition O

To prepare the proof for Proposition [6.1] we first need a few geometric lemmas. Denote as usual by
P ={gP:geTl,P e Py} the collection of all parabolic cosets, and by £¢(v) the length of a path . Fix
a geodesic [z, z] and €1,e2 € [0,1]. An [e1, €2]-percentage of [z, z] consists of points w € [z, z] such that
€1 < d(z,w)/d(z, z) < es.

Lemma 6.3. Let v be a geodesic segment such that [e,1 — €]-percentage of v contains no (n, L)-transition
point. Then there exists a unique P € P such that the entry and exit points of v in N,(P) have distance at
most €l(y) to the corresponding endpoints of .

Proof. By assumption, the middle point m € v is (1, L)-deep in a unique P € P. Let u, v be the corresponding
entry and exit point of v in N, (P). By Lemma u,v are (n, L)-transition points, so d(x,u) < ed(z,y)
and d(v,y) < ed(x,y), which concludes the proof. O

Fix C > 0 and z € S,,. The C-partial cone Q(x,C) consists of points z € G such that [e, z] contains an
(n, L)-transition point C-close to z.

Let B([x, z]) be the ball centered at the middle point of [z, z] of radius d(z, z)/2. Define U(x) to be the
union of the partial cone Q(x,C) and the balls B([z, z]) for all geodesics [z, z] between x and z € Q(z, C).
That is,

U(z) == Qx,C) u (U (B([z, 2]) : Y[z, 2], V2 € Q(a, 0)}) .

Note that any ball of centered at w € [z, z] of radius min{d(w, =), d(w, z)} is contained in B([z, z]).
In what follows, let C' > 0 be given by Lemma [2.9

Lemma 6.4. Let « be a path starting from e and first entering at a point z € U(z). Let w € [x,z] be a
transition point. Set S := min{d(w, x),d(w, z)}. Then B(w,S — 2C) is contained in U(x) so a has distance
at least S — 2C to the point w.
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Proof. We first consider the case z € Q(x, C). By definition of U(z), any ball centered at w € [z, z] of radius
S = min{d(z,w),d(z,w)} is contained in U(z). The statement follows immediately.

Assume now that z lies in a ball B([z, £]) where [z, 2] is a geodesic between x and some 2 in Q(z, C). Let
w € [x, 2] be the middle point.

Consider the triangle with vertices x,w,z. As w is a transition point on [z, z], Lemma shows that
d(w,w’) < C for some w’ € [, x] U [, z]. Thus, B(w,k —2C) < B(w',k—C). As w’ is on the radius [w, z]
or [, z] of the ball B([z, Z]), we have the ball B(w’, S — C) is contained in B(w,n) € U(x). O

Lemma 6.5. Let £ € dgIl be a conical point and consider a sequence of points z, — £. Let x € [e,£] be an
(n, L)-transition point. Then for for all but finitely many z,, there exists an (n, L)-transition point xz, on
le, zn] such that d(z,,2) < C. In particular, z, € Q(x,C) for large enough n.

Proof. If z, — & then 6,(2,,&) < A6 for all large enough n, where § = §(n, L) is given by Lemma
Applying Lemma to the triangle with vertices e, &, z,, there is an (7, L)-transition point x,, on [z,,£] or
[e, zn] such that d(x, z,) < C. It suffices to prove that z, € [e, z,]. Let y be any transition point on [z, &].
Then by Lemma Sy (2n,€) > 4. Tt follows from (1)) that A6 > 0,(2s,&) = AN@W)§, (2, &) > A=) and
hence d(z,y) > C. The conclusion follows. O

Fix € € (0,1/2). Let U.(z) be the set of points z € U(z) such that [z, z] contains a transition point w
being at distance at least ed(x, z) to one of the endpoints:

max{d(w, z),d(w, z)} = ed(z, z).

By Lemma[2.7] the set U(z)\U.(z) consists of points z € U(z) such that the [e, 1 — e]-percentage of [z, z]
is contained in the n-neighborhood of a unique peripheral coset P € P. Explicitly, there exists a subsegment
of [z, z] with length at least (1 — 2¢)d(z, z) contained in N, (P).

Lemma 6.6. Let o be a path starting from e and first entering U(x) at a point z € Uc(x). Assume that
ed(x,z) > 10C. Then there exists a transition point y on [e, z] such that a lies outside the ball around y
with radius ed(x, z) — 3C.

Proof. By definition of z € U(x), [z, z] contains a transition point w such that
ed(z, z) < max{d(w,x),d(w, 2)}.

Setting S = ed(z, z), Lemma[6.4)implies that B(w, x—2C) < U(z), so a does not intersect B(w, S —2C). To
conclude the proof, it remains to find a (1, L)-transition point y € [e, z] such that d(w,y) < C. In particular,
a does not intersect B(y, S — 3C), completing the proof.

Indeed, as in the proof of Lemmal6.4] z lies on the ball B([z,2]) centered at the middle point @ of [z, 2]
for some 2 € Q(z,C). By assumption, w is an (7, L)-transition point on [z, z]. Lemma applied for the
triangle with vertices x, W, z shows that d(w,w’) < C for some w’ € [@,z] U [wW, z]. A schematic figure is
shown below.

Similarly for the triangle with vertices e, z, z, Lemma implies that either [e, z] or [e, ] contains an
(n, L)-transition point y such that d(w,y) < C and then d(y,w’) < 2C. As %z € Q(x,C), d(z,[e,2]) < C
holds, so the triangle inequality shows

d(e,x) +d(z,2) — 2C < d(e, 2).

