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MULTIVARIATE MULTIPLICATIVE FUNCTIONS OF UNIFORM RANDOM VECTORS

IN LARGE INTEGER DOMAINS

ZAKHAR KABLUCHKO, OLEKSANDR MARYNYCH, AND KILIAN RASCHEL

Abstract. For a wide class of sequences of integer domains Dn ⊂N
d , n ∈N, we prove distribu-

tional limit theorems for F(X
(n)
1 , . . . ,X

(n)
d ), where F is a multivariate multiplicative function and

(X
(n)
1 , . . . ,X

(n)
d ) is a random vector with uniform distribution on Dn. As a corollary, we obtain

limit theorems for the greatest common divisor and least common multiple of the random set

{X(n)
1 , . . . ,X

(n)
d }. This generalizes previously known limit results for Dn being either a discrete

cube or a discrete hyperbolic region.

1. Introduction

Let F :Nd →C be an arithmetic function of d ≥ 1 integer arguments, withN = {1,2,3, . . .}. A
standard problem in analytic number theory is the estimation of the multivariate sum

n1∑

x1=1

· · ·
nd∑

xd=1

F(x1, . . . ,xd )

for large values of (n1, . . . ,nd ) ∈Nd . A particular instance of this problem consists in establish-

ing existence of the so-called mean value of F, which is defined via

(1) M(f ) := lim
n1,...,nd→∞

1

n1 · · ·nd

n1∑

x1=1

· · ·
nd∑

xd=1

F(x1, . . . ,xd ).

In the probabilistic language, (1) may be recast as follows. Let (U
(n1)
1 , . . . ,U

(nd )
d ) be a random

vector defined on some probability space (Ω,F ,P) and which has the uniform distribution on

the finite rectangular set

(2) Rn1,...,nd :=




d�

i=1

[1,ni]



⋂

N
d .
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Then, with E denoting the expectation with respect to P,

(3) M(F) = lim
n1,...,nd→∞

EF(U
(n1)
1 , . . . ,U

(nd )
d ).

A general result on existence ofM(F) is due to Ushiroya [21].

A multivariate arithmetic function F :Nd → C is called multiplicative, see [20, 21, 22], if

F(1, . . . ,1) = 1 and F(m1n1, . . . ,mdnd) = F(m1, . . . ,md )F(n1, . . . ,nd ),

for all (m1, . . . ,md ) ∈Nd and (n1, . . . ,nd ) ∈Nd such that

GCD(m1 · · ·md ,n1 · · ·nd ) = 1.

A specialization of Ushiroya’s results from [21] to amultiplicative function F implies that under

a mild summability assumption on F, the mean valueM(F) exists and is equal to

(4) M(F) :=
∏

p∈P

(
1− 1

p

)d ∞∑

i1=0

· · ·
∞∑

id=0

F(pi1 , . . . ,pid )

pi1+···+id
,

where P stands for the set of prime numbers.

In the last years, there has been a lot of activity around various generalizations and exten-

sions of the aforementioned results. In a probabilistic direction, one may ask about the asymp-

totic behavior of distributions of the random variable F(U
(n1)
1 , . . . ,U

(nd )
d ), as n1, . . . ,nd →∞ in (2).

This question has been addressed in [4] for a particular choice of F, namely, for F(x1, . . . ,xd ) =

G(LCM(x1, . . . ,xd )), with G being a univariate multiplicative arithmetic function. The univari-

ate case d = 1 is the classical Erdős-Wintner theorem, see [11], which provides necessary and

sufficient conditions for the distributional convergence of F(U
(n)
1 ) as n→∞. In another, more

analytic direction, the rectangular domains Rn1,...,nd in (2) are replaced by more sophisticated

domains of summation Dn ⊂ N
d , which grow to N

d as n → ∞. In particular, in the recent

work [17], the case of spherical summation over the regions

Sn := {(x1, . . . ,xd ) ∈Nd : x21 + · · ·+ x2d ≤ n},

has been analyzed, whereas the papers [14, 15, 16] were devoted to the study of summation

over hyperbolic regions

Hn := {(x1, . . . ,xd ) ∈Nd : x1 · · ·xd ≤ n}

and their generalizations. A surprising phenomenon revealed in the cited works is that the

mean value M(F) given by (4) is universal for rectangular, spherical and hyperbolic domains.
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More specifically, let Dn be either Rn,...,n, Sn or Hn. For every n ∈ N, let (X
(n)
1 , . . . ,X

(n)
d ) be a

random vector defined on (Ω,F ,P) and having the uniform distribution on Dn, that is,

P{(X(n)
1 , . . . ,X

(n)
d ) = (i1, . . . , id )} =

1

#Dn
, (i1, . . . , id ) ∈ Dn,

where #Dn denotes the cardinality of Dn. Then, under the same summability assumption on F

as in Ushiroya’s result, we have

(5) lim
n→∞

EF(X
(n)
1 , . . . ,X

(n)
d ) = lim

n→∞
1

#Dn

∑

(x1,...,xd )∈Dn

F(x1, . . . ,xd )

=M(F) =
∏

p∈P

(
1− 1

p

)d ∞∑

i1=0

· · ·
∞∑

id=0

F(pi1 , . . . ,pid )

pi1+···+id
.

The purpose of the present paper is two-fold. First, we shall provide a probabilistic explana-

tion which lies in the core of (5), by providing sufficient conditions on F for the distributional

convergence of F(X
(n)
1 , . . . ,X

(n)
d ) as n→∞. Second, we shall do this not only for the three types

of regions mentioned before, but for a quite general class of integer domainsDn satisfyingmild

assumptions.

The paper is organized as follows. In Section 2, we formulate our standing assumptions on

Dn and present our main results, which are distributional limit theorems for F(X
(n)
1 , . . . ,X

(n)
d ).

