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RANDOM WALKS IN THE HIGH-DIMENSIONAL LIMIT II:

THE CRINKLED SUBORDINATOR

ZAKHAR KABLUCHKO, ALEXANDER MARYNYCH, AND KILIAN RASCHEL

ABSTRACT. A crinkled subordinator is an ℓ2-valued random process which can be thought of as a version of

the usual one-dimensional subordinator with each out of countably many jumps being in a direction orthogonal

to the directions of all other jumps. We show that the path of a d-dimensional random walk with n independent

identically distributed steps with heavy-tailed distribution of the radial components and asymptotically orthog-

onal angular components converges in distribution in the Hausdorff distance up to isometry and also in the

Gromov–Hausdorff sense, if viewed as a random metric space, to the closed range of a crinkled subordinator, as

d,n → ∞.

1. INTRODUCTION

Let ℓ2 be the infinite-dimensional (real) Hilbert space of square-summable sequences endowed with the

standard Hilbert norm

‖(x1,x2, . . .)‖2 :=

√
∞

∑
k=1

x2
k , (x1,x2, . . .) ∈ ℓ2,

and the standard inner product

〈(x1,x2, . . .),(y1,y2, . . .)〉2 :=
∞

∑
k=1

xkyk, (x1,x2, . . .), (y1,y2, . . .) ∈ ℓ2.

Fix the standard orthonormal basis (ek)k∈N of ℓ2 and consider the natural embeddings

R⊂ R
2 ⊂ ·· · ⊂ R

d ⊂ ·· · ⊂ ℓ2,

obtained by identifying R
d with the linear span of (e1,e2, . . . ,ed), d ∈ N. This will allow us throughout

the paper to treat elements of R
d as elements of ℓ2 and use the notation ‖x‖2 (respectively, 〈x,y〉2) for

the usual Euclidean norm of x ∈ R
d (respectively, the standard inner product of x,y ∈ R

d). Denote by

ρ2(x,y) := ‖x− y‖2 the metric on ℓ2 induced by the norm ‖ · ‖2.

Let (X (d))d∈N be a sequence of random variables defined on a common probability space (Ω,F ,P) such

that X (d) takes values in R
d (identified with the linear span of (e1,e2, . . . ,ed) in ℓ2), d ∈ N. Assume that the
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space (Ω,F ,P) is reach enough to accommodate a sequence (X
(d)
i )i∈N of independent copies of X (d), for

each d ∈ N. Consider a family of random walks defined via

S
(d)
0 := 0, S

(d)
k := X

(d)
1 +X

(d)
2 + · · ·+X

(d)
k , k ∈ N, (1)

for each d ∈N. Let n = n(d) be an arbitrary sequence of positive integers such that n(d)→ ∞ as d → ∞. By

default, the notation d →∞ implies that also n= n(d)→∞. Denote by Ŝ
(d)
n the piecewise-linear interpolation

obtained by joining the consecutive points S
(d)
0 ,S

(d)
1 , . . . ,S

(d)
n by line segments. By construction, every Ŝ

(d)
n

can be regarded as a continuous piecewise-linear curve in ℓ2 starting at the origin and living in the finite-

dimensional subspace Rd , d ∈ N.

This paper is a continuation of [13] and devoted to finding an answer to the question: How does the curve

Ŝ
(d)
n (after an appropriate renormalization and up to isometries in ℓ2) look like when d and, therefore, n tend

to infinity? Does it approach some deterministic or random curve in ℓ2? Under the assumptions EX (d) =

0, E‖X (d)‖2 = 1 and the components of X (d) are uncorrelated (plus some mild technical assumptions), it

was proved in [13] that (Ŝ
(d)
n /

√
n,ρ2), regarded as a compact metric space, converges in probability in the

Hausdorff distance up to isometry and also in the Gromov–Hausdorff sense, see Section 2.5 below for the

definitions, to a deterministic metric space called the Wiener spiral. An isometric copy of the Wiener Spiral

in the space ℓ2 is given by a continuous curve W := (w̃t)t∈[0,1], where

w̃t :=
2
√

2

π

∞

∑
k=1

sin(π(k− 1/2)t)

2k− 1
ek, t ∈ [0,1], (2)

which possesses peculiar properties

‖w̃t − w̃s‖2 =
√
|t − s|, 0 ≤ s, t ≤ 1, (3)

and also

〈w̃t − w̃s, w̃u − w̃v〉2 = 0, 0 ≤ v ≤ u ≤ s ≤ t ≤ 1. (4)

Note that (3) means that, as a metric space, (W,ρ2) is isometric to the interval [0,1] endowed with the

distance
√
|t − s|. The Wiener spiral is also isometric to a continuous curve (wt )t∈[0,1] in L2([0,1]), given by

wt = 1[0,t](·) ∈ L2([0,1]), t ∈ [0,1]. This can be seen by noting that

〈wt ,ws〉L2([0,1]) = min(t,s) = 〈w̃t , w̃s〉2.

It is worth mentioning that replacing ek in (2) by Nk, where (Nk)k∈N are independent identically distributed

(i.i.d.) standard normal random variables, gives the Karhunen–Loéve expansion of a standard Brownian

motion.

The aforementioned result of [13] can be compared with the classical functional weak law of large num-

bers for one-dimensional random walks. Recall that the latter tells us that finiteness of the first moment of a

generic step implies uniform convergence of the path of the rescaled random walk to a deterministic linear

function in probability; see [9] for example. In the setting of [13], the authors show that the finiteness of
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E‖X (d)‖2 = 1 also implies convergence to a deterministic limit. A natural question arising from this compar-

ison is the following. It is known that if a generic step of a one-dimensional random walk is a.s. positive, has

infinite mean and its distribution has a regularly varying at infinity tail, then the path of the rescaled random

walk converges to a random limit being the path of a subordinator. Thus, suppose now that the distribution

of ‖X (d)‖2 is regularly varying at infinity. Keeping in mind the above analogy with one-dimensional random

walks, it is natural to expect that in this scenario, Ŝ
(d)
n converges as d → ∞, after an appropriate rescaling, to

a genuinely random curve in ℓ2, a path of a certain ℓ2-valued random process derived from a subordinator.

The main result of our paper confirms these expectations.

