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Full asymptotic expansion for orbit-summable quadrant walks

and discrete polyharmonic functions

Andreas Nessmann
∗

Abstract

Enumeration of walks with small steps in the quadrant has been a topic of great interest in
combinatorics over the last few years. In this article, it is shown how to compute exact asymptotics
of the number of such walks with fixed start- and endpoints for orbit-summable models with finite
group, up to arbitrary precision. The resulting representation greatly resembles one conjectured for
walks starting from the origin in [18], differing only in terms appearing due to the periodicity of the
model. We will see that the dependency on start- and endpoint is given by discrete polyharmonic
functions, which are solutions of △nv = 0 for a discretisation △ of a Laplace-Beltrami operator.
They can be decomposed into a sum of products of lower order polyharmonic functions of either
the start- or the endpoint only, which leads to a partial extension of a theorem by Denisov and
Wachtel in [22].

1 Introduction and Motivation

Enumeration of lattice paths has by now become a standard problem in combinatorics. In particular
the asymptotics of lattice path counting problem in the half- and quarter plane have been addressed in
a variety of works. To do so, the by now standard approach as used in [2] is to consider the generating
function

Q(x, y; t) =
∑

n∈N

∑

k,l∈Z

xkyltnq(0, B;n), (1)

where q(0, B;n) denotes the (possibly weighted) number of lattice paths starting at (0, 0) and ending
at a point B = (k, l). While for walks in the entire plane this contains negative powers of r and s and is
thus not a generating function in these two variables, it is one in t. Utilizing a functional equation for
Q(x, y; t), it is then often possible to extract information about the asymptotic behaviour of q(0, B;n),
as was done for instance in [2], where the authors gain various asymptotic expressions for the case of
a directed model (i.e. the first component of a step is always positive) closely tied to the zeros of the
so-called kernel. In the undirected case, restricting ourselves to walks in the quarter plane, asymptotics
of the coefficients of Q(1, 1; t) or Q(0, 0; t) (that is, of the walks starting at the origin and ending either
anywhere or back at the origin) have been computed for some cases in [27], using a complex boundary
value problem, and for a family of models related to the Gouyou-Beauchamps model in [20] via Analytic
Combinatorics in Several Variables (ACSV, [37]). In [9], the authors give hypergeometric expressions
in the 23 cases where the group is finite (see [15]); and even explicit formulas in four cases where
the model was known to be. To do so, they use orbit summation paired with a guessing approach.
Additionally, they obtain the qualitative result that in the remaining 19 cases, the function Q(1, 1; t)
is transcendental in t. This goes in a similar direction as [8], and in general the question about the
algebraic properties of the generating function Q(x, y; t). This function is known to be D-finite in
x, y, t if and only if the group is finite, which was first conjectured in [15] and subsequently proven by
various authors, for instance [7, 40, 34, 31].
There have also been extensions of the usual setting, where either steps are not required to be small
or not to be homogeneous [25], [33], or where the setting is not in the quarter plane but some other
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domain, e.g. in 3 or more dimensions [10], [16], [39], [28], [3].
Instead of counting all walks of a certain length, however, one could also sort them by their endpoint.
For some standard models, like for example the Simple Walk (S = {←, ↑,→, ↓}), or the Tandem Walk
(S = {←, ↑,ց}), explicit formulas for q(0, B;n) are given in [15], making use of coefficient extraction
and orbit summation. One of the main results in the aforementioned article is that one can make use of
orbit-summation in order to obtain an expression for the generating function Q(x, y; t) in order to show
it is D-finite, but it turns out that this approach can be utilized to compute asymptotics of q(0, B;n)
to arbitrary high order instead. For highly symmetric models, this is used in [38] in order to find
diagonal representation of the generating functions, and then use ACSV to compute the asymptotics
of the coefficients of Q(1, 1; t). In [39], this is then refined to all orbit-summable models with finite
group. Seeing as the principal idea behind the saddle point method and ACSV is in fact rather similar
(even though the latter is more general and uses much heavier machinery), it seems likely that their
approach could be generalized to compute exact asymptotics of q(k, l;n) as well. A general first order
approximation with fixed start- and endpoint is given in [22], where using coupling with Brownian
motion the authors show that, under some moment conditions, we have

q(A,B;n) ∼ V (A)Ṽ (B)

nc
+ o

(
n−c

)
, (2)