The proofs are collected in Section 3. In Section 4, we provide various examples of domains

Dn satisfying our standing assumptions. In particular, the aforementioned domains Rn1,...,nd ,

Sn and Hn are covered. In Section 5 we discuss how to construct new domains satisfying our

conditions, using standard set-theoretic operations. Some auxiliary results are collected in

Appendix A.

Throughout the paper we use the following standard notation:
w−→ denotes the convergence

in distribution (weak convergence of probability measures); Int(A), cl(A) and ∂A are the topo-

logical interior, closure and boundary of a set A ⊂ R
d , respectively; a(n) ∼ b(n), n→∞, means

that limn→∞(a(n)/b(n)) = 1.

2. Main results

2.1. Preliminaries. Throughout the paper, we assume that F is a multivariate multiplicative

arithmetic function of d ≥ 2 variables. Every multivariate multiplicative function is completely

determined by its values on the powers of primes. More precisely, let λp(n) denote the power
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of prime p ∈ P in the prime decomposition of n ∈N. Then

xi =
∏

p∈P
pλp(xi ), i = 1, . . . ,d,

implies

F(x1, . . . ,xd ) =
∏

p∈P
F(pλp(x1), . . . ,pλp(xd )).

The crucial observation for everything to follow is the representation for M(F) in (4) via

independent geometric random variables. Let (G1(p), . . . ,Gd(p))p∈P be an array of mutually in-

dependent random variables with geometric distributions

P{Gk(p) ≥ j} = 1

pj
, j ∈N0, p ∈ P , k = 1, . . . ,d,

where N0 :=N∪ {0}. Then

M(F) = E



∏

p∈P
F(pG1(p), . . . ,pGd (p))


 .

The main result of our paper gives sufficient conditions on F which ensure the convergence in

distribution

(6) F(X
(n)
1 , . . . ,X

(n)
d ) =

∏

p∈P
F(pλp(X

(n)
1 ), . . . ,pλp(X

(n)
d ))

w−→
n→∞

∏

p∈P
F(pG1(p), . . . ,pGd (p)) =: F∞,

for a general class of integer domains Dn, which we are now going to introduce.

Let (Dn)n∈N be a sequence of finite, non-empty subsets of Nd . Assume that for every fixed

c ∈Zd , where Z = {0,±1,±2, . . .}, the following condition is fulfilled:

(7) lim
n→∞

#((Dn + c)∩Dn)

#Dn
= 1.

Note that (7) is equivalent to saying that for all c ∈Zd ,

lim
n→∞

δn(c)

#Dn
= 0,

where, denoting ∆ the symmetric difference of two sets,

(8) δn(c) := #(Dn∆(Dn + c)).

Condition (7) is known in the literature as the regular growth condition; see Chapter 3 in [5].

Several equivalent versions of (7) can be found in Appendix A below.
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2.2. Convergence of prime powers to geometric laws. Our first main result states that, solely

under assumption (7), the array of random vectors (λp(X
(n)
1 ), . . . ,λp(X

(n)
d ))p∈P converges in dis-

tribution to an array of independent geometric variables, thereby providing the first evidence

supporting (6).

Theorem 2.1. Assume that (7) holds. Then
(
λp(X

(n)
1 ), . . . ,λp(X

(n)
d )

)

p∈P

w−→
n→∞

(G1(p), . . . ,Gd(p))p∈P ,

in the space (Rd)∞ endowed with the product topology.

Remark 2.2. In the rectangular case Dn = Rn1,...,nd , Theorem 2.1 is well known in probabilistic

number theory and has a long history, see, for instance, Eqs. (2.5)–(2.7) in [19] and [2]. Note that

in this case, the componentsX
(n)
1 , . . . ,X

(n)
d are independent andX

(n)
j has the uniform distribution

on {1, . . . ,nj }, for every j = 1, . . . ,d.

2.3. Limit theorems for F. We start with finding conditions ensuring a.s. finiteness of F∞ in

(6). Recall that we assume d ≥ 2. According to Eq. (20) in [4] (or just by an appeal to the

Borel-Cantelli lemma), we have
∑

p∈P
1{∑d

k=1Gk (p)≥2} <∞ a.s.

Furthermore, because F is multiplicative, F(1,1, . . . ,1) = 1. Thus, a.s. finiteness of F∞ is equiva-

lent to the a.s. convergence of the product

F̂∞ :=
∏

p∈P :
∑d

k=1Gk(p)=1

F(pG1(p), . . . ,pGd (p)).

For i = 1, . . . ,d, put

Fi(x) := logF(1, . . . ,1,x,1, . . . ,1),

where x ∈N on the right-hand side is on the i-th position and log is the principal branch of the

logarithm (a branch which satisfies log(1) = 0 and has a branch cut along (−∞,0]). We assume

that for all i = 1, . . . ,d, there are only finitely many p ∈ P such that F(1, . . . ,1,p,1, . . . ,1) falls in-

side the branch cut. Otherwise, we stipulate that the series diverges. Thus, the a.s. convergence

of F̂∞, hence of F∞, is equivalent to the a.s. convergence of the series

(9)
∑

p∈P




d∑

i=1

Fi(p)1{Gi (p)=1,Gj (p)=0 for j,i}


 ,

comprised of independent random variables. An application of Kolmogorov’s three series the-

orem immediately yields the following:
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Proposition 2.3. The infinite product F∞ converges a.s. if and only if the following series converge

for every A > 0:

(10)
∑

p∈P

1

p

d∑

i=1

1{|Fi(p)|>A},
∑

p∈P

1

p

d∑

i=1

Fi(p)1{|Fi (p)|≤A},
∑

p∈P

1

p

d∑

i=1

|Fi(p)|21{|Fi (p)|≤A} .

It is clear that the convergence of the three series (10) is a necessary condition for (6). Prov-

ing (6) under (10) alone seems to be a very difficult task, even for simple regions Dn as Rn,...,n.