In a different term, this implies that the path p := [e, x][z, 2] is (2C)-taut: £(p) < d(p—,p+) +2C. It follows
from triangle inequality that any subpath of a (2C)-taut path p is (2C)-taut.

We first claim that either w’ ¢ [z,%] or y ¢ [e,z]. Otherwise, we have w’ € [z,%] and y € [e,x].
Since [y, z][z,w'] is a (2C)-taut subpath of p, we obtain that d(y,z) + d(z,w") < d(y,w") + 2C < 4C, so
d(z,w) < d(z,w") + d(w',w) < 5C. This is a contradiction because d(x,w) > ed(zx, z) > 5C.

Let us assume now y € [e,x] to derive a contradiction. The above claim shows w’ ¢ [z,®w] and then
w' € [W, z]. Using the (2C)-taut path [y, z][z, W], we have

[
d(y,w) +2C = d(y, ) + d(z, ).
which combined with d(z,w) = d(z,%) = d(w’,w) gives
d(y,w) + 2C = d(y, z) + d(w', ).
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On the other hand, |d(y,w) — d(w’,@)| < d(y,w’) < 2C. These together show that d(y,z) < 4C and then
diw',z) < d(w',y) + d(y,z) < 6C. Thus, |d(x,w) — d(w',w)| < 6C. Since d(z,w) = d(z,w%) and w’ is on
[w, z], we have d(w', z) < 6C, so d(z, z) < 12C. This contradicts the assumption ed(z, z) > 10C, hence we
proved that y € [e, z] is impossible, so y is the desired transition point on [e, z]. O

For any m = 1, let U.(x, m) be the set of elements z € U.(z) such that d(z, z) = m.

Lemma 6.7. For any € € (0,1/2), there exists k > 0 with the following property. Almost surely, there
exists ng > 0 such that for all n > ng and all x € S,,: if BRW(T, v, ) first enters U(x) at a point z, then
z € U(x)\Ue(x, klog|z|).

Proof. Let us freeze all particles of the branching random walk when they enter U(x) at the first time.
Denote by Z(x,m) the collection of frozen particles z € U.(x,m). Then for z € Z(x,m) we have
(1) d(z,z) = m,
(2) max{d(y,z),d(y,z)} > ed(z,z) where y is an (n, L)-transition point on [, z] given by Lemma [6.6]
Note that the genealogy path from e to z does not intersect B(y, ed(x, z)).
Let 6 = d(n, L) be given by Lemma m Then the expected number of particles frozenat z € Uc(z) is
upper bounded by
G, e,z [Ue@)]) < Gy e,z [Bly, ed(w, 2))]) <=7
By Lemma there exists ¢ > 0 such that #5,, < ce’” for any n >
and mg > 0 such that for any m > mg, we have

1. Thus, there exist €1 = €1(€,0,v)

Sek
<e

Bliz(m]< 3 Crlez[Bly.e)]) < ) e <o

2€U. (,m) k=m
Choose k so that ke; > 1 and let m = klogn. Consider the event
Ap ={Z(x,m) = 1for some z € S, },
i.e. A, is the event such that if the branching random walk visits U, for some z € S,,, then the first frozen

particle is in Uc(x, m). Then

€1k logn

P(An) < Z P(ﬁZ(a%m) = 1) < Z E[ﬁZ(Z‘,m)] < celtne < Cevn_nelﬂ.

€S, xES,

Therefore, >~

1 P(A,) < o and so the conclusion follows from the Borel-Cantelli Lemma. O

Similarly, we prove the following.

Lemma 6.8. For every K = 0 and C = 0, there exists k > 0 such that the following holds. Almost surely,
for all but finitely many x, if the branching random walk ever visits a point y with d(e,y) < Kd(e,z) and
such that x is within C' of a transition point on [e,y], then it first enters B(x, klog |z]).
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Proof. Given z € S,,, we consider the set U(z) of y € I so that |y| < K|z| and z is within C of a transition
point on [e,y]. We freeze particles when they first reach a point y € U(x), without entering B(x, log |x|).
We denote by Z,, the set of frozen particles for all z € S,,. By Lemma [2.11] for n large enough, the expected
number of particles frozen at y € U(z) is upper bounded by
_pin
Gyr(e,y; [U(@)]) < Gr(e,y; [B(x, kloglz])]) <e
By Lemma there exist ¢ > 0 such that 15, < ce’™ and §U(z) < ce’ ™ for any n > 1 and x € I'. Thus,

we have ,
Z 2 6 y7 )]c) < CeU(K+1)n€_n ".

€Sy yeU (x)

If k is chosen large enough, then anl E[tZ,] < o, so the proof follows from the Borel-Cantelli Lemma. O

Recall that if P € P is a parabolic coset, n = 0 and = € I, we denote by
7N, (P)(x) = {y € Ny(P) : d(z,y) = d(z, N,(P))}
the set of its shortest projections on the n-neighborhood N, (P) of P. Also, for x,y € I', we denote by
dn,(p) (z,y) == diam(ﬂ'Nn(P) (z) v TN, (P) (y))
and [HrulQ, Corollary 8.2] the shortest projection is coarsely Lipschitz,
dn,(p)(T,y) < kd(z,y) + k
for a fixed k > 1 depending only on 7. Thus, WNn(p)(l‘) has bounded diameter.