where q(A,B;n) is the number of paths with starting- and endpoints A = (u, v) and B = (k, l)
respectively, and V (A), Ṽ (B) are discrete harmonic functions in u, v and k, l respectively.
In [18], the authors used methods from [4] to show that for a Brownian motion, the asymptotic
expansion of the heat kernel with respect to time contains (continuous) polyharmonic functions. They
noticed as well that a discrete analogue of this exists for the Simple Walk, and conjectured that this
might also be the case for other models. Using orbit summation together with a saddle point method,
we will show this to be true in a more general context in Thm. 1 and Thm. 2. In particular, we will
show that for all orbit-summable models (see Sec. 2), obtain for any given m ∈ N asymptotics of the
form

q(A,B;n) =
γn

nc

[
m−1∑

p=1

vp(A,B)
∑r

i=1 α
u−k
i βv−l

i ζni
np

+O
(

1

nm

)]
, (3)

where c ∈ N, γ ∈ R and the αi, βi, ζi are roots of unity. The coefficients vp(x, y) are so-called discrete
polyharmonic functions (for a formal definition see Sec. 2) of order p in B and, in reversed direction, in
A. If the model has no drift then they are polynomials, otherwise they contain additional exponential
factors. Compared to (3), the expansion appearing in [18] is different in the lack of the αi, βi, ζi, which
appear due to periodicity properties: at certain points we might have q(A,B;n) = 0, and at those
points some kind of cancellation needs to occur.
The structure of the polyharmonic functions vp(x, y) will be described more closely in Thm. 3, where
it will be shown that we can write

vp(A,B) =

k∑

i=1

hp,i(A)gp,i(B), (4)

where the hi(A) and gi(B) are (in the case of y adjoint) polyharmonic of degree at most p in A and
B respectively (this will be detailed in Thm. 3), and the number of summands k depends on p. For
p = 1 this reduces precisely to (2), so in a certain sense one could view Thm. 3 as an extension (albeit
under much stronger conditions) of ([22, Thm. 7]).
While the results of this article are stated for orbit-summable small step models in two dimensions,
they do generalize to higher dimensions and – with a slight condition – to orbit-summable large step
models as well, see the remarks after Thm. 1 as well as A and B.
This article will be structured as follows:

1. In Section 2, a short overview over some definitions and the tools utilized will be given.

2. In Section 3, it will be shown that models with finite group allowing for orbit summation in a
manner similar as in [15] satisfy an asymptotic relation of the form (3), and the example of the

2



Gouyou-Beauchamps model will be worked out in detail. In particular it will be explicitly shown
how to compute the constants γ, c, αi, βi, ζi and the functions vp(B) in (3).

3. In Section 4, we will consider the same problem where instead of (0, 0), we start our paths at
an arbitrary point (u, v). It turns out, maybe not surprisingly, that due to the symmetry of
the problem the resulting solution is similar to that obtained in Section 3, leading to Thm. 2.
Continuing from there, we can then find a decomposition of the vp as in (4) in Thm. 3. The
resulting decomposition of the asymptotic terms for the Simple Walk is given in Section 4.2,
using an explicit basis of polyharmonic functions constructed in [41].

4. In App. A and App. B, examples of the method applied to a model with large steps and a
three-dimensional model are given.

5. In App. C, a decomposition of the polyharmonic coefficients as in Sec. 4.2 will be done for the
Gouyou-Beauchamps model and the Tandem Walk.

6. Finally, in App. D, the first three terms of the asymptotics for all the 19 unweighted, orbit-
summable models are given.

2 Preliminaries

2.1 Walks in the Quarter Plane

In order to count lattice paths in the quarter plane, first of all we need a set S ⊆ Z2 of permissible
steps, together with a family of weights (ωs)s∈S . A lattice path of length n is then a sequence of points
(x0, . . . , xn) ⊆ Qn, with Q := Z≥0 × Z≥0 being the quarter plane, such that xk − xk−1 ∈ S for all
k ∈ {1, . . . , n}. We will count such a path by its weight, that is, the product

∏n
k=1 ωxk−xk−1

.
We will in the following assume that:

1. our step set consists of small steps only, i.e. S ⊆ {−1, 0, 1}2 \ {(0, 0)},

2. our step set is non-degenerate, i.e. there is no (possibly rotated) half-plane containing all allowed
steps.