In this paper, we restrict our attention to a subclass of multivariate multiplicative functions

satisfying (10). Namely, we shall assume that, for all i = 1, . . . ,d,

(11)
∑

p∈P

1

p
1{|Fi (p)|>A} <∞ and

∑

p∈P

1

p
|Fi(p)|1{|Fi (p)|≤A} <∞.

It is obvious that (11) implies (10). The difference between conditions (10) and (11) is that (11)

is necessary and sufficient for the a.s. absolute convergence of the series (9), whereas under (10)

the a.s. convergence of the series (9) is, in general, only conditional.

In order to prove (6) under (11), we shall impose a mild additional assumption on Dn. For

i = 1, . . . ,d and a ∈N, put

Zi(a) := {(x1, . . . ,xd ) ∈Zd : xi is divisible by a}.

As we shall see below in Lemma 3.1, solely under assumption (7), one has

(12) lim
n→∞

#(Dn ∩Zi(a)∩Zj (b))

#Dn
=

1

ab
,

for every fixed a,b ∈ N and i, j = 1, . . . ,d, i , j. However, we shall need a further assumption

that refines the above limit relation, providing a kind of uniformity in (12). Namely, we assume

that there exists K > 0 such that for all i, j = 1, . . . ,d, i , j, a,b ∈N and n ∈N,

(13)
#(Dn ∩Zi(a)∩Zj (b))

#Dn
≤ K

ab
.

Recall that (X
(n)
1 , . . . ,X

(n)
d ) is a random vector picked uniformly at random from Dn. Below is

our main result.

Theorem 2.4. Assume that F : Nd → C is a multiplicative arithmetic function such that condi-

tions (11) hold. Let Dn, n ∈N, be a sequence of subsets of Nd such that (7) and (13) hold. Then

F(X
(n)
1 , . . . ,X

(n)
d )

w−→
n→∞

∏

p∈P
F(pG1(p), . . . ,pGd (p)).
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Examples of integer domains satisfying (7) and (13) will be presented in Section 4.

The following functions F

N
d ∋ (x1, . . . ,xd ) 7→GCD(x1, . . . ,xd ) and N

d ∋ (x1, . . . ,xd ) 7→
LCM(x1, . . . ,xd )

x1 · · ·xd
are multiplicative and satisfy Fi(x) ≡ 0 for every i = 1, . . . ,d. Thus, Theorem 2.4 is applicable,

leading to the following corollaries.

Corollary 2.5. Assume that (7) and (13) hold. Then

GCD(X
(n)
1 , . . . ,X

(n)
d )

w−→
n→∞

∏

p∈P
pmink=1,...,d Gk(p).

The limiting random variable has the following distribution

(14) P



∏

p∈P
pmink=1,...,d Gk(p) = j


=

1

ζ(d)

1

jd
, j ∈N,

where ζ is the Riemann zeta function.

Corollary 2.6. Assume that (7) and (13) hold. Then

LCM(X
(n)
1 , . . . ,X

(n)
d )

X
(n)
1 · · ·X

(n)
d

w−→
n→∞

∏

p∈P
pmaxk=1,...,d Gk(p)−

∑d
k=1Gk(p).

Remark 2.7 (Bibliographic comments). Below is a comparison of our results with the existing

ones.

Case Dn = Rn,...,n. In this case Corollaries 2.5 and 2.6 are known, with Corollary 2.5 having a

long history. The fact that two independent random integers picked uniformly at random from

{1, . . . ,n} are asymptotically co-prime with probability 1/ζ(2) = 6/π2, that is

lim
n→∞

P{GCD(X
(n)
1 ,X

(n)
2 ) = 1} = 6

π2

goes back to Dirichlet [10], and generalizations of this relation to d > 2 integers are due to

Cesàro [6, 7]. To the best of our knowledge, Corollary 2.5 is due to Christopher [8], see also [9].

Formula (14) follows from the following chain of equalities. For s < d − 1, by Euler’s product

formula

E



∏

p∈P
pmink=1,...,d Gk(p)




s

=
∏

p∈P
Epsmink=1,...,d Gk(p) =

∏

p∈P

(
1− 1

pd

)
1

1− ps−d
=
ζ(d − s)
ζ(d)

=
1

ζ(d)

d∑

j=1

js

jd
.

Corollary 2.6 can be extracted from Theorem 2.1 in [18] and is given explicitly in Remark 2.4

in [4]. Further pointers to literature related to Corollaries 2.5 and 2.6 in case Dn = Rn,...,n
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can be found in the introduction [4] and in the survey [13]. In [4] a version of Theorem 2.4

was proved assuming that F(x1, . . . ,xd ) = G(LCM(x1, . . . ,xd )) for some univariate multiplicative

function G : N → C. Asymptotics of moments accompanying the aforementioned distribu-

tional convergences have been derived in [18, 20, 21].

Case Dn = Hn (and more general hyperbolic regions, see Example 4.5 below). In this case,

Corollaries 2.5 and 2.6 can be found in Theorems 3.5 and 3.7 in [14]. The corresponding

asymptotics of moments has been derived in [15, 16].

Case Dn = Sn. The distributional convergence is completely new. The asymptotics of moments

has been analyzed in [17].

3. Proof of the main results

3.1. Proof of Theorem 2.1. We first need an auxiliary lemma.

Lemma 3.1. Fix m1, . . . ,md ∈N and jk ∈ {0, . . . ,mk − 1}, k = 1, . . . ,d. Put

D(j1,m1,...,jd ,md )
n := {(i1, . . . , id ) ∈ Dn : ik ≡ jk (modmk) for all k = 1, . . . ,d}.

If (7) holds, then

(15) lim
n→∞

#D(j1,m1,...,jd ,md )
n

#Dn
=

1

m1 · · ·md
.