2. ASSUMPTIONS, DEFINITIONS AND MAIN RESULTS

2.1. Assumptions. We shall now present our assumptions on the distributions of (X (d))d∈N which will be

used throughout the paper. The components of the vectors X
(d)
i (independent copies of X (d)), and S

(d)
i are

denoted by X
(d)
i = (X

(d)
i,1 , . . . ,X

(d)
i,d ) and S

(d)
i = (S

(d)
i,1 , . . . ,S

(d)
i,d ), respectively. Furthermore, let

Θ(d) :=
X (d)

‖X (d)‖2

, Θ
(d)
i :=

X
(d)
i

‖X
(d)
i ‖2

, i ∈ N, d ∈ N,

denote the angular components of X (d) and X
(d)
i ’s.

Suppose that the following hypotheses hold:

(a) There exist constants (a(k))k∈N and a Lévy measure ν on (0,∞] satisfying

∫

(0,∞)
min(1,x)ν(dx)< ∞, ν(∞) = 0, (5)

and such that

nP{(a(n))−1‖X (d)‖2
2 ∈ ·} v−→

d→∞
ν(·), (6)

where
v−→

d→∞
stands for the vague convergence of measures on (0,∞]. Suppose, further, that

lim
s→0+

limsup
d→∞

n

a(n)
E

(
‖X (d)‖2

21{‖X(d)‖2
2≤sa(n)}

)
= 0. (7)

(b) With the sequence (a(k))k∈N defined in part (a), the following relation holds true, for all fixed s > 0

and ε > 0:

lim
d→∞

P

{∣∣∣
〈

Θ
(d)
1 ,Θ

(d)
2

〉
2

∣∣∣> ε
∣∣∣ ‖X

(d)
1 ‖2

2 ≥ sa(n),‖X
(d)
2 ‖2

2 ≥ sa(n)
}
= 0. (8)

(c) With the sequence (a(k))k∈N defined in part (a):

lim
s→0+

limsup
d→∞

n√
a(n)

‖EX (d)
1{‖X(d)‖2

2≤sa(n)}‖2 = 0. (9)
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As we shall now see, there are several cases in which the assumptions (a)–(c) can be significantly simplified.

IDENTICALLY DISTRIBUTED ‖X (d)‖2, d ∈ N. Under the assumption that the distribution of ‖X (d)‖2 does

not depend on d, condition (6) is equivalent to the following one. There exist α ∈ (0,1) and a function L

slowly varying at infinity such that, for all d ∈ N,

P{‖X (d)‖2 > t}= t−αL(t), t > 0. (10)

In this case ν(x,∞) = x−α for all x > 0, and (a(k))k∈N can be any positive sequence satisfying

lim
n→∞

nP{‖X (d)‖2 > a(n)}= lim
n→∞

nL(a(n))

a(n)α
= 1.

The existence of such a sequence follows by a standard argument involving de Bruijn conjugates; see Chap-

ter 1.5.7 in [5]. Note that the restriction α ∈ (0,1) comes from the fact that we require the Lévy measure

to satisfy the integrability condition (5). Furthermore, in this case the condition (7) holds automatically;

see (31) below.

INDEPENDENT RADIAL AND ANGULAR COMPONENTS OF X (d). The conditions in parts (b) and (c) take

a particularly simple form if the radial and angular components of X (d) are independent. More precisely, if

‖X (d)‖2 and Θ(d) are independent, then (8) is equivalent to
〈

Θ
(d)
1 ,Θ

(d)
2

〉
2

P−→ 0, d → ∞. (11)

That is to say, the condition of part (b) is equivalent to saying that two independent copies of X (d) are

asymptotically orthogonal in probability, as d → ∞. If also EΘ(d) = 0, then (9) holds automatically, since

the truncated expectation in (9) is equal to zero for independent ‖X (d)‖2 and Θ(d).

SYMMETRIC DISTRIBUTION OF X (d). Assume that the law of X (d) is the same as that of −X (d), for all

d ∈N. In this case the truncated expectation in (9) is equal to zero, since the function of X (d) under E in (9)

is odd. Thus, (c) holds automatically.

2.2. The crinkled subordinator. Fix T > 0. It is known, see Theorem 7.1 on p. 214 in [16], that the

assumptions in part (a) imply

‖X

(d)
1 ‖2 + ‖X

(d)
2 ‖2 + · · ·+ ‖X

(d)
⌊nt⌋‖2

a(n)




t∈[0,T ]

=⇒ (Sν (t))t∈[0,T ], n → ∞, (12)

in the Skorokhdod space of càdlàg functions defined on [0,T ] and endowed with the Skorokhod J1-topology.

Here, Sν is a subordinator, whose construction, which we are now going to recall, is of major importance

for everything to follow.

A subordinator is an increasing stochastic process that has independent and homogeneous increments.

For the purposes of the present paper, the following definition (called Itô’s decomposition) serves best. Let

P := ∑k δ(xk,yk)
be a Poisson random measure on [0,∞)× (0,∞] with the intensity measure LEB×ν , where
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LEB denotes Lebesgue measure and ν is the Lévy measure as in (a). Here and in what follows, δx denotes

a Dirac measure at x. The stochastic process

Sν (t) := ∑
k: xk≤t

yk =

∫

[0,t]×(0,∞]
yP(dx,dy), t ≥ 0,

is called a drift-free subordinator with Lévy measure ν . Condition (5) ensures that the sum above is a.s. finite

for all t ≥ 0. In case when ν(x,∞) = x−α , x > 0, for some α ∈ (0,1), the subordinator Sν is called α-stable.

We allow ν to be a finite measure, in which case Sν is a compound Poisson process.

Definition 2.1. A crinkled subordinator with Lévy measure ν (and with respect to the chosen basis of ℓ2) is

an ℓ2-valued stochastic process (Cν (t))t≥0 defined by

Cν (t) := ∑
k: xk≤t

ek

√
yk, t ≥ 0,

where P = ∑k δ(xk,yk)
is the Poisson process on [0,∞)× (0,∞) with intensity measure LEB×ν .

Note that for every fixed t ≥ 0,

‖Cν(t)‖2
2 = ∑

k: xk≤t

yk = Sν(t) ∈ [0,∞)

and therefore Cν (t) is a random element of ℓ2 a.s., for every t ≥ 0. Note also that, as a curve, t 7→ Cν (t) is

not ℓ2-continuous but is a.s. càdlàg.

In a similar way as the closed range of a subordinator is defined, see [3, Section 1.4], we define the closed

range of a crinkled subordinator.

Definition 2.2. Fix T > 0. The range Rν(T ) of a crinkled subordinator on [0,T ] is a random closed subset

of ℓ2 defined as the closure in ℓ2 of the image of t 7→ Cν(t), t ∈ [0,T ]. Thus,

Rν(T ) = cl({Cν(t) : 0 ≤ t ≤ T}) = {Cν(t) : 0 ≤ t ≤ T}∪{Cν(t−) : 0 ≤ t ≤ T}.