In order to keep the notation short, we will in the following sometimes denote by S not only the set
of allowed steps, but also the associated weights (ωs)s∈S .
Let q((u, v), (k, l);n) be the (weighted) number of paths of length n from (u, v) to the endpoint (k, l).
It can then be shown (see e.g. [15, Lemma 4]) that the generating function

Qu,v(x, y; t) =
∑

n≥0

tn
∑

k,l∈N

xkylq((u, v), (k, l);n) (5)

satisfies the functional equation

K(x, y; t)Qu,v(x, y; t)

= xu+1yv+1 −K(x, 0; t)Qu,v(x, 0; t)︸ ︷︷ ︸
=:A(x;t)

−K(0, y; t)Qu,v(0, y; t)︸ ︷︷ ︸
=:B(y;t)

+K(0, 0; t)Qu,v(0, 0; t)︸ ︷︷ ︸
=:C(t)

, (6)

where

K(x, y) = xy [1− tS(x, y)] , (7)

where S(x, y) is the step-counting Laurent polynomial

S(x, y) =
∑

(i,j)∈S

ω(i,j)x
iyj. (8)
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For ease of notation, if (u, v) = (0, 0), then we will just write q(k, l;n) and Q(x, y; t).
Given that we consider paths in the quarter plane only, we see that the series Qu,v(x, y; t) are indeed
power series in x, y and t; in particular they are power series in t with polynomial coefficients in x, y.
Given some power series A(x, y) =

∑
i,j∈N

ai,jx
iyj , we denote by [xn] the linear operator extracting

the n-th coefficient, i.e. [xn]A(x, y) =
∑

j∈N
an,jy

j , and [xnym]A(x, y) = an,m. In the same manner,
we define for Laurent series the operator [x>] :=

∑∞
n>0 x

n[xn] extracting all positive powers with their
coefficients, and the operator [x≥] extracting all nonnegative ones.
Seeing as we allow small steps only and our step set is non-degenerate, we can write the kernel K(x, y)
as

K(x, y) = a(x)y2 + b(x)y + c(x) (9)

= ã(y)x2 + b̃(y)x+ c̃(y), (10)

with a(x), b(x), c(x), ã(y), b̃(y), c̃(y) all being non-zero. Consider now the two birational transforma-
tions

Φ :

{
x 7→ x,

y 7→ y−1 c(x)
a(x) ,

(11)

Ψ :

{
x 7→ x−1 c̃(y)

ã(y) ,

y 7→ y.
(12)

These two transformations, which clearly depend on our step set S, generate the so-called group of a
model, denoted by G. This group can be either finite or infinite. If G is finite, then as both Φ,Ψ are
involutions, any element g ∈ G can be written as either (Φ ◦Ψ)

k, or as Ψ ◦ (Φ ◦Ψ)
k for some k. We

define sgn(g) = 1 in the first, and sgn(g) = −1 in the second case. The study of this group has been
central to many results about lattice walks in the quarter plane, see e.g. [15, 31, 23, 27]. The main
reason for this is that if we let

k(x, y) :=
K(x, y)

xy
= 1− tS(x, y), (13)

then it follows that k(x, y) is invariant under G. This observation is the starting point for orbit
summation methods as is done in [15]: we rewrite (6) (leaving out the dependency on t for easier
readability) as

xyk(x, y)Q(x, y) = xy −A(x) −B(y) + C. (14)

Assuming now that the group is finite, and picking any g ∈ G, we hence obtain

g(xy)k(x, y)Q(g(x), g(y)) = g(xy)−A(g(x))−B(g(y))− C. (15)

Multiplying (15) with sgn(g) and taking the sum over all elements g ∈ G, all terms A(g(x)) and B(g(y))
cancel (note that both Ψ,Φ change only one variable each, while sgn switches sign), we obtain (see [15,
Prop. 5])

∑

g∈G
sgn(g)g(xy)Q(g(x), g(y)) =

1

k(x, y)

∑

g∈G
sgn(g)g(xy). (16)

Depending on the exact shape of G, often the terms of the formQ(g(x), g(y)) will not contribute positive
powers of both x and y except for g = id. In this case, we say that the model is orbit-summable,
and we can write

xyQ(x, y; t) =
[
x>
] [
y>
]
∑

g∈G sgn(g)g(xy)

k(x, y; t)
. (17)

By [15, Lemma 2], we know that if a model S (consisting of both steps and weights ωs) has a finite
group, then the model with reversed steps S̃ := −S has a finite group as well. Furthermore, by
essentially the same argument, one can see that orbit-summability is retained when reversing the steps
as well:
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Lemma 1. Given an orbit-summable model S, the reversed model S̃ is also orbit-summable.