Proof. Note that

(16) Dn =

m1−1⋃

j1=0

· · ·
md−1⋃

jd=0

D(j1,m1,...,jd ,md )
n ,

and the sets on the right-hand side are pairwise disjoint. Furthermore,

D(j1,m1,...,jd ,md )
n =Dn∩ (j1+m1Z, . . . , jd +mdZ) = (j1, . . . , jd )+(Dn− (j1, . . . , jd ))∩ (m1Z, . . . ,mdZ).

Thus,
∣∣∣∣#D

(0,m1,...,0,md )
n −#D(j1,m1,...,jd ,md )

n

∣∣∣∣

= |#(Dn ∩ (m1Z, . . . ,mdZ))−#((Dn − (j1, . . . , jd ))∩ (m1Z, . . . ,mdZ))|

≤ #((Dn ∩ (m1Z, . . . ,mdZ))∆((Dn − (j1, . . . , jd ))∩ (m1Z, . . . ,mdZ)))

≤ #(Dn∆(Dn − (j1, . . . , jd ))) ,

and we have proved that (with δn introduced in (8))

(17)
∣∣∣∣#D

(0,m1,...,0,md )
n −#D(j1,m1,...,jd ,md )

n

∣∣∣∣ ≤ δn(−(j1, . . . , jd )).
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Plugging this into (16) yields

∣∣∣∣#Dn −m1 · · ·md#D
(0,m1,...,0,md)
n

∣∣∣∣ ≤
m1−1∑

j1=0

· · ·
md−1∑

jd=0

δn(−(j1, . . . , jd )).

Dividing both sides by #Dn and sending n → ∞ implies (15) for j1 = · · · = jd = 0. Using the

estimate (17), we obtain (15) for arbitrary j1, . . . , jd . �

Proof of Theorem 2.1. Fix pairwise distinct prime numbers p1, . . . ,pm ∈ P , nonnegative integers
jk,t , k = 1, . . . ,d, t = 1, . . . ,m, and write

P{λpt (X
(n)
k ) ≥ jk,t for all k = 1, . . . ,d and t = 1, . . . ,m}

= P{X(n)
k is divisible by p

jk,t
t for all k = 1, . . . ,d and t = 1, . . . ,m}

= P{X(n)
k is divisible by

m∏

t=1

p
jk,t
t =: µk for all k = 1, . . . ,d}

=
1

#Dn

∞∑

i1=1

· · ·
∞∑

id=1

1

{
(i1, . . . , id ) ∈ Dn : ik ≡ 0 (modµk), k = 1, . . . ,d

}
.

By Lemma 3.1 applied with mk = µk and jk = 0, k = 1, . . . ,d, we see that the right-hand side

converges to (µ1 · · ·µd )−1 as n→∞. It remains to note that

1

µ1 · · ·µd
=

d∏

k=1

m∏

t=1

1

p
jk,t
t

= P{Gk(pt) ≥ jk,t for all k = 1, . . . ,d and t = 1, . . . ,m}.

The proof of Theorem 2.1 is complete. �

3.2. Proof of Theorem 2.4. Fix a large positive constantM and note that

F(X
(n)
1 , . . . ,X

(n)
d ) =

∏

p∈P
F(pλp(X

(n)
1 ), . . . ,pλp(X

(n)
d ))

=




∏

p∈P ,p≤M
F(pλp(X

(n)
1 ), . . . ,pλp(X

(n)
d ))







∏

p∈P ,p>M
F(pλp(X

(n)
1 ), . . . ,pλp(X

(n)
d ))


 =: Y1(M,n)Y2(M,n).

By Theorem 2.1, one has

Y1(M,n)
w−→

n→∞

∏

p∈P ,p≤M
F(pG1(p), . . . ,pGd (p)).

Furthermore, the right-hand side of the latter converges a.s. to F∞ as M →∞, which is a.s. fi-

nite. According to Theorem 3.2 in [1], it remains to check that for every fixed ε > 0,

(18) lim
M→∞

limsup
n→∞

P {|Y2(M,n)− 1| ≥ ε} = 0.
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Note that

(19) P {|Y2(M,n)− 1| ≥ ε} ≤ P

for all p ∈ P ,p > M,
d∑

i=1

λp(X
(n)
i ) ≤ 1, |Y2(M,n)− 1| ≥ ε



+P

for some p ∈ P ,p > M,
d∑

i=1

λp(X
(n)
i ) ≥ 2

 .

The second term in (19) can be estimated as follows:

P{for some p ∈ P ,p > M,
d∑

i=1

λp(X
(n)
i ) ≥ 2}

≤ P{there exist p ∈ P ,p > M and i = 1, . . . ,d such that λp(X
(n)
i ) ≥ 2}

+P{there exist p ∈ P ,p >M and i, j = 1, . . . ,d, i , j such that λp(X
(n)
i ) ≥ 1,λp(X

(n)
j ) ≥ 1}

= P{there exist p ∈ P ,p > M and i = 1, . . . ,d such that p2 divides X
(n)
i }

+P{there exist p ∈ P ,p >M and i, j = 1, . . . ,d, i , j such that p divides X
(n)
i and X

(n)
j }

≤
d∑

i=1

∑

p∈P ,p>M
P{p2 divides X(n)

i }+
d∑

i,j=1,i,j

∑

p∈P ,p>M
P{p divides X

(n)
i and X

(n)
j }

=

d∑

i=1

∑

p∈P ,p>M

#(Dn ∩Zi(p
2))

#Dn
+

d∑

i,j=1,i,j

∑

p∈P ,p>M

#(Dn ∩Zi(p)∩Zj(p))

#Dn
.

The double limit (n→∞, M →∞) of the first term is equal to zero by an appeal to (13) with

a = p2 and b = 1, since

lim
M→∞

∑

p∈P ,p>M

1

p2
= 0.