Lemma 6.9. [SisI3| Lemma 1.15] For every large enough n, there exists C = C(n) > 0 such that for every
zel', PeP and for every geodesic v starting at x and entering N,(P), we have

TN, (P) (.23) - B(ya C)
where y is the entrance point of v in Ny (P).
Lemma 6.10. There exists ng = 0 such that for n = ng, the following holds. Almost surely, for all but
finitely many parabolic cosets P € P, if the branching random walk ever visits a point z satisfying both that
dn,p)(e;z) = d(e, Ny(P)) and d(z, N,(P)) < dn,(p)(e; 2), then it first needs to enter N,(P) at a point w
such that dn, p)(e; w) d(e, N, (P)).

In partzcular if the branching random walk ever enters Ny (P), then the first entrance point must be within
d(e, N, (P)) of the projection of e on Ny (P).

Proof. Given P € P, we freeze particles when they first visit some point z € I with
dn,p)(e,z) = d(e, Ny (P))
and
d(z, Ny (P)) < dw, (p)(e, 2),
d

without having entered {w € N, (P) : dy, p)(e, w) < d(e, N;(P))}. Denote by Py, the collection of parabolic
cosets P with d(e, N,(P)) = k. We denote by Z, the set of such frozen particles for those P € Py. Then,

E[lZ]< ), D1 Gale,y; Ny(P)°).

PePy  azeNy(P) y: 7N, (p)(y)=2
dNr,,<P>(m:8>>k d(z,y)<k

As x € Ty, (p)(2), there exists a trajectory for the y-random walk from 2 to  that stays outside N, (P) of
linear length in d(x, z), since the support of y is finite. In particular,

GR(Z,I;Nn(P)C) > o ad(z,2) > ook

for some positive . Note that by Lemma [2.1] for a fixed z, the set of such elements z being contained in a
ball of radius k£ grows as an exponential function in k. Thus,
(24) EfZi]< ), ), Grle,aNy(P))e™,

PeP,  zeN, (P)
d(@,m, () () =k
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where 8 depends both on « and on the growth rate v of the word distance. By Lemma for every M = 0,
there exists 7y such that for all n = 7q,

GR(e, xX; Nn(P)C) < CefMd(IﬂTn,P(e))’

Choosing M > v + 3, where v is the growth rate of the word distance, we have by Lemma and by
that for n = ny,

E[t2)] < Ce FM—v=5),

By the choice of M, the sum Zk;o E[fZ]is finite. The result again follows from the Borel-Cantelli lemma.
|

Lemma 6.11. There exists k such that almost surely, for any conical limit point & in A and for all but
finitely many transition point x on [e,£], P intersects B(x, rklog|x]).

Proof. Let £ € A be a conical point. Then [e, £] contains infinitely many (7, L)-transition points (see [Yan22]
Lemma 2.20]). Consider any (n, L)-transition point x € [e, £] so that |z| > ng. According to Lemma for
Oz, C) < U(zx), the branching random walk must enter U(x).
Set e € (0,1/2) so that K = ¢! > 4. Let k be given by Lemmas and Up to enlarging 7, we may
assume that it is big enough to apply Lemma [6.10)
Let z € Uc(x)\Uc(, £ 1og |z|) be the first entrance point by Lemma[6.7] so one of the following statements
is true:
(1) d(z,z) < xlog|zl,
(2) the [e,1 — €]-percentage of [z, z] does not contain any (7, L)-transition point.
If the case (1) happens, then we are done. We now assume d(z, z) > xlog |x|.
By Lemma there exist a unique coset P € P such that if y;,y- are the entrance and exit points of
[z, z] in N,,(P), then
max{d(z,y1),d(ys, 2)} < ed(x, 2),
SO
d(y1,y2) = (1 —2€)d(x, z) = (1 — 2¢)rlog ng.

By definition, z is contained in a ball B([x, 2]) centered at @ for some 2 € Q(z, C).

By definition of Q(x, C), there exists a transition point & on [e, £] such that d(z,#) < C. By Lemma 2.9
for the triangle with vertices e, z, Z, we see that  is within C' and so z is within 2C of a transition point on
[e, z]. According to Lemma if the branching random walk does not enter B(z, klog |z|), then we have
|z| > K|z| = e |z|. Noting as above that x is within 2C of a transition point on [e, 2], Lemma implies
that 7y, (p)(e) is within a bounded distance of the entry point y; of [z, z] into N, (P), which implies that
d(y1,y2) < dy, (p)(e, z) + C' for some constant C’ depending on C'. Moreover, if ng is large enough, then
d(y1,y2) = C'/2, so we get d(y1,y2) < 2dy, (p)(e, z), hence

2¢
1—72€dN77(P) (e, Z)

Furthermore, d(e, N,,(P)) < |z| + d(z,y1). Since |z| < €|z| and d(z,y1) < ed(z, 2), we get

d(z, N, (P)) <

d(e, N, (P)) < (16 + e) d(z,2) < <1€

— € — €

+ e> (1 —2¢)2dn, (p) (e, 2)-

Thus, if € is small enough, the conditions of Lemma holds, hence the branching random walk first
enters N, (P) at a point w such that d(7y, p)(e), w) < d(e, N;(P)). Since z is within 2C of a transition
point on [e, w], d(e, N, (P)) = |z| + d(x, N,(P)) — 2C and so

d(z,w) < d(z, Ny (P)) + dn, (py(e,w) < 2d(e, Ny(P)) + 2C < 2d(e,w) + 2C.
Thus, for ng large enough, we have d(e,w) = d(e,z) — 2C = C so d(z,w) < 4d(e,w). Applying Lemma [6.§]

with K > 4 again, we see that the branching random walk necessarily enters B(x, xlog |x|). This concludes
the proof. 0