Proof. We note as in [15, Lemma 2] that if Φ,Ψ are the generators of the group of S, then the generators
of the group of S̃ are given by ι ◦ Ψ ◦ ι, ι ◦ Φ ◦ ι, where ι(x, y) =

(
x−1, y−1

)
. Given any element g in

the group G of S, denote by g̃ the corresponding element of the group G̃ of S̃. As ι is an involution,
we see that g̃ = ι ◦ g ◦ ι for any such g, and in particular that g̃(xy) = ι ◦ g ◦ ι(xy). Noticing that
g(xy) ∈ C(x, y) we can deduce that g̃(xy) = g(xy). From there, we obtain an equivalent equation to
(17) by the very same combinatorial arguments.

In the following, it will be convenient to consider models with zero drift, that is, where
∑

(i,j)∈S

iωi,j =
∑

(i,j)∈S

jωi,j = 0.

If this is not the case, then we can utilize the Cramer-transformation: we multiply each weight
ωi,j by a factor of αiβj , where we choose α, β such that the drift will be 0. The existence of such an
α, β is ensured for non-singular models, see e.g. [22, p. 1.5]. The reason why this substitution is very
convenient combinatorially is fairly simple; given the number q((i, j), (k, l);n) of paths from (i, j) to
(k, l) with n steps weighted by old weights ωi,j , then for the equivalent q̂ using the new weights we
have

q̂((i, j), (k, l);n) = αk−iβj−lq((i, j), (k, l);n). (18)

Additionally, it turns out that the group of the model is, in a certain sense, invariant under this
transformation, and in particular orbit-summability is preserved.

Lemma 2. Let S be a model and Ŝ be a Cramer-transform of S, with weights α, β. Let G, Ĝ be the
respective groups with generators Φ,Ψ and Φ̂, Ψ̂. Lastly, let ι be the mapping (x, y) 7→ (αx, βy). Then
we have:

1. Φ̂(x, y) = ι−1 ◦ Φ ◦ ι, Ψ̂(x, y) = ι−1 ◦Ψ ◦ ι; in particular G and Ĝ are isomorphic,

2. Ŝ is orbit-summable if and only if S is orbit-summable.

Proof. We show the first part for Φ only, the statement for Ψ will then follow by symmetry. We can
define ĉ(x) and â(x) as in (9). One finds that, by definition of Ŝ, we will have â(x) = βa(αx) and
ĉ(x) = β−1c(αx). From this it follows that

ι−1 ◦ Φ ◦ ι(x, y) = ι−1 ◦ Φ(αx, βy) = ι−1

[
αx, (βy)−1 c(αx)

a(αx)

]
(19)

= ι−1

(
αx, βy−1 ĉ(x)

â(x)

)
=

(
x, y−1 ĉ(x)

â(x)

)
= Φ̂(x, y). (20)

The isomorphism of G and Ĝ follows immediately and is given by g 7→ ι−1 ◦ g ◦ ι ∈ Ĝ. By this
isomorphism, we also see immediately that positive and negative powers of x, y are preserved, which
is in turn all that matters for orbit-summability, hence we are done.

Given a model with zero drift, one can consider the correlation coefficient θ (see [27, 45]) given by

θ = arccos


−

∑
(i,j)∈S ijωi,j√∑

(i,j)∈S i
2ωi,j ·

∑
(i,j)∈S j

2ωi,j


 . (21)

It turns out that this correlation coefficient is closely linked to the properties of the group (its restriction
to the surface C := {(x, y) : K(x, y) = 0} is finite if and only if π/θ ∈ Q), and also has a geometric
interpretation (see [45]). Additionally, in [43], [32], it is shown that π/θ gives the growth of the
generating function of the positive harmonic function at the point (1, 1). Given a model with non-zero
drift, we can first apply a Cramer-transform to get rid of the drift, and then define θ as above.
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2.2 Discrete Polyharmonic Functions

Given a step set S and a discrete function f defined on the quarter plane Q, we can define the Markov
operator