According to Lemma 4.1 below, the set Rν(T ) is a.s. compact in ℓ2 for every fixed T > 0. In particular,

(Rν(T ),‖ · ‖2) is a compact metric space. Moreover, this space (up to isometries of ℓ2) does not depend on

the choice of an orthonormal basis of ℓ2, whereas the crinkled subordinator itself does depend on the basis.

As a metric space, (Rν(T ),ρ2) is isometric to the closed range of the subordinator (Sν (t))t∈[0,T ] given by

R̃ν(T ) := cl({Sν(t) : 0 ≤ t ≤ T}) = {Sν(t) : 0 ≤ t ≤ T}∪{Sν(t−) : 0 ≤ t ≤ T}, (13)

and endowed with the metric (t,s) 7→
√
|t − s|. An isometry ϕ : Rν(T )→ R̃ν(T ) is given by

ϕ(Cν (t)) = ‖Cν(t)‖2
2 = Sν (t), ϕ(Cν (t−)) = ‖Cν(t−)‖2

2 = Sν(t−), t ∈ [0,T ]. (14)

Among other things, this implies that the Hausdorff dimension of Rν(T ) is equal to twice the Hausdorff

dimension of R̃ν(T ); see Proposition 4.3 below. A formula for the Hausdorff dimension of R̃ν(T ) is

available; see Section 5.1.2 in [3].
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2.3. Main results. For the sequence of random walks given by (1) and satisfying assumptions (a), (b) and

(c) above, define a sequence of finite random metric subspaces of ℓ2 via

M
(d)
k :=

{
S
(d)
0√
a(n)

,
S
(d)
1√
a(n)

, . . . ,
S
(d)
k√
a(n)

}
, d ∈ N, k ∈ N.

Each M
(d)
k is endowed with the induced ℓ2-metric. Equivalently, since M

(d)
k lives in R

d , which we assume

to be naturally embedded into ℓ2, this induced metric coincides with the standard Euclidean metric.

Here is our main result.

Theorem 2.3. Assume that conditions (a), (b) and (c) are fulfilled. Fix T > 0. Then, weakly on the Gromov–

Hausdorff space of compact metric spaces, it holds

(
M

(d)
⌊nT⌋,ρ2

)
=⇒ (Rν (T ),ρ2), d → ∞. (15)

Remark 2.4. A reminder on the Gromov–Hausdorff space will be given in Section 2.5.

Corollary 2.5. Assume that the distribution of ‖X (d)‖ does not depend on d and satisfies (10). Suppose

further that Θ(d) and ‖X (d)‖ are independent, EΘ(d) = 0 and (11) holds. Then (15) holds.

For a compact metric space M, denote by diam(M) its diameter. Since the mapping M 7→ diam(M) is

continuous with respect to the Gromov–Hausdorff metric, see Exercise 7.3.14 in [7], we immediately obtain

the following corollary of Theorem 2.3.

Corollary 2.6. Under the same assumptions as in Theorem 2.3, we have

(diam(M
(d)
⌊nT⌋))

2 =
max0≤i,k≤⌊nT⌋ ‖S

(d)
i − S

(d)
k ‖2

2

a(n)
=⇒ (diam(Rν(T ))

2 = Sν (T ), d → ∞.

2.4. Examples. Below we consider three families of random walks satisfying the assumptions (a), (b) and

(c).

Example 1 (Rotationally invariant distributions). Let X (d) be a random vector in R
d with a rotationally

invariant distribution. This means that Θ(d) is uniformly distributed on the unit sphere in R
d , and ‖X (d)‖2

and Θ(d) are independent. Assume that the distribution of ‖X (d)‖2
2 satisfies (6) and (7). Condition (b)

follows from Remark 3.2.5 in [18], whereas condition (c) is a consequence of EΘ(d) = 0 and independence

of ‖X (d)‖2 and Θ(d).

Example 2 (Random walks jumping along the coordinate axes). The following model is similar to the simple

random walk on Z
d . Let V̂ (d) be a random vector distributed uniformly on the set {±e1, . . . ,±ed}, that is

P{V̂ (d) = e j} = P{V̂ (d) = −e j} = 1/(2d) for all j ∈ {1, . . . ,d}. For every d ∈ N, put X (d) := R(d) · V̂ (d),
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where R(d) is a positive random variable which is independent of V̂ (d). Assume that the distribution of

‖X (d)‖2
2 = (R(d))2 satisfies (6) and (7). Condition (b) holds automatically, since Θ(d) = V̂ (d), and therefore

P

{〈
Θ

(d)
1 ,Θ

(d)
2

〉
6= 0
}
= P

{〈
V̂
(d)
1 ,V̂

(d)
2

〉
6= 0
}
=

1

d
→ 0, d → ∞.

Condition (c) also holds automatically since EV̂ (d) = 0.

Example 3 (Random walks with i.i.d. symmetric heavy-tailed components). Let ξ be a symmetric random

variable such that for some α ∈ (0,1),

P{ξ 2 > t} ∼ t−α , t → ∞. (16)

For an array (ξi, j)i, j∈N of independent copies of ξ , put

X
(d)
i := d−1/(2α)(ξi,1,ξi,2, . . . ,ξi,d), i ∈ N, d ∈ N,

and let X (d) be a generic copy of X
(d)
i . According to Eq. (4) in [11], for every fixed x > 0,

lim
d→∞

nP{‖X (d)‖2
2 > xn1/α}= lim

d→∞
n ·d ·P{ξ 2 > xd1/α n1/α}= x−α . (17)

Thus, (6) holds with ν(x,∞) = x−α and a(n) = n1/α . Condition (7) follows from the following chain of

estimates:

n

a(n)
E

(
‖X

(d)
1 ‖2

21{‖X
(d)
1 ‖2

2≤sa(n)}

)
=

n

(nd)1/α
E

((
d

∑
j=1

ξ 2
1, j

)
1{∑d

j=1 ξ 2
1, j≤s(nd)1/α}

)

≤ (nd)1−1/α
E

(
ξ 2

1,11{ξ 2
1,1≤s(nd)1/α}

)
∼ α

1−α
s1−α , d → ∞,

where the last asymptotic equivalence is a consequence of (16); see p. 579 in [8]. The right-hand side of

the last display converges to zero as s → 0+, which yields (7). Condition (9) follows from the symmetry of

X (d), which is inherited from the symmetry of ξ . For a proof (standard but technical) of part (b), we refer

the reader to Lemma 5.2 in the Appendix.