We can now end the proof of the upper-bound.
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Proof of Proposition[6.1 Let r < p~! and fix h such that
wr(r)
—log A\’

Let 0 < € < 1/2. Let £ € A®™(r) and let « be a transition point on [e,&]. By Lemma almost
surely, there exists ng such that if |x| = ng, we can find z € P such that z € B(z, klog|z|). In particular,
|z| < |2] + xlog|x| and if |z| is large enough, then |z| = (1 — €)|z|, hence

xeB(z,mlog 2 )
1—e€

rgrne | U H(z rlog T 2 )

n=zm zeP,

Consequently, for every m,

1—e

>, D) diam <H <z rlog ——— 12 >) <C ) M A" (logn)".

nzm zeP, nzm

By Lemma the diameter of II (z, klog 2! ) is bounded by CA#!|z|* log|z|. Thus,

Since lim sup % log M,, < wr(r), by the choice of h, this last quantity converges to 0 as m tends to infinity.
This concludes the proof. O

We deduce the following result. We denote by Ag(r) the limit set of the branching random walk inside
the Bowditch boundary, endowed with the shortcut distance d..
Corollary 6.12. Let r < p~'. Almost surely,
-1
log A

Hdim(Ag(r), 6.) < wr(r).

Proof. Combining Proposition and , we get that
-1

Hdlm(AB( ) N (9“’" ) < @

wr(r).

The complement of the set of conical limit points in the Bowditch boundary is the set of parabolic limit
points, which is countable. This yields the desired upper-bound. O

Theorem [I.2] is a consequence of Proposition [5.1] and Corollary [6.12} Recall that if I is hyperbolic, then
it is also relatively hyperbolic and its BOWdltCh Floyd and Gromov boundaries coincide. Moreover, the
shortcut distance and the visual distance are bi-Lipschitz by [PY19, Proposition 6.1]. Thus, Corollary
follows from Theorem [[.2

APPENDIX A. CONVERGENCE OF RANDOM FINITE MEASURES
A.1. Random finite measures. Let (X, 5) be a Polish space endowed with its Borelian o-algebra. Let
(Q, F,P) be a probability space.
Definition A.1. A random finite measure on X is a map
p:(w,B)eQ x B pu,(B)eR

such that

(a) for every B e B, the map w — p,,(B) is measurable,
(b) for P-almost every w, w — u,, is a finite Borelian measure on X,
(c) the expectation E[p, (X)] is finite,

We identify p with the family of maps u, : B — R and we write g = ()0 -
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We denote by Mq(X) the set of random finite measure on X and by M(X) the set of finite measures on
X. Given a random finite measure p = ({4, )w, we define the measure mx (1) on X by

Tx (1) (B) = E[pw(B)]

for every Borelian set B € B. We also define the measure mq(u) on Q by

7o (1)(A) = E[Lap, (X)]

We call wx (u), respectively mq(p), the X-marginal, respectively the Q-marginal of p.
If 4 = (w)w is a random finite measure, then one can define a finite measure i on X x 2 by setting for
every measurable set A of X x )

() = B| [ 1ate o))

Then, 7x(u) and 7 (p) are the push-forward measures of p by the canonical projections 7x : X x Q@ — X
and g : X x Q — Q.

Definition A.2. A random finite measure p is called P-regular if P and mq(u) are absolutely continuous
with respect to each other.

Lemma A.3. Let u = (p,)w be a random finite measure. Then wq(u) is absolutely continuous with respect
to P. Moreover, p is P-regular if and only if for P-almost every w, p,, is not the null measure.

Proof. It A is such that P(A) = 0, then P-almost surely, 144.,(X) = 0, so mq(u)(A) = E[14p,(X)] = 0.
This concludes the first part of the lemma.

For the second part, assume that the event A = {w,p,(X) = 0} has positive probability. Then,
E[14p,(X)] = 0. So ma(u)(A4) = 0, but P(A) > 0. Conversely, assume that P-almost surely, u,(X) > 0
and let A be such that mo(u)(A) = 0, hence P-almost surely, 144,(X) = 0. Then, we necessarily have
14 = 0 P-almost surely, i.e. P(A4) = 0. O

Remark A.4. In fact, by definition of mo(u), we have that the Radon-Nikodym derivative of mq(u) with
respect to P is given by

dra () -
Thus, P is absolutely continuous with respect to mo(p) if and only if this Radon-Nikodym derivative is
almost surely positive and then,

LA
dra(p) " r(X)

P-almost surely.

If u = (Uy)w is a random probability measure, i.e. P-almost surely, pu,, is a probability measure on X,
then the Q-marginal of y is P. Thus, P-regularity is automatic in this context. However, it is easy to
construct an example where P-regularity fails, since one only needs that P(u,(X) = 0) > 0. Indeed, let u
be any random finite measure and let A be an event such that P(A) < 1/2, then 144 is also a random finite
measure and P(14u(X) = 0) = 1/2. Restricting our attention to P-regular measures will be important in
the following, mainly because of the following result.