Similarly, the double limit of the second term is equal to zero by an appeal to (13) with a = b = p.

In order to deal with the first summand in (19), we first observe that on the event
for all p ∈ P ,p > M,

d∑

i=1

λp(X
(n)
i ) ≤ 1

 ,

we may pass to the logarithm of Y2(M,n). Thus, it suffices to prove that, for every ε > 0,

lim
M→∞

limsup
n→∞

P


for all p ∈ P ,p > M,

d∑

i=1

λp(X
(n)
i ) ≤ 1,

∣∣∣∣∣∣∣∣

∑

p∈P ,p>M
logF(pλp(X

(n)
1 ), . . . ,pλp(X

(n)
d ))

∣∣∣∣∣∣∣∣
≥ ε


= 0.

Introduce, for n ∈N, i = 1, . . . ,d and p ∈ P , the events

Cn,i,p := {λp(X
(n)
i ) = 1,λp(X

(n)
j ) = 0, j , i},
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and note that Cn,i,p ∩Cn,j,p = ∅ as soon as i , j. On the event Cn,i,p, we have

logF(pλp(X
(n)
1 ), . . . ,pλp(X

(n)
d )) = Fi(p)

and, therefore, it suffices to show that, for every fixed ε > 0,

(20) lim
M→∞

limsup
n→∞

P



∣∣∣∣∣∣∣∣

∑

p∈P ,p>M

d∑

i=1

Fi(p)1Cn,i,p

∣∣∣∣∣∣∣∣
≥ ε


= 0.

Fix some A > 0 and note that, for every ε > 0,

P



∣∣∣∣∣∣∣∣

∑

p∈P ,p>M

d∑

i=1

Fi(p)1{|Fi (p)|>A,Cn,i,p }

∣∣∣∣∣∣∣∣
≥ ε



≤ P{for some p ∈ P and i = 1, . . . ,d, |Fi(p)| > A and Cn,i,p holds}

≤
∑

p∈P ,p>M

d∑

i=1

1{|Fi(p)|>A}P{Cn,i,p} ≤
∑

p∈P ,p>M

d∑

i=1

1{|Fi (p)|>A}P{λp(X
(n)
i ) ≥ 1}

=
∑

p∈P ,p>M

d∑

i=1

1{|Fi (p)|>A}
#(Dn ∩Zi(p))

#Dn
≤ K

∑

p∈P ,p>M

1

p

d∑

i=1

1{|Fi (p)|>A},

where we used (13) with a = p and b = 1 for the last passage. The right-hand side converges to

zero asM→∞, in view of the first relation in (10). So, in order to prove (20), we need to check

that

(21) lim
M→∞

limsup
n→∞

P



∣∣∣∣∣∣∣∣

∑

p∈P ,p>M

d∑

i=1

Fi(p)1{|Fi (p)|≤A,Cn,i,p }

∣∣∣∣∣∣∣∣
≥ ε


= 0.

This is accomplished by an appeal to Markov’s inequality as follows:

P



∣∣∣∣∣∣∣∣

∑

p∈P ,p>M

d∑

i=1

Fi(p)1{|Fi (p)|≤A,Cn,i,p }

∣∣∣∣∣∣∣∣
≥ ε


≤ 1

ε

∑

p∈P ,p>M

d∑

i=1

|Fi(p)|1{|Fi (p)|≤A}P{Cn,i,p}

≤ 1

ε

∑

p∈P ,p>M

d∑

i=1

|Fi(p)|1{|Fi (p)|≤A}P{λp(X
(n)
i ) ≥ 1}

=
1

ε

∑

p∈P ,p>M

d∑

i=1

Fi(p)1{|Fi (p)|≤A}
#(Dn ∩Zi(p))

#Dn

≤ K

ε

∑

p∈P ,p>M

1

p

d∑

i=1

Fi(p)1{|Fi (p)|≤A},
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where we have utilized (13) with a = p and b = 1 for the last inequality. The proof of The-

orem 2.4 is complete, since the right-hand side converges to zero, as M → ∞, by the second

relation in (11).

4. Examples of suitable integer domains

In this section we provide a series of examples of domains Dn that satisfy (7) and (13). In

particular, we show that Rn1,n2,...,nd in (2), Sn and Hn mentioned in the introduction, are all

admissible. Thus, under assumption (11) on F, the distributional convergence (6) holds true

for all domains listed below.

4.1. Sublevels of monotone functions.

Proposition 4.1. Assume that f : [1,∞)d → R is a coordinate-wise nondecreasing function such

that, for every j = 1, . . . ,d,

lim
xj→∞

f (x1, . . . ,xd ) =∞,

provided xi ≥ 1, i , j, are fixed. Put

Dn :=D
f
n = {(x1, . . . ,xd ) ∈Nd : f (x1, . . . ,xd ) ≤ n}

and

Dn,i :=D
f
n,i = {(x1, . . . ,xi−1,xi+1, . . . ,xd ) ∈N

d−1 : f (x1, . . . ,xi−1,1,xi+1, . . . ,xd ) ≤ n},

for i = 1, . . . ,d. If, for every i = 1, . . . ,d,

(22) lim
n→∞

#Dn,i

#Dn
= 0,

then the sequence Dn, n ∈N, satisfies (7) and (13).

Proof. Let us first verify (7). According to Proposition A.2 in Appendix A, it is sufficient to

check (7) for c = ei , i = 1, . . . ,d, where e1, . . . , ed denotes the standard basis of Rd . Note that

Dn \ (Dn + ei) =Dn,i . Thus, (22) yields that for i = 1, . . . ,d,

lim
n→∞

#(Dn \ (Dn + ei))

#Dn
= 0.

It remains to check that for i = 1, . . . ,d,

(23) lim
n→∞

#((Dn + ei) \Dn)

#Dn
= 0.