2.5. Compact subsets of ℓ2 and their convergence. In this subsection, we recall the definitions of the

Hausdorff and Gromov–Hausdorff metrics, and the notion of Hausdorff distance up to isometry in ℓ2.

2.5.1. Hausdorff and Gromov–Hausdorff metrics. Let (M,ρ) be an arbitrary metric space. Denote by

K (M) the set of non-empty compact subsets of M. Let dH denote the Hausdorff distance between ele-

ments of K (M), defined by

dH(A,B) = inf{r > 0 : A ⊂Ur(B),B ⊂Ur(A)}.

Here, Ur(A) = {m ∈ M : ρ(A,m)< r} is the r-neighborhood of A in M. It is well known that (K (M),dH)

is a metric space. If M is complete, then (K (M),dH) is also complete.
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By an isometry between two sets E1 and E2 living in possibly different metric spaces (M1,ρ1) and

(M2,ρ2), we understand a bijective mapping J : E1 → E2 such that ρ2(J(x),J(y)) = ρ1(x,y), for all x,y ∈ M1.

The Gromov–Hausdorff distance dGH(E1,E2) between two compact metric spaces E1 and E2 is defined as the

infimum of dH(ϕ1(E1),ϕ2(E2)), where the infimum is taken over all metric spaces (M,ρ) and all isometric

embeddings (injective isometries) ϕ1 : E1 → M and ϕ2 : E2 → M. It is known that the set of isometry classes

of compact metric spaces, endowed with the Gromov–Hausdorff distance, becomes a complete separable

metric space, called the Gromov–Hausdorff space.

2.5.2. Hausdorff distance up to isometry in ℓ2. Compact metric spaces we are interested in live in the same

Hilbert space ℓ2. This suggests that the full power of the general notion of Gromov–Hausdorff distance

might not be needed. Addressing this question, the following notion of closeness between compact subsets

of ℓ2, called Hausdorff distance up to isometry, has been proposed in [13]. Note that a very close concept

can be found in Exercise 5.26 in [15].

Introduce the following equivalence relation ∼ on K (ℓ2), the collection of non-empty compact subsets

of ℓ2. Two subsets K1 ⊂ ℓ2 and K2 ⊂ ℓ2 are considered equivalent if there is an isometry J : K1 → K2, that is

a bijection between K1 and K2 that preserves distances. The equivalence class of a compact set K is denoted

by [K] := {K′ ∈ K (ℓ2) : K ∼ K′}. The set of all such equivalence classes is denoted by H := K (ℓ2)/ ∼.

Now we introduce a metric on H. For K1,K2 ∈ K (ℓ2), the Hausdorff distance up to isometry between [K1]

and [K2] is defined by

d∼([K1], [K2]) = inf
K′

1∈[K1],K
′
2∈[K2]

dH(K
′
1,K

′
2). (18)

Proposition 2.7 (Proposition 2.10 in [13]). The function d∼ : H×H 7→ [0,∞) is a metric on H.

The following result establishes equivalence of Gromov–Hausdorff convergence and convergence in

(H,d∼).

Theorem 2.8 (Theorem 2.12 in [13]). Let K1,K2, . . . and K be compact subsets of ℓ2. Then, [Kn] → [K]

in (H,d∼) if and only if Kn → K in the Gromov–Hausdorff sense (where Kn and K are regarded as metric

spaces with the induced ℓ2-metric).

Remark 2.9. The notion used in [15] differs from our definition (18) by two aspects. Firstly, the space ℓ2 is

replaced by a universal homogeneous metric space (Urysohn space) U∞. Secondly, the infimum used in the

definition of d∼ is taken over global isometries of U∞. This defines a pseudometric on the family of compact

subsets on U∞, for which the corresponding metric space is isometric to the Gromov–Hausdorff space.

In view of Theorem 2.8, we immediately obtain the following:

Corollary 2.10. Under the assumptions of Theorem 2.3, the following holds true:

[M
(d)
⌊nT⌋] =⇒ [Rν(T )], d → ∞, (19)
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weakly on the space of probability measures on (H,d∼).

Let conv (respectively, conv) denote the operation of taking convex (respectively, closed convex) hull.

Lemma 4.3 in [13] and the continuous mapping theorem yield the following result.

Theorem 2.11. Under the assumptions of Theorem 2.3, the following holds true:

[convM
(d)
⌊nT⌋] =⇒ [convRν(T )], d → ∞,

weakly on the space of probability measures on (H,d∼).

The limiting closed convex hull can be characterized as follows. Let G↓ denote the set of nonincreasing

functions g : [0,T ]→ [0,1]. Then

convRν(T ) =

{

∑
k:xk≤T

ek

√
ykg(xk) : g ∈ G↓

}
.

3. PROOF OF THEOREM 2.3

Fix s > 0, define the truncated variables

X
(d)
k (s) := X

(d)
k 1{‖X

(d)
k

‖2
2≥sa(n)}, k ∈ N,

the corresponding random walk

S
(d)
0 (s) := 0, S

(d)
k (s) := X

(d)
1 (s)+X

(d)
2 (s)+ · · ·+X

(d)
k (s), k ∈N,

and the sets

M
(d)
k

(s) :=

{
S
(d)
0 (s)√
a(n)

,
S
(d)
1 (s)√
a(n)

, . . . ,
S
(d)
k (s)√
a(n)

}
, k ∈ N,

which we regard as a.s. finite metric spaces endowed with the induced ρ2 metric.

Define the random set

R
(s)
ν (T ) :=

{

∑
k: xk≤t

ek

√
yk1{yk>s} : 0 ≤ t ≤ T

}
, (20)

c.f. Definition 2.2, and note that it is a.s. finite for every fixed s > 0, since there are a.s. finitely many points

(xk,yk) of P in [0,T ]× (s,∞).

Since the Gromov–Hausdorff space is complete and separable, according to Theorem 3.2 on p. 28 in [4]

it suffices to check that the following three relations hold true:

(M
(d)
⌊nT⌋(s),ρ2) =⇒ (R

(s)
ν (T ),ρ2), d → ∞, (21)

for every fixed s > 0, weakly on the Gromov–Hausdorff space;

(R
(s)
ν (T ),ρ2)−→ (Rν(T ),ρ2), s → 0+, (22)
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a.s. on the Gromov–Hausdorff space; and

lim
s→0+

limsup
d→∞

P{dGH(M
(d)
⌊nT⌋(s),M

(d)
⌊nT⌋)> ε} = 0, (23)

for every fixed ε > 0. The easiest relation to prove among (21), (22) and (23) is the second one: it follows

from Lemma 4.2 below by using the obvious inequality dGH ≤ dH .