Proposition A.5. Every finite measure p on X x Q such that mq(p) and P are absolutely continuous with
respect to each other is defined by a random finite measure.

Proof. Let p be a finite measure on X x Q and denote by ||u|| = p(X x ) its mass. Then, v = u/|u
is a probability measure on X x  with marginal Q = 7o (u)/|pl|. By the disintegration theorem [Cra0Q2]
Proposition 3.6], there exists a map

(B,w) € B x Q— v,(B)

such that w — v, is Q-almost surely a probability measure on X and for every Borelian B € B, w — v,,(B)
is measurable.

By assumption, the probability measure Q is absolutely continuous with respect to P. Let f = dQ/dP be
the corresponding Radon-Nikodym derivative. Define then p, = ||p||f(w)ve. Then, u,, is Q-almost surely,
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hence P-almost surely, a finite measure on X, for every Borelian set B, the map w — p,(B) is measurable
and for every non-negative measurable function ¢ on X x €2, we have

() = lulv()
— lul fszﬁ(x,w)de(x)dQ(w)

~ [ | ¢t luldva o) ()P )
_E [ | ¢($7w)duw(fc)] .

Thus, p is defined by the random finite measure (i), - O

In general, the disintegration theorem allows one to decompose a finite measure on X x €0 along its 2-
marginal, so without assuming P-regularity, it cannot be seen as a random finite measure in the sense of
Definition [A ]

We now introduce some definitions based on [Cra02].

Definition A.6. A random closed set is a map w € 2 — C(w) € 2% taking values in closed subsets of X and
such that the map w — d(x,C(w)) is measurable for every x € X. A random open set is a map w — U(w)
such that the complement map w +— U¢(w) is a random closed set.

Let C = w+— C(w) be a random closed set, U = w — U(w) a random open set and p = (py,)w a random
finite measure. We set

#(C) = E [1,(Cw))]
and
n(U) = E [p,(Uw))].-
Definition A.7. A random bounded continuous function is a map f : X x Q — R such that

(a) for every z € X, w+— f(x,w) is measurable,
(b) for every w e Q, z — f(x,w) is continuous and bounded,
(¢) There exists C' = 0 such that for P-almost every w, ||f(-,w)|x < C.

Remark A.8. The third condition can be reformulated as ||f(-,w)]||s is in Lo (2, P). In [Cra02], the author
introduces several spaces of random functions, replacing the third condition by || f(-,w)[lsc € L,(2,P). For
p = 1 the corresponding space of function is called the space of random continuous functions there.

We denote by Cq ,(X) the space of random bounded continuous functions and endow Cq ,(X) with the
Lo % Lo-norm || + |, defined by
| feo = inf {C = 0,P(w,||f(-,w)]e > C) =0},

for every f € Cqp(X). If f is a random bounded continuous function and p is a random finite measure, then
the integral

() = B| [ 1) @)

is well defined.
Recall that a Lipschitz function on X is a function f : X — R such that

_ 1f(z) = f(y)l
Ifle = s =Gy
is finite. We then set
Ifllzr = sup{| flleo, Il }

and say that f is bounded Lipschitz if | f| L is finite. We denote by BL(X) the set of bounded Lipschitz
functions on X.

Definition A.9. A random bounded Lipschitz function is a random bounded continuous function f such
that there exists C' = 0 such that for P-almost every w, the map x — f(z,w) is bounded Lipschitz and
IfC,w)lBL < C.
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Remark A.10. In [Cra02], random bounded Lipschitz functions are called random Lipschitz functions. We
changed the terminology to insist on the fact that random functions we are considering here are P-essentially
bounded.

We denote by BLq(X) the set of random bounded Lipschitz functions on X.

Lemma A.11. If two random finite measures (i, )w and (Vy,)w coincide on random bounded Lipschitz
functions, i.e. for every f € BLqo(X), u(f) = v(f), then for P-almost every w, p, = v,.

Proof. For every closed set C' € X, the sequence of functions
foix—1—(1And(z,C))

is non-increasing and converges to 1¢. Moreover, for every n, f, is bounded Lipschitz. Therefore, for
every event A, the maps (z,w) — 14(w)f,(x) are random bounded Lipschitz functions. Thus by monotone
convergence, it suffices to prove that if for all closed set C, for all event A, u(C x A) = v(C x A), then (g, )w
and (v,), coincide P-almost surely. Since closed sets are closed under finite intersection and the measures
we are considering are finite, this follows from the monotone class theorem [Bil86, Theorem 3.4]. O

A.2. The weak topology on random finite measures. Recall that the weak topology on M(X) is the
smallest topology such that for all bounded continuous function f : X — R, the map p — u(f) is continuous.

Definition A.12. The weak topology on Mq(X) is the topology generated by the maps u — u(f), for
every f € Cqp(X), i.e. it is the smallest topology on Mq(X) such that for every f € Cq(X), the map
e Mq(X) — p(f) €R is continuous.

Remark A.13. In [Cra02], the author defines the narrow topology on the space of random probability mea-
sures as the topology generated by the maps p — p(f) for every random continuous function f. Recall
that a random continuous function as defined there is a function f such that for all w, f(-,w) is bounded
continuous and | f(-,w)| e is in L1 (82, P).

e First, we preferred to use the terminology weak topology which is more common, although both
exist in literature.

e Second, by [Cra02, Lemma 3.16], for random probability measures, the induced weak topology on the
set of measures is the same when choosing either random bounded continuous functions or random
continuous functions. However, in our context, the proof of this lemma does not apply and it seems
that choosing different spaces of functions can yield different notions of weak topologies.