Without loss of generality, we shall do this for i = 1. Note that

(Dn + e1) \Dn = {(x1, . . . ,xd ) ∈Nd : x1 ≥ 2, f (x1 − 1,x2, . . . ,xd ) ≤ n,f (x1, . . . ,xd ) > n}.
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For every fixed collection (x2, . . . ,xd ) ∈Nd−1 and n ∈N, there exists at most one x1 ≥ 2, x1 ∈N,

such that

f (x1 − 1,x2, . . . ,xd ) ≤ n and f (x1, . . . ,xd ) > n,

since f is monotone in x1. Therefore,

#((Dn + e1) \Dn) =

∞∑

x2=1

· · ·
∞∑

xd=1

1{there exists x1≥2 such that f (x1−1,x2,...,xd )≤n,f (x1,...,xd )>n}

≤
∞∑

x2=1

· · ·
∞∑

xd=1

1{there exists x1≥2 such that f (x1−1,x2,...,xd )≤n} =
∞∑

x2=1

· · ·
∞∑

xd=1

1{f (1,x2,...,xd )≤n}

= #Dn,1.

This proves (23) for i = 1.

We shall now prove that (13) holds, for all i, j = 1, . . . ,d, with K = 1. For notational simplicity,

we shall do this only for i = 1 and j = 2. The monotonicity of f implies that, for all a,b ∈N,

#Dn =
a−1∑

j=0

b−1∑

k=0




∞∑

x1=1

∞∑

x2=1

· · ·
∞∑

xd=1

1{f (ax1−j,bx2−k,x3,...,xd )≤n}




≥ ab
∞∑

x1=1

∞∑

x2=1

· · ·
∞∑

xd=1

1{f (ax1,bx2,x3,...,xd )≤n}

= ab#(Dn ∩Z1(a)∩Z2(b)).

The proof of Proposition 4.1 is complete. �

Proposition 4.1 yields the following explicit examples.

Example 4.2 (Rectangular domains). Let f1, . . . , fd : [1,∞)→ [1,∞) be strictly increasing continu-

ous functions. Putting f (x1, . . . ,xd ) := max(f −11 (x1), . . . , f
−1
d (xd )), we obtain

Dn =Rf1(n),...,fd (n) = ([1, f1(n)]× · · · × [1, fd(n)])∩Nd .

Condition (22) is fulfilled if limx→∞ fi(x) =∞, for every i = 1, . . . ,d.

Example 4.3 (Tetrahedral domains). Let a1, . . . ,ad > 0 be fixed positive real numbers. The sequence

of tetrahedral sets

Dn = Tn := {(x1, . . . ,xd ) ∈Nd : a1x1 + · · ·+ adxd ≤ n}

satisfies (7) and (13). Indeed,

#Tn ∼
1

d!a1 · · ·ad
nd , n→∞,
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whereas, for i = 1, . . . ,d,

#Tn,i ∼
ai

(d − 1)!a1 · · ·ad
nd−1, n→∞.

Thus, Proposition 4.1 is applicable.

Example 4.4 (Hyperbolic domains). Let f (x1, . . . ,xd ) = x1 · · ·xd . Then the sequence of sets

Dn =Hn := {(x1, . . . ,xd ) ∈Nd : x1 · · ·xd ≤ n}

satisfies (7) and (13). Indeed, according to Proposition 4.1 in [14].

#Dn ∼
n logd−1 n
(d − 1)! , n→∞,

and, for every i = 1, . . . ,d,

#Dn,i ∼
n logd−2n
(d − 2)! , n→∞.

Thus, Proposition 4.1 is applicable.

Example 4.5 (Further hyperbolic domains). Fix 2 ≤ ℓ ≤ d. Define the ℓ-th standard symmetric

polynomial in d variables by

f (x1, . . . ,xd ) = Pℓ(x1, . . . ,xd ) :=
∑

1≤i1<···<iℓ≤d
xi1 · · ·xiℓ .

The associated domain is

Dn =Hℓ,d(n) := {(x1, . . . ,xd ) ∈Nd : Pℓ(x1, . . . ,xd ) ≤ n}.

Example 4.4 corresponds to the particular case ℓ = d. If now 2 ≤ ℓ < d, then Proposition 4.4 in [14]

entails that #Dn ∼ C(d,ℓ)nd/ℓ , for some positive constant C(d,ℓ) > 0. Furthermore, by symmetry

#Dn,i = #Dn,1 for all i = 1, . . . ,d, and

Dn,1 = {(x2, . . . ,xd ) ∈Nd : Pℓ(1,x2, . . . ,xd ) ≤ n}

= {(x2, . . . ,xd ) ∈Nd : Pℓ(x2, . . . ,xd ) +Pℓ−1(x2, . . . ,xd ) ≤ n}

⊂ {(x2, . . . ,xd ) ∈Nd : Pℓ(x2, . . . ,xd ) ≤ n} =Hℓ,d−1(n).

Thus, Dn,1 ⊆Hℓ,d−1(n) and thereupon #Dn,1 ≤ #Hℓ,d−1(n). If ℓ < d − 1, then

#Hℓ,d−1(n) ∼ C(d − 1, ℓ)n(d−1)/ℓ , n→∞,

whereas if ℓ = d − 1,

#Hℓ,d−1(n) = #Hd−1,d−1(n) ∼
n logd−2n
(d − 2)! , n→∞.



MULTIVARIATE MULTIPLICATIVE FUNCTIONS OF RANDOM VECTORS IN LARGE INTEGER DOMAINS 15

In both cases limn→∞#Hℓ,d−1(n)/#Dn = 0. Summarizing, Proposition 4.1 is applicable to Dn =

Hℓ,d(n).