PROOF OF (21). The convergence stated in (21) is the weak convergence of probability measures on the

Gromov–Hausdorff space. A natural way to deal with it could be working with the Gromov–Hausdorff–

Prohorov metric; see [1, 10, 14]. However, in our setting we are able to avoid this heavy machinery by an

appeal to a version of the Skorokhod representation theorem.

For k ∈N, put R
(d)
k := ‖X

(d)
k ‖2. Let Mp :=Mp([0,∞)×(0,∞]) be the space of locally finite point measures

on [0,∞)× (0,∞], endowed with the vague topology. This space is known to be complete and separable; see

Proposition 3.17 in [17]. Furthermore, under the assumption (6), the following convergence in distribution

on Mp holds true:

∑
k≥1

δ
(k/n,(R

(d)
k

)2/a(n))
=⇒ P, d → ∞;

see Proposition 3.21 in the same reference. Now we want to apply a version of Skorokhod’s representation

theorem, which will allow us to pass to a new probability space on which the distributional convergence

above can be replaced by the a.s. convergence. Note that the left-hand side of the latter formula can be

viewed as an image of a measurable map φn from (ℓ2)N to Mp, defined by

φn(X
(d)
1 ,X

(d)
2 , . . .) = ∑

k≥1

δ
(k/n,‖X

(d)
k

‖2
2/a(n))

.

Thus, applying an extended version of the Skorokhod representation theorem, stated in Lemma 5.1, we can

pass to a new probability space (Ω,F ,P) which accommodates the following objects:

• for every d ∈ N, a distributional copy (X
(d)
k )k∈N of the sequence (X

(d)
k )k∈N;

• a distributional copy P := ∑k δ(xk,yk)
of the Poisson point process P;

such that with R
(d)
k := ‖X

(d)
k ‖2, k ∈ N, it holds

Pn := ∑
k≥1

δ
(k/n,(R

(d)
k

)2/a(n))
−→ ∑

k

δ(xk ,yk)
, P− a.s. as d → ∞. (24)

Define M
(d)
k (s) and R

(s)
ν (T ) in the obvious manner via (X

(d)
k )k∈N and P , respectively. More precisely,

put

M
(d)
k (s) :=





ℓ

∑
j=1

X
(d)
j 1{(R(d)

j )2≥sa(n)}√
a(n)

: ℓ= 0, . . . ,k




, k ∈ N,
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and

R
(s)
ν (T ) :=

{

∑
k: xk≤t

ek

√
yk1{yk>s} : 0 ≤ t ≤ T

}
.

We shall prove that (24) yields

dGH(M
(d)
⌊nT⌋(s),R

(s)
ν (T ))

P−→ 0, d → ∞, (25)

in the Gromov–Hausdorff space, for every fixed s > 0. The latter is clearly sufficient for (21), since

E f (M
(d)
⌊nT ⌋(s)) = E f (M

(d)
⌊nT⌋(s)) −→ E f (R

(s)
ν (T )) = E f (R

(s)
ν (T )), d → ∞,

for every bounded continuous f , with E denoting the expectation with respect to P.

Let Ω
′

be an event of probability one on the new probability space such that (24) holds for all ω ∈ Ω
′
,

and fix any ω ∈ Ω
′
. For notational simplicity, we suppress the dependence on ω below. According to

Proposition 3.13 in [17], there exist an integer P = P(ω) ∈ N and an enumeration of the atoms of P and

Pn in [0,T ]× [s,∞) such that for all sufficiently large n ∈ N,

Pn(· ∩ ([0,T ]× [s,∞))) =
P

∑
j=1

δ
(k j(n)/n,(R

(d)
k j(n)

)2/a(n))
and P(· ∩ ([0,T ]× [s,∞))) =

P

∑
j=1

δ(xk j
,yk j

),

and, moreover,

lim
d→∞


k j(n)

n
,
(R

(d)
k j(n)

)2

a(n)


= (xk j

,yk j
), j = 1, . . . ,P. (26)

Without loss of generality, we assume that the enumeration is chosen such that xk1
< xk2

< · · · < xkP
. Then

it is clear that

M
(d)
⌊nT⌋(s) =





ℓ

∑
j=1

X
(d)
k j(n)√
a(n)

: ℓ= 0, . . . ,P



 .

Also,

R
(s)
ν (T ) =

{
ℓ

∑
j=1

ek j

√
yk j

: ℓ= 0, . . . ,P

}
.

Define the bijective mapping

In : R
(s)
ν (T ) 7−→ M

(d)
⌊nT⌋(s)

by

In

(
ℓ

∑
j=1

ek j

√
yk j

)
=

ℓ

∑
j=1

X
(d)
k j(n)√
a(n)

, ℓ= 0, . . . ,P.
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By Corollary 7.3.28 on p. 258 of [7], the Gromov–Hausdorff distance between M
(d)
⌊nT⌋(s) and R

(s)
ν (T ) is

bounded above by twice the distortion of the map In, that is

dGH(M
(d)
⌊nT⌋(s),R

(s)
ν (T ))

≤ 2 sup
0≤ℓ≤m≤P

∣∣∣∣∣
∥∥∥In

(
m

∑
j=1

ek j

√
yk j

)
− In

(
ℓ

∑
j=1

ek j

√
yk j

)∥∥∥
2
−
∥∥∥

m

∑
j=1

ek j

√
yk j

−
ℓ

∑
j=1

ek j

√
yk j

∥∥∥
2

∣∣∣∣∣

= 2 sup
0≤ℓ≤m≤P

∣∣∣∣∣∣

∥∥∥
m

∑
j=ℓ+1

X
(d)
k j(n)√
a(n)

∥∥∥
2
−
∥∥∥

m

∑
j=ℓ+1

ek j

√
yk j

∥∥∥
2

∣∣∣∣∣∣
.

Note that

sup
0≤ℓ≤m≤P

∣∣∣∣∣∣

∥∥∥
m

∑
j=ℓ+1

X
(d)
k j(n)√
a(n)

∥∥∥
2
−
∥∥∥

m

∑
j=ℓ+1

ek j

√
yk j

∥∥∥
2

∣∣∣∣∣∣

2

≤ sup
0≤ℓ≤m≤P

∣∣∣∣∣∣

∥∥∥
m

∑
j=ℓ+1

X
(d)
k j(n)√
a(n)

∥∥∥
2

2
−
∥∥∥

m

∑
j=ℓ+1

ek j

√
yk j

∥∥∥
2

2

∣∣∣∣∣∣

= sup
0≤ℓ≤m≤P

∣∣∣∣∣∣

m

∑
j=ℓ+1



(R

(d)
k j(n)

)2

a(n)
− yk j


+

1

a(n) ∑
i, j∈{ℓ+1,...,m},i6= j

〈X (d)
ki(n)

,X
(d)
k j(n)

〉2

∣∣∣∣∣∣
.