Lemma A.14. The weak topology is generated by the maps p — p(f) for every f € BLo(X), i.e. it is
the smallest topology on Mq(X) such that for every random bounded Lipschitz function f, p — u(f) is
continuous.

Proof. This follows from the fact that bounded continuous functions can be approximated by bounded
Lipschitz functions, see [Cra(2, Proposition 4.9] for more details. (]

We now prove the following generalization of the classical Portmanteau theorem in terms of convergent
nets. We refer to [ABO6), Definition 2.11, Definition 2.15] for more details on nets.

Proposition A.15. Let o = ((tta)w)w be a net of random finite measures and let p = (py)w be a random
finite measure. Then, the following assertions are equivalent.

(1) The net po converges to p for the weak topology.

(2) For all random closed set C = w — C(w), limsup, po(C) < pu(C) and pq(X x Q) converges to
w(X x Q).

(3) For all random open set U = w — U(w), liminfy p,(U) = p(U) and po(X x Q) converges to
u(X x Q).

Proof. Taking complements, the second and third assertions are equivalent. Also, if u, converges to u,
applying the definition of the weak topology to the constant function 1, we see that o (X x Q) converges
to u(X x Q).

Let us assume that p, converges to p and let C' be a closed random set. For every k € N, set

fe(z,w) =1—(1 A kd(z,C(w))).
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Then, for every k, fir is a random bounded Lipschitz function and the sequence fj is non-increasing and
converges to 1¢ () (z). Thus, for every k,

lim sup g, (C) < liénﬂa(fk) = u(fx),

lim sup #a(C) < mt(u(f)) = u(C).

Consequently, the first assertion implies the second one.
Assume now that for all closed random set C, limsup o (C) < p(C) and that pue (X x Q) converges to
w(X x Q). We show that for every non-negative random bounded continuous function f,

(25) limsup o (f) < u(f)-

Fix m € N and set for every 0 < k <m

Cuw) = foe X, f) > LSl
Then, Cy = w — Ck(w) is a random closed set. By [Cra02, Lemma 1.4], for every random finite measure
(Vw)w’ 1 m 1 m
il C il

Applying this both to u, and p, we get

1m
—Eu hmsup—E,ua Ck)
m
k=1 k=1
aX Q
_hmsup< Z,uack Ha(X X )>
>mmwmmﬁﬁ2
a m

Since m is arbitrary, this proves (2. Using that pq (1) = pa(X x Q) converges to u(1) = u(X x Q) and
applying to the function | f|q — f, we get that p.(f) converges to u(f). This is true for all non-negative
random bounded continuous function, so u, converges to u for the weak topology. O

Remark A.16. By Lemmal[A 1] the weak topology is Hausdorff. We do not attempt to study metrizability of
the weak topology in here to avoid lengthily arguments, but in [Cra02, Theorem 4.16], the author proves that
the weak topology on the space of random probability measures is metrizable, provided that the probability
space (€, F,P) is countably generated (mod. P). This might also holds in our situation.

A.3. A compactness criterion for random finite measures. In all this section, M(X) and Mq(X)
are endowed with the weak topology. Let us recall the following definition.

Definition A.17. A subset M of M(X) is tight if for every ¢ > 0, there exists a compact subset of X such
that for every u € M, we have

n(K) <€
Following [Cra02], we define tightness for random finite measures as tightness under the projection map
TX.
Definition A.18. A subset Mg of Mq(X) is tight if mx (Mq) is tight, i.e. for every € > 0, there exists a
compact subset of X such that for all (u, )., € Mq, we have
E[P'w (KC)] < E

The classical Prokhorov theorem states that a set M of probability measures on X is relatively compact
if and only if it is tight. The following generalizes this result to finite measures.

Theorem A.19. Prokhorov Theorem for finite measures [Kall7, Lemma 4.4]. A subset M of M(X)
is relatively compact if and only if M is tight and uniformly bounded, in the sense that sup ¢y p(X) is finite.
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Our goal is to generalize this to random finite measures. Unfortunately, we will not get a necessary and
sufficient condition for compactness as in the Prokhorov Theorem but only a sufficient condition.

We follow the strategy of [Cra02, Theorem 4.4] and first prove the following representation result. Recall
that BLo(X) denotes the set of random bounded Lipschitz functions and BL(X) denotes the set of bounded
Lipschitz functions on X. Then, if f € BL(X), f can be viewed as an element of BLg(X) by setting
f(z,w) = f(x). Similarly, if f is P -essentially bounded, i.e. f € Ly (2, P), then f can be viewed as an
element of BLo(X) by setting f(z,w) = f(w). If L : BLo(X) — R is a function, we denote by 7x (L),
respectively mq(L) its restriction to bounded Lipschitz functions, respectively to P-essentially bounded
functions.

Lemma A.20. Let L : BLo(X) — R. be a function. Assume that the following conditions hold
(a) L is linear,

(b) L is non-negative, i.e. for every non-negative function [ in BLo(X), we have L(f) = 0,
(c) there exists k € M(X) such that for every f € BL(X), we have

x (L)(f) = r(f) = f f,

(d) there exists a constant C > 0 such that for every f € Lo (Q2, P), we have

1

5m(L)(f) < E[f] < Cra(L)(f)-

Then, there exists a random finite measure p = () such that L(f) = p(f) for every f € BLo(X).