4.2. Dilations of a convex body.

Proposition 4.6. Let D ⊂ [0,∞)d be a compact convex set with nonempty interior and an, n ∈ N,

be a sequence of positive numbers such that limn→∞ an = ∞. Then, the following sequence of sets

satisfies (7) and (13):

Dn := anD∩Nd .

Proof. For the proof of (7), we shall use Proposition A.3. Put

V :=D∩ (0,∞)d , Vn := anV = anD∩ (0,∞)d ,

and note that Dn = Vn ∩Nd . Let us check that (30) holds for the sequence Vn. First of all, since

D is compact, convex and has a non-empty interior, it holds

D = cl(Int(D)) = cl(Int(D)∩ (0,∞)d) = cl(Int(D∩ (0,∞)d )) = cl(V ),

and, thereupon,

∂V = cl(V ) \ Int(V ) = cl(V ) \ Int(D) =D \ Int(D) = ∂D.
Further, observe that Vol(V ) > 0 and, denoting Bd

ε (0) the ball {(x1, . . . ,xd ) ∈ Rd : x21 + · · ·+ x2d < ε}
and A⊕B := {x + y : x ∈ A,y ∈ B} the Minkowski addition,

(24)
Vol(∂Vn ⊕Bd

ε (0))

Vol(Vn)
=
Vol(an(∂V ⊕Bd

ε/an
(0)))

Vol(anV )
=
Vol(∂V ⊕Bd

ε/an
(0))

Vol(V )
=
Vol(∂D⊕Bd

ε/an
(0))

Vol(V )
.

Since D is a compact convex set, its boundary ∂D is (d − 1)-rectifiable subset of Rd , that is, can

be represented as the image of a Lipschitz function1 h defined on a bounded subset of Rd−1

and taking values in R
d . Thus, by Theorem 3.2.39 in [12],

lim
n→∞

anVol(∂D⊕Bd
ε/an

(0)) = 2εHd−1(∂D) <∞,

whereHd−1 is the (d −1)-dimensional Hausdorffmeasure in R
d . Summarizing, we have shown

that the right-hand side of (24) converges to zero as n→∞.

For the proof of (13), we employ Proposition A.4 from Appendix A.

For i = 1, . . . ,d, put

mi (D) := inf{xi ≥ 0 : (x1, . . . ,xi , . . . ,xd ) ∈ D},

Mi(D) := sup{xi ≥ 0 : (x1, . . . ,xi , . . . ,xd ) ∈ D},

1As h one can take, for example, the function ∂BR(0) ∋ x 7→ πD(x), where R > 0 is such that D ⊆ BR(0) and πD(x)

is a unique closest to x point in D (metric projection on D).
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and note that 0 ≤ mi (D) < Mi(D) <∞. Here the second inequality is strict since D has a non-

empty interior; the last inequality follows from the compactness of D. Proposition A.4 is ap-

plicable with the rectangle

Πn :=




d�

i=1

[
⌊anmi (D)⌋,⌈anMi(D)⌉

]
⋂

N
d .

By construction

anD ⊂ an




d�

i=1

[
mi (D),Mi(D)

] ⊂



d�

i=1

[
⌊anmi (D)⌋,⌈anMi(D)⌉

] .

It remains to note that as n→∞,

(25) #Πn ∼ adn

d∏

i=1

(Mi(D)−mi (D)),

and also

(26) liminf
n→∞

#Dn

adn
> 0,

which is a consequence of the fact that D has a non-empty interior and, therefore, contains a

small d-dimensional cube in the interior. Relations (25) and (26) imply

limsup
n→∞

#Πn

#Dn
<∞.

The proof of Proposition 4.6 is complete. �

Example 4.7 (Spherical domains). Put B := {(x1, . . . ,xd ) ∈ [0,∞)d : x21 + · · · + x2d ≤ 1}. Then the

sequence of discrete balls

Dn = Sn :=
√
nB ∩Nd = {(x1, . . . ,xd ) ∈Nd : x21 + · · ·+ x2d ≤ n}

satisfies (7) and (13) by Proposition 4.6.

Truncated cones, such as Weyl chambers, also satisfy (7) and (13).

Example 4.8 (Truncated Weyl chambers). Let A := {(x1, . . . ,xd ) ∈ [0,∞) : x1 ≤ · · · ≤ xd ≤ 1}. Then
the sequence of sets

Dn =An := nA∩Nd = {(x1, . . . ,xd ) ∈Nd : x1 ≤ · · · ≤ xd ≤ n}

satisfies (7) and (13) by Proposition 4.6.
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5. Set-theoretic operations preserving properties (7) and (13)

In this section we discuss stability properties of sets satisfying (7) and (13) with respect to

the standard set-theoretic operations.

First, immediately from the definitions, one obtains the following.

Proposition 5.1. Let D(1)
n and D(2)

n be two sequences of sets satisfying (7) and (13). Then the se-

quence Dn :=D
(1)
n ∪D(2)

n satisfies (7) and (13).

As far as intersections and differences of sets are concerned, additional assumptions ensur-

ing that the resulting sets are not small have to imposed. The following holds true.

Proposition 5.2. Let D(1)
n and D(2)

n be two sequences of sets satisfying (7). Suppose further that

(27) D(2)
n ⊂ D(1)

n and limsup
n→∞

#D(2)
n

#D(1)
n

∈ [0,1).

Then the sequence Dn :=D
(1)
n \D(2)

n satisfies (7). Moreover, if D(1)
n satisfies (13), then so does Dn.

Proof. Using the inclusion (A \B)∆(C \D) ⊆ (A∆C)∪ (B∆D) we obtain, for every fixed c ∈Zd ,

#(Dn∆(Dn + c))

#Dn
=
#((D(1)

n \D(2)
n )∆((D(1)

n + c) \ (D(2)
n + c)))

#Dn

≤ #(D(1)
n ∆(D(1)

n + c))

#D(1)
n

#D(1)
n

#Dn
+
#(D(2)

n ∆(D(2)
n + c))

#D(2)
n

#D(2)
n

#Dn
.