In the first step we used the inequality |x− y|2 ≤ |x− y||x+ y|= |x2 − y2| for x,y ≥ 0. In view of (26), the

first sum on the right-hand side converges to 0 for all ω ∈ Ω
′
. Therefore, it remains to check that

1

a(n)
sup

0≤ℓ≤m≤P

∣∣∣∣∣ ∑
i, j∈{ℓ+1,...,m},i6= j

〈X (d)
ki(n)

,X
(d)
k j(n)

〉2

∣∣∣∣∣
P−→ 0, d → ∞. (27)

Using that

∣∣∣∣∣ ∑
i, j∈{ℓ+1,...,m},i6= j

〈X (d)
ki(n)

,X
(d)
k j(n)

〉2

∣∣∣∣∣≤ P2 sup
i, j∈{ℓ+1,...,m},i6= j

∣∣∣〈X (d)
ki(n)

,X
(d)
k j(n)

〉2

∣∣∣

≤ P2 sup
i, j∈{1,...,⌊nT⌋},i6= j

∣∣∣∣〈X
(d)
i 1{‖X

(d)
i ‖2

2≥sa(n)},X
(d)
j 1{‖X

(d)
j ‖2

2≥sa(n)}〉2

∣∣∣∣ ,

and recalling that (X
(d)
k )k∈N is a distributional copy of (X

(d)
k )k∈N, we see that (27) is a consequence of

1

a(n)
sup

i, j∈{1,...,⌊nT⌋},i6= j

∣∣∣∣〈X
(d)
i 1{‖X

(d)
i ‖2

2
≥sa(n)},X

(d)
j 1{‖X

(d)
j ‖2

2
≥sa(n)}〉2

∣∣∣∣
P−→ 0, d → ∞. (28)
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To check the latter we note that, for every fixed ϑ > 0,

P

{
sup

i, j∈{1,...,⌊nT⌋},i6= j

∣∣∣∣〈X
(d)
i 1{‖X

(d)
i ‖2

2≥sa(n)},X
(d)
j 1{‖X

(d)
j ‖2

2≥sa(n)}〉2

∣∣∣∣> ϑa(n)

}

≤ T 2n2
P{‖X

(d)
1 ‖2

2 ≥ sa(n),‖X
(d)
2 ‖2

2 ≥ sa(n), |〈X (d)
1 ,X

(d)
2 〉2|> ϑa(n)}

= T 2n2
P{‖X

(d)
1 ‖2

2 ≥ sa(n),‖X
(d)
2 ‖2

2 ≥ sa(n),‖X
(d)
1 ‖2‖X

(d)
2 ‖2 ≥ Sa(n), |〈X (d)

1 ,X
(d)
2 〉2|> ϑa(n)}

+T 2n2
P{‖X

(d)
1 ‖2

2 ≥ sa(n),‖X
(d)
2 ‖2

2 ≥ sa(n),‖X
(d)
1 ‖2‖X

(d)
2 ‖2 < Sa(n), |〈X (d)

1 ,X
(d)
2 〉2|> ϑa(n)},

where S > s is fixed. Note that by (6)

n2
P{(a(n))−1(‖X

(d)
1 ‖2

2,‖X
(d)
2 ‖2

2) ∈ ·} v−→
d→∞

(ν ⊗ν)(·), (29)

on (0,∞]× (0,∞] and, therefore,

lim
d→∞

n2
P{‖X

(d)
1 ‖2

2 ≥ sa(n),‖X
(d)
2 ‖2

2 ≥ sa(n),‖X
(d)
1 ‖2‖X

(d)
2 ‖2 ≥ Sa(n)}

= (ν ⊗ν)
(
[s,∞)× [s,∞)∩{(x,y) ∈ (0,∞]2 : xy ≥ S2}

)
,

for all but countably many S > s. The right-hand side converges to zero as S → ∞. On the other hand,

n2
P

{
‖X

(d)
1 ‖2

2 ≥ sa(n),‖X
(d)
2 ‖2

2 ≥ sa(n),‖X
(d)
1 ‖2‖X

(d)
2 ‖2 < Sa(n), |〈X (d)

1 ,X
(d)
2 〉2|> ϑa(n)

}

≤ n2
P

{
‖X

(d)
1 ‖2

2 ≥ sa(n),‖X
(d)
2 ‖2

2 ≥ sa(n),‖X
(d)
1 ‖2‖X

(d)
2 ‖2 < Sa(n),

∣∣∣
〈

Θ
(d)
1 ,Θ

(d)
2

〉
2

∣∣∣> ϑS−1
}

≤ n2
P

{
‖X

(d)
1 ‖2

2 ≥ sa(n),‖X
(d)
2 ‖2

2 ≥ sa(n),
∣∣∣
〈

Θ
(d)
1 ,Θ

(d)
2

〉
2

∣∣∣> ϑS−1
}

≤C(s)P
{∣∣∣
〈

Θ
(d)
1 ,Θ

(d)
2

〉
2

∣∣∣> ϑS−1
∣∣∣‖X

(d)
1 ‖2

2 ≥ sa(n),‖X
(d)
2 ‖2

2 ≥ sa(n)
}
,

where C(s) is a positive constant which depends on s. The last passage is again a consequence of (6). As

d → ∞, the conditional probability on the right-hand side of the last display converges to zero by (8). This

completes the proof of (28) as well as of (21).

PROOF OF (23). It is clear that

dGH(M
(d)
⌊nT⌋(s),M

(d)
⌊nT ⌋)≤ dH(M

(d)
⌊nT⌋(s),M

(d)
⌊nT ⌋)≤

1√
a(n)

max
k=1,...,⌊nT⌋

∥∥∥∥∥
k

∑
j=1

X
(d)
j 1{‖X

(d)
j ‖2

2≤sa(n)}

∥∥∥∥∥
2

.