Proof. The proof relies on the general Stone-Daniell representation theorem. We claim that if f,, is a non-
increasing sequence of functions of BLq(X) converging to 0, then L(f,,) is non-increasing and converges to
0. By [Cra02l, Theorem 4.11], we deduce that there exists a measure p on X x Q such that L(f) = u(f) for
every f € BLo(X). Conditions (c) and (d) ensure that p is finite. Moreover, the Q-marginal mq(p) of u is
mo(L) and so the fourth condition shows 7q () and P are absolutely continuous with respect to each other.
Therefore, we can apply Proposition so that u is defined by a random finite measure.

We just need to prove the claim to conclude the proof. Let f, be a non-increasing sequence of random
bounded Lipschitz functions converging to 0. Since L is linear and non-negative, we get that L(f,) is
non-inscreasing. We need to prove that L(f,) converges to 0. Fix ¢ > 0. Let K be a compact such that
k(K°) < e. For every n, there exists C), such that | f,(-,w)|sr < C, for P-almost every w. Set 6, = ¢/C,,
and consider the function

Xn 1T Xnl(z) =1— (1 A5, d(z, K)).
Then, ,, vanishes outside the d,-neighborhood of K. Moreover, the function g, : (z,w) — fu(x,w)xn(z) is
in BLo(X). Now, f, = gn + fu(l — xn) and so

(26) L(fn) = L(gn) + L(fn(1 = xn))-

We first deal with the second term in the right-hand side of . Since f, is non-increasing, we have
that fn(z,w) < |[f1(-,w)| Moreover, there exists M > 0 such that the event A = {|f1(",w)|ec < M}
satisfies P(A°) = 0. Note that we can write f,(1 — xn) < M(1 — xn)1la + | f1(-,w)|14c. By Condition (d),
L(||l f1(-;w)[14c) = 0. Thus,

L(fn(l - Xn)) < ML(l - Xn) = MJ<1 - Xn)d’i'
Note that 1 — x,, vanishes in K, so
(27) L(fu(1 = xa)) < M&(K®) < Me.

We now deal with the first term in the right-hand side of (26]). For every w such that | f,,(-,w)|pr < Cn
and for every z,y € X, we have

|gn(z, OJ) - gn(y, (.d)| < Cnd(l', y) + 2f7l(y7w)'
If  is in the d,-neighborhood of K, choose y € K such that d(x,y) < d,. Then, by what precedes,

gn(gjvw) < 3sup fn(va) + Cnén < 3sup fn(va) t €
yeK yeK
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Since y, vanishes outside the d,-neighborhood of K, this yields
SUp gn (2, w) < 3sup fr(y,w) + €
yeK

xeX

We write hy,(w) = sup,ex fn(y,w). The event A, = {w, |fn(-,w)|BL > C,} satisfies P(A,) = 0, hence the
same manipulation as above shows that

(28) L(gn) < 3L(hy) + €L(1) < 3CE(hy,) + x(X)e,
using Conditions ( ) and (d).

Combining (26 . ) and (28], we get
L(fn) < 3CE(hy,) + (k(X) + M)e.

Using that f, is non-increasing and converges to 0, that for all w, f,(-,w) is continuous and that K is
compact, we get that h,, is non-increasing and converges to 0. By monotone convergence, E(h,,) converges
to 0, so for large enough n, E(h,) < e. Thus, for large enough n,

L(f,) < (3C + K(X) + M)e.

Since € is arbitrary, this concludes the proof of the claim. O

The main ingredient in proving a compactness criterion for random finite measures is the following propo-
sition.

Proposition A.21. Let C > 0. If K is compact in M(X), then

1
T (K) N {,u € Mq(X), EWQ(,U/) <P < CTFQ(M)}
is compact in Mq(X).
Proof. Let f € BLo(X) and set
Mf = sup pu(f),
pemt (K)
My = inf p(f).
pET L (K)

Recall that if f € BLo(X), then in particular, f € Cq ,(X) and so for P-almost every w, |f(-,w)| is bounded
and E[| f(-,w)|le] is bounded. Thus, mx (u)(f) is finite. Since K is compact, this proves that MJEL and My
are finite.

We set

c= [ [M;,Mmf]
fGBLQ(X)

and we endow C with the product topology. Then C is compact by the Tychonoff Theorem [AB0G, Theo-
rem 2.61]. We can identify C with the set of all functions L : BLq(X) — R such that L(f) € [M, M]ﬂ A
neighborhood basis of an element Ly of C is given by

Us(f1,--fn)(Lo) = {L € C,|L(fr) — Lo(fr)] < 0,1 <k <n},
where § > 0 and fi, ..., f, € BLo(X). We define the map
I:ipeny' (K) = (u(f)) feBra(x) € C-

Then, I is one-to-one and continuous. Moreover, by Lemma a neighborhood basis of an element
Lo € 71';(1 (K) for the weak topology is given by