In view of (27),

(28) 0 ≤ limsup
n→∞

#D(2)
n

#Dn
≤ limsup

n→∞

#D(1)
n

#Dn
= limsup

n→∞

#D(1)
n

#D(1)
n −#D(2)

n

<∞,

and we see that Dn satisfies (7).

If D(1)
n satisfies (13), then, for every a,b ∈N and i, j = 1, . . . ,d, i , j, it holds that for all n ∈N,

#(Dn ∩Zi(a)∩Zj (b))

#Dn
≤

#(D(1)
n ∩Zi(a)∩Zj(b))

#D(1)
n

#D(1)
n

#Dn
≤ K

ab
sup
n∈N

#D(1)
n

#Dn
=:

K ′

ab
,

where we used (28) for the last passage. �

With minimal changes, the above proof leads to the following.

Proposition 5.3. Let D(1)
n and D(2)

n be two sequences of sets satisfying (7). Suppose further that

limsup
n→∞

#(D(1)
n ∪D(2)

n )

#(D(1)
n ∩D

(2)
n )

<∞.
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Then the sequence Dn := D(1)
n ∩D(2)

n satisfies (7). Moreover, if D(1)
n or D(2)

n satisfies (13), then Dn

satisfies (13) as well.

Appendix A. On the regular growth condition for discrete domains

The following definition can be found on p. 173 in [5].

Definition A.1. A sequence of finite sets Dn ⊂ Z
d is said to be regularly growing to infinity if

as n→∞,

(29) #Dn→∞ and
#(D1

n \Dn)

#Dn
→ 0,

where for A ⊂Z
d and p ∈N, we denote by

Ap := {x = (x1, . . . ,xd ) ∈Zd : dist(x,A) ≤ p},

and dist is the supremum metric on Z
d .

Proposition A.2. Assume that Dn ⊂ Z
d is a sequence of finite sets and #Dn →∞ as n→∞. The

following statements are equivalent:

(i) Condition (7) holds for all c ∈Zd .

(ii) Condition (7) holds for c = ±ek , k = 1, . . . ,d.

(iii) Condition (7) holds for c = ek , k = 1, . . . ,d.

(iv) The sequence Dn is regularly growing.

Proof. Condition (i) trivially implies condition (ii), and (ii) clearly implies (iii). The fact that

(iii)=⇒(ii) follows from

#((Dn − ek)∆Dn) = #(((Dn − ek)∆Dn) + ek) = #(Dn∆(Dn + ek)) = #((Dn + ek)∆Dn).

We now prove that (ii)=⇒(iv). Note that

D1
n =

d⋃

k=1

(Dn ± ek).

Thus,

#(D1
n \Dn)

#Dn
≤

d∑

k=1

#((Dn ± ek) \Dn)

#Dn
≤

d∑

k=1

#((Dn ± ek)∆Dn)

#Dn
.

The right-hand side converges to 0, since by (7) every summand converges to 0.
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We proceed to the proof of (iv)=⇒(i). Assume that (29) holds and fix c ∈ Z
d . Using the

inclusion A \B ⊂ (A \C)∪ (C \B) which holds for any sets A,B,C, we conclude that

(Dn + c)∆Dn ⊂
⋃

j

(
(Dn +uj ) \ (Dn + vj )

)
,

where the union is finite and for every index j, uj − vj = ±ekj for some kj ∈ {1, . . . ,d}. Since

#Dn = #(Dn + x) for every x ∈Zd , it suffices to check that, for every j,

lim
n→∞

#
(
(Dn +uj ) \ (Dn + vj )

)

#(Dn + vj )
= 0,

but this follows from the inclusion (Dn+uj ) = (Dn +vj ± ekj ) ⊂ (Dn +vj )
1 and the fact that if (29)

holds for a sequenceDn, it also holds for the shifted sequenceDn+x, for every fixed x ∈Zd . �

The following result is a combination of Proposition A.2 and Lemma 1.5 in [5]. In some

cases, it is useful for checking (29).

Proposition A.3. Assume that Vn, n ∈N, is a sequence of bounded measurable subsets of Rd satis-

fying the so-called van Hove condition, meaning that for every ε > 0

(30) lim
n→∞

Vol(∂Vn ⊕Bd
ε (0))

Vol(Vn)
= 0,

where ∂Vn is the topological boundary of Vn. Then the sequence Dn := Vn ∩Zd satisfies (29).

Our last auxiliary result provides sufficient conditions for (13). It has been used in the proof

of Proposition 4.6.

PropositionA.4. Assume that there exist two sequences (s1(n), . . . , sd(n))n∈N and (c1(n), . . . , cd(n))n∈N
of nonnegative integers such that the rectangle

Πn :=




d�

i=1

[ci(n), ci(n) + si(n)]



⋂

N
d

satisfies

(31) #Dn ⊂Πn and C := sup
n∈N

#Πn

#Dn
<∞.

Then (13) holds. More generally, if (13) holds with Dn replaced by some set Πn which satisfies (31),

then (13) holds for Dn.
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Proof. Fix i, j = 1, . . . ,d, i , j. If (31) holds, then for all n ∈N and all a,b ∈N it holds

#(Dn ∩Zi(a)∩Zj (b))

#Dn
≤

#(Πn ∩Zi(a)∩Zj(b))

#Dn
≤ C

#(Πn ∩Zi(a)∩Zj (b))

#Πn
.

Since i , j, we obtain

#(Πn ∩Zi(a)∩Zj(b))

#Πn
≤ 1

si(n) + 1

⌊
si(n) + 1

a

⌋
1

sj (n) + 1

⌊
sj (n) + 1

b

⌋
≤ 1

ab

and the desired estimate holds true with K = C. �
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