Further,

max
k=1,...,⌊nT⌋

∥∥∥∥∥
k

∑
j=1

X
(d)
j 1{‖X

(d)
j ‖2

2≤sa(n)}

∥∥∥∥∥
2

≤ max
k=1,...,⌊nT⌋

∥∥∥∥∥
k

∑
j=1

(
X
(d)
j 1{‖X

(d)
j ‖2

2≤sa(n)}−EX
(d)
j 1{‖X

(d)
j ‖2

2≤sa(n)}

)∥∥∥∥∥
2

+ max
k=1,...,⌊nT⌋

∥∥∥∥∥
k

∑
j=1

E

(
X
(d)
j 1{‖X

(d)
j ‖2

2≤sa(n)}

)∥∥∥∥∥
2

=: Z
(d)
1 (s)+Z

(d)
2 (s).
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In order to estimate Z
(d)
1 (s), we note that

k

∑
j=1

(
X
(d)
j 1{‖X

(d)
j ‖2

2≤sa(n)}−EX
(d)
j 1{‖X

(d)
j ‖2

2≤sa(n)}

)
, k ∈N,

is an R
d-valued martingale with respect to the natural filtration of the sequence (X

(d)
k )k∈N. Thus, by Jensen’s

inequality,
∥∥∥∥∥

k

∑
j=1

(
X
(d)
j 1{‖X

(d)
j ‖2

2≤sa(n)}−EX
(d)
j 1{‖X

(d)
j ‖2

2≤sa(n)}

)∥∥∥∥∥

2

2

, k ∈ N,

is a submartingale. By Doob’s maximal inequality

P

{
Z
(d)
1 (s)≥ 2−1ε

√
a(n)

}
= P

{
(Z

(d)
1 (s))2 ≥ 4−1ε2a(n)

}

≤ 4

ε2a(n)
E

∥∥∥∥∥
⌊nT⌋
∑
j=1

(
X
(d)
j 1{‖X

(d)
j ‖2

2≤sa(n)}−EX
(d)
j 1{‖X

(d)
j ‖2

2≤sa(n)}

)∥∥∥∥∥

2

2

=
4⌊nT⌋
ε2a(n)

E‖X (d)
1{‖X(d)‖2

2≤sa(n)}−EX (d)
1{‖X(d)‖2

2≤sa(n)}‖2
2

≤ 8⌊nT⌋
ε2a(n)

E

(
‖X (d)‖2

21{‖X(d)‖2
2≤sa(n)}

)
.

Condition (7) implies that

lim
s→0+

limsup
d→∞

P

{
Z
(d)
1 (s)≥ 2−1ε

√
a(n)

}
= 0.

It remains to show that

lim
s→0+

limsup
d→∞

Z
(d)
2 (s)√
a(n)

= 0. (30)

Note that

Z
(d)
2 (s) = max

k=1,...,⌊nT⌋

∥∥∥∥∥
k

∑
j=1

E

(
X
(d)
j 1{‖X

(d)
j ‖2

2≤sa(n)}

)∥∥∥∥∥
2

≤ T n
∥∥EX (d)

1{‖X(d)‖2
2
≤sa(n)}

∥∥
2
.

Thus, (30) follows from (9).

In Section 2.1, we remarked that if the distribution of ‖X (d)‖2
2 does not depend on d, then (10) implies (7).

Here is the proof of this fact. Using p. 579 in [8], Condition (10) implies

E

(
‖X (d)‖2

21{‖X(d)‖2
2≤sa(n)}

)
∼ α

1−α
sa(n)P{‖X (d)‖2

2 ≥ sa(n)}, d → ∞.

Therefore,

lim
d→∞

n

a(n)
E

(
‖X (d)‖2

21{‖X(d)‖2
2≤sa(n)}

)
=

αs1−α

(1−α)
, (31)

and the right-hand side converges to zero, as s → 0+.
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4. PROPERTIES OF THE CRINKLED SUBORDINATOR

Lemma 4.1. For every T > 0, the set Rν(T ) in Definition 2.2 is a.s. compact in ℓ2.

Proof. It suffices to show that the set {Cν(t) : 0 ≤ t ≤ T} is a.s. totally bounded in ℓ2, that is, for every ε > 0

there exists an a.s. finite ε-net for {Cν(t) : 0 ≤ t ≤ T}.

By Lebesgue dominated convergence theorem,

lim
s→0+

∑
k: xk≤T

yk1{yk≤s} = 0, a.s. (32)

In particular, for every ε > 0, there exists a (random) δ > 0 such that

∑
k: xk≤T

yk1{yk≤δ} ≤ ε2.

Recall that the set in definition (20) is a.s. finite, and let us show that R
(δ )
ν (T ) is the sought a.s. finite ε-net

for {Cν(t) : 0 ≤ t ≤ T}. For every t ∈ [0,T ], we have

∥∥∥∥∥Cν(t)− ∑
k: xk≤t

ek

√
yk1{yk>δ}

∥∥∥∥∥

2

2

=

∥∥∥∥∥ ∑
k: xk≤t

ek

√
yk1{yk≤δ}

∥∥∥∥∥

2

2

= ∑
k: xk≤t

yk1{yk≤δ} ≤ ∑
k: xk≤T

yk1{yk≤δ} ≤ ε2,

and the proof is complete. �

Lemma 4.2. For every T > 0,

lim
s→0+

dH(R
(s)
ν (T )),Rν (T )) = 0, a.s.

Proof. The proof follows from the inequalities

dH(R
(s)
ν (T )),Rν(T ))≤ sup

t∈[0,T ]

∥∥∥∥∥Cν(t)− ∑
k: xk≤t

ek

√
yk1{yk>s}

∥∥∥∥∥
2

= sup
t∈[0,T ]

√
∑

k: xk≤t

yk1{yk≤s} =
√

∑
k: xk≤T

yk1{yk≤s}.

In view of (32), the right-hand side converges to 0 a.s. as s → 0+. �

Let d denote the Hausdorff dimension of the set R̃ν(T ) (the closed range of the subordinator Sν ; see (13))

regarded as a subset of [0,∞) endowed with the Euclidean distance (t,s) 7→ |t − s|. A formula for d can be

found in Corollary 5.3 of [3].

Proposition 4.3. The Hausdorff dimension of the set Rν(T ) is a.s. equal to 2d, for every fixed T > 0.

Proof. By the very definition of the Hausdorff dimension, if a set A ⊂ M has Hausdorff dimension d in a

metric space (M,ρ) and β ∈ (0,1] is a fixed parameter, then A has Hausdorff dimension d/β in the metric

space (M,ρβ ). Applying this observation with β = 1/2, we see that as a subset of [0,∞) endowed with the
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distance (t,s) 7→
√
|t − s|, the set R̃ν(T ) has Hausdorff dimension 2d. It remains to note that isometric sets

have the same Hausdorff dimensions and (R̃ν(T ),
√

| ·− · |) is isometric to (Rν(T ),ρ2); see (14). �

Corollary 4.4. If Cν is a crinkled α-stable subordinator with α ∈ (0,1), then the Hausdorff dimension of

the set Rν(T ) is a.s. equal to 2α , for every fixed T > 0.