Vs(fiy oo ) (o) = {p € mx (K), [n(fr) — po(fi)] < 6,1 < k < n},
where § > 0 and f1, ..., f € BLq(X). Since
I(V;s(flaafn)(/"’())) = U5(f177f71)(1(ﬂ0))7

we see that [ is an open map and thus a homeomorphism onto its image in C.
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We make a similar construction for non-random finite measures. Recall that BL(X) is the set of (non-
random) bounded Lipschitz functions on X and that BL(X) can be seen as a subset of BLqo(X) by setting
flz,w) = f(z) for any f € BL(X). We define

c= [] [y, M/f]
feBL(X)
and
i(k) = (K(f)) reBL(X)-
Then, ¢ is a homeomorphism onto its image in c¢. If L € C, denote by 7(L) € c its restriction to non-random

bounded Lipschitz functions.
For every f € BL(X), seen as an element of BLo(x) and for every random finite measure p, we have

u(f) =B Uf(x)duw(w)] — mx(u)(f).
Thus, 7o I =iomx. Now, fix C' > 0. By Lemma[A:20] we have

I (w;(l(K) N {,u,é <mo(p) <P < CWQ(M)})

= 7 '(i(K)) n {L linear} n {L non-negative}

a {L, ém(L) <E[]< cm(L)} .

The four sets on the right-hand side are closed. Since C is compact and [ is a homeomorphism onto its
image, we get that
_ 1
A (K) 0 {5 < o) < P < Cna)

is compact. O

Corollary A.22. Consider a subset Mg of Mq(X). Assume that Mg is tight. Also assume that there

exists C = 0 such that for every u e Mg,
1
aﬂ'g(,u) < P < Cra(p).

Then, Mgq s relatively compact.

Proof. If M, satisfies the assumptions of the corollary, then mx (Mg) € M(X) is tight. Also, the condition
ma(p) < CP can be reformulated by

i) () = o) < ©

P-almost surely. In particular,

mxp(X) = Elua(X)] < C,
so mx (p)(X) is uniformly bounded. By Theorem 7x (Mgq) is relatively compact, i.e. cl(rx(Mgq)) is
compact. Moreover,

Mo < 75 el (Vo) 0 i o) < P = Crn( |

Thus, cl(Mgq) is compact. O

This corollary does not give a necessary and sufficient condition for compactness, but only a sufficient
one. On the contrary, [Cra02, Theorem 4.4] gives a necessary and sufficient condition for compactness in
the context of random probability measures : a set is relatively compact if and only if it is tight. However,
assuming that for P-almost every w, u,, is a probability measure, we get that 7x (@) is a probability measures
and that the 2-marginal of p is exactly P. This ensures that the others conditions of Corollary are
automatically satisfied and so tightness is sufficient to get compactness.

Recall that the Radon-Nikodym derivative of mq (1) with respect to P is given by p,, (X). In our context,
on the one hand, the assumption

1
o) <P < Cma(u)
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which is equivalent to

1
— < (X)) <O
o S He(X)

for P-almost every w seems strong. Assuming only P-regularity, there is no reason for this Radon-Nikodym
derivative to be P-essentially bounded from above and below. Even when restricting our attention to random
finite measures satisfying this property, the maps

w— P —esssup g, (X)

and
u— P —essinf p, (X)

have no reason to be continuous. Thus, compactness for the weak topology does not seem to imply the
existence of a uniform C such that the condition

1
ool <P < Cmalu)

holds. On the other hand, it is not realistic to expect a sufficient condition for compactness without assuming
anything on the 2-marginals.

In the particular case where X has an isolated point xg, then the following trick allows us to weaken a
bit this assumption. For any subset of Mg of Mq(X), define

Mg = {v e Mo(X),v = D(zo) + p,p € Mo},

where D is the Dirac measure on zg. Assume that for every p € Mg, we have pu,(X) < C for P-almost
every w, for some constant C. Then for every v € Mgq,

(29) I<y,(X)<1+C
for P-almost every w.

Corollary A.23. Assume that X has an isolated point xg. Consider a subset Mq of Mq(X). Assume that
Mg is tight and that there exists C = 0 such that for every u € Mg, mq(p) < CP. Then, Mq is relatively
compact.

Proof. The set Mg is tight, so there is a compact Ky such that for every u € Mq, mx (u)(K§) < e. Then, the
set K = Ko u {zo} is also compact and for every v € Mo, mx (V)(K€) < e. Thus, My, is also tight. By ,
1\79 satisfies the assumptions of Corollary so it is relatively compact.

Let v € CI(MQ). By [ABO6, Theorem 2.14], there exists a net (vy)aea converging to v. Assume by
contradiction that P(v,({zo}) < 1) > 0. Then, there exists ¢ < 1 such that the event A = {v,({zo}) < ¢}
satisfies P(A) > 0. Since z is isolated and X is Hausdorff, {z¢} is both closed and open, hence the function
1., is bounded continuous and (x,w) — 14(w)1l,,(x) is a random bounded continuous function. Since for
every a, Vo ({zo}) = 1, applying convergence to this function, we get that

P(4) < E[1ava({zo})] — E[lav({zo})] < cP(4),
which is a contradiction. Thus,
fe = Vo — D (o)
is a well-defined random finite measure on X. In other words, the map
F:vecl(Mg)— v—D(z) € Ma(X)

is well defined. Moreover, it is continuous, therefore F(cl(Mg)) is compact and by Lemma |A.11] the weak
topology is Hausdorff, so F(cl(Mgq)) is closed. Now, Mq < F(cl(Mgq)) and so cl(Mq) < F(cl(Mgq)). Thus,
cl(Mgq) is compact, i.e. Mg is relatively compact. |
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