Proof. This follows from the fact that the Hausdorff dimension of R̃ν(T ) is equal to α; see Theorem 3.2

in [6]. �

Remark 4.5. The same arguments in conjunction with the fact that the Wiener spiral is isometric to [0,1]

with the metric (t,s) 7→
√
|t − s| demonstrate that the Hausdorff dimension of the Wiener spiral is equal to

2.

5. APPENDIX

5.1. An extension of the Skorokhod representation theorem. The following lemma is an extended ver-

sion of the Skorokhod representation theorem. It is a light version of Theorem 1.1 in the paper [12]; see

also [2], where this result appeared for the first time.

Lemma 5.1. Let (M,ρ) and (M1,ρ1) be two complete separable metric spaces, and φn : M → M1 Borel-

measurable mappings, n ∈ N. Suppose that (µn)n∈N is a sequence of probability measures on (M,ρ) and

µ0 is a probability measure on (M1,ρ1) such that µn ◦ φ−1
n converges weakly to µ0 as n → ∞. Then there

exist a sequence of M-valued random variables (Xn)n∈N, an M1-valued random variable X0, all defined on a

common probability space (Ω,F ,P), such that Xn has distribution µn for all n ∈ N0, and φn(Xn)→ X0 a.s.

as n → ∞.

5.2. A calculation for Example 3.

Lemma 5.2. In the setting of Example 3, formula (8) holds true for every fixed s > 0 and ε > 0.

Proof. We start by noting that (16) implies

P{|ξ |> t} ∼ t−2α , t → ∞,
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and, in particular, E|ξ |α < ∞. Recall that a(n) = n1/α . By conditional Markov’s inequality,

P

{∣∣∣∣∣
d

∑
k=1

ξ1,kξ2,k

∣∣∣∣∣> εd1/α‖X
(d)
1 ‖2‖X

(d)
2 ‖2

∣∣∣ ‖X
(d)
1 ‖2

2 ≥ sa(n),‖X
(d)
2 ‖2

2 ≥ sa(n)

}

≤ P

{∣∣∣∣∣
d

∑
k=1

ξ1,kξ2,k

∣∣∣∣∣> d1/αεsa(n)
∣∣∣ ‖X

(d)
1 ‖2

2 ≥ sa(n),‖X
(d)
2 ‖2

2 ≥ sa(n)

}

≤ 1

d(εsa(n))α
E

(∣∣∣∣∣
d

∑
k=1

ξ1,kξ2,k

∣∣∣∣∣

α ∣∣∣ ‖X
(d)
1 ‖2

2 ≥ sa(n),‖X
(d)
2 ‖2

2 ≥ sa(n)

)

=
1

d(εsa(n))α

E

(∣∣∑d
k=1 ξ1,kξ2,k

∣∣α
1{‖X

(d)
1

‖2
2
≥sa(n),‖X

(d)
2

‖2
2
≥sa(n)}

)

P{‖X
(d)
1 ‖2

2 ≥ sa(n),‖X
(d)
2 ‖2

2 ≥ sa(n)}

∼ s−2α n2

d(εsa(n))α
E

(∣∣∣∣∣
d

∑
k=1

ξ1,kξ2,k

∣∣∣∣∣

α

1{‖X
(d)
1 ‖2

2≥sa(n),‖X
(d)
2 ‖2

2≥sa(n)}

)

=
n

d
· 1

s3α εα
E

(∣∣∣∣∣
d

∑
k=1

ξ1,kξ2,k

∣∣∣∣∣

α

1{‖X
(d)
1 ‖2

2≥sa(n),‖X
(d)
2 ‖2

2≥sa(n)}

)
, d → ∞,

where for the asymptotic equivalence we used (17). Using the subadditivity of x 7→ xα , α ∈ (0,1), we

conclude that

E

(∣∣∣∣∣
d

∑
k=1

ξ1,kξ2,k

∣∣∣∣∣

α

1{‖X
(d)
1 ‖2

2≥sa(n),‖X
(d)
2 ‖2

2≥sa(n)}

)
≤

d

∑
k=1

E|ξ1,k|αE|ξ2,k|α 1{‖X
(d)
1 ‖2

2≥sa(n),‖X
(d)
2 ‖2

2≥sa(n)}

= d

(
E|ξ1,1|α 1{‖X

(d)
1 ‖2

2≥sa(n)}

)2

= d
(
E|ξ1,1|α 1{ξ 2

1,1+···+ξ 2
1,d≥d1/α sa(n)}

)2

.

Further, since (a+ b)2 ≤ 2a2 + 2b2, we have

d
(
E|ξ1,1|α 1{ξ 2

1,1+···+ξ 2
1,d≥d1/α sa(n)}

)2

≤ 2d
(
E|ξ1,1|α 1{ξ 2

1,1≥d1/α sa(n)/2}

)2

+ 2d
(
E|ξ1,1|α 1{ξ 2

1,2+···+ξ 2
1,d≥d1/α sa(n)/2}

)2

= 2d

(
E|ξ1,1|α 1{ξ 2

1,1≥d1/α sa(n)/2}

)2

+ 2d

(
E|ξ1,1|αP{ξ 2

1,2 + · · ·+ ξ 2
1,d ≥ d1/αsa(n)/2}

)2

.

By Eq. (4) in [11],

P{ξ 2
1,2 + · · ·+ ξ 2

1,d ≥ d1/αsa(n)/2} ∼ (d− 1) ·P{ξ 2 ≥ d1/αsa(n)/2} ∼ (s/2)−α/n.

It remains to check that

lim
d→∞

n

(
E|ξ |α 1{ξ 2≥d1/α sa(n)/2}

)2

= 0.

To this end, it is clearly sufficient to show that

lim
A→∞

lim
n→∞

n
(
E|ξ |α 1{ξ 2≥Aa(n)}

)2

= 0. (33)



RANDOM WALKS IN THE HIGH-DIMENSIONAL LIMIT 18

This can be accomplished by an appeal to formula (5.21) on p. 579 in [8] applied with β = α/2. According

to this formula,

E|ξ |α 1{ξ 2≥Aa(n)} = E(ξ 2)α/2
1{ξ 2≥Aa(n)} ∼ 4− 2α

α
Aα/2(a(n))α/2

P{ξ 2 ≥ Aa(n)}, n → ∞.

Thus,

n
(
E|ξ |α 1{ξ 2≥Aa(n)}

)2

→
(

4− 2α

α

)2

A−α , n → ∞,

and (33) follows. �
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