Pf(x) :=
∑

s∈S
ωsf(x− s). (22)

If we take the discrete random walk (Xn) with the transition probabilities given by the reverse of S,
and the induced Markov chain Mn := f(Xn), then we can interpret the operator P as the expectation
E [Mn+1 |Mn]. One can then proceed to look at the expected change during a time step, weighted by
a parameter t, which is given by

△f(x) := (P − t id) f(x). (23)

The operator △ can be viewed as the discrete equivalent of a Laplace-Beltrami operator. We call a
function (discrete) t–harmonic if

1. △f(x) = 0 for all x ∈ Q,

2. f(x) = 0 for all x ∈ Qc,

where Qc is the complement of Q. Similarly, we call a function (discrete) t–polyharmonic of
degree p if

1. △pf(x) = 0 for all x ∈ Q,

2. f(x) = 0 for all x ∈ Qc.

If t = 1, then we simply speak of harmonic and polyharmonic functions respectively. Note that strictly
speaking, the polyharmonicity is given by the first conditions, while the second ones are Dirichlet
boundary conditions. Due to the underlying combinatorics, however, one immediately sees that we are
only interested in polyharmonic functions satisfying the Dirichlet problem as above. In particular (1-
)harmonic and biharmonic functions have a variety of applications in the theory of stochastic processes
and physics, see e.g. [35, 1, 19]. The occurrence of t-polyharmonic functions in the asymptotics of path
counting problems, however, was noted only fairly recently in [18]. In [41], it is shown that in the
zero drift case, the space of 1-polyharmonic functions of order n is isomorphic to C[[z]]n, and a basis
consisting of polyharmonic functions with rational generating function is given.
Given a model S, we can also define a discrete Laplacian △̃ for the model with directions reversed S̃.
Seeing as △̃ is the adjoint operator to △ on the space L2

(
Z2
)
, we will call it the adjoint Laplacian. In

Section 4.1, we will encounter functions of the form f(x, y), for x, y ∈ Z2, which are polyharmonic in
x and adjoint polyharmonic in y. We will call such a function f(x, y) multivariate polyharmonic
of order p if

△k
(
△̃p−kf

)
= 0

for all 0 ≤ k ≤ p. Note that in this case, the ordering of the Laplacians does not matter as by linearity
they commute, i.e. we have

△
(
△̃f(x, y)

)
= △̃

(
△f(x, y)

)
. (24)

Lastly, discrete polyharmonic functions behave well with respect to Cramer transformations: via a
short computation, one can show

Lemma 3. Let Ŝ be a Cramer-transform of S, with ω̂i,j = αiβjωi,j. Let △̂,△ be the associated
Laplacians. We then have

△̂
[
α−kβ−lf(k, l)

]
= α−kβ−k△ [f(k, l)] . (25)

This directly implies that we have a bijection between the polyharmonic functions w.r.t. △ and those
w.r.t. △̂, given by adding a factor of α−kβ−l.
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2.3 Saddle Points

In the following we will use the saddle point method as described for instance in [29, p. VIII]. In
particular, we will be interested in saddle points of S(x, y), which is a Laurent polynomial with only
positive coefficients. We call a point (x0, y0) a dominant saddle point if:

1. (x0, y0) is a local minimizer of S(x, y),

2. x0, y0 ∈ R+.

The fact that S(x0, y0) 6= 0 follows from the positivity of coefficients. The existence is a consequence
of the fact that our model is non-degenerate; which implies that S(x, y) is coercive (it goes to infinity
wherever we approach the boundary; see also [22, p. 1.5]). By definition, we know that ∂S

∂x (x0, y0) =
∂S
∂y (x0, y0) = 0.
By a short computation, one can check that

Lemma 4. The dominant saddle point s0 = (x0, y0) is equal to (1, 1) if and only if the drift of the
model is 0.

Now take any other point (x1, y1) on the torus |x1| = x0, |y1| = y0. By the positivity of the coefficients
of S(x, y), we know that |S(x1, y1)| ≤ S(x0, y0), unless there is a ζ ∈ C, |ζ| = 1, such that each
monomial term of S(x1, y1) differs from the corresponding term in S(x0, y0) by the same factor of
ζ. Choosing α, β such that (x1, y1) = (αx0, βy0), we must therefore have αiβj = ζ for all (i, j) such
that ωi,j 6= 0. From here, it is not difficult to see that α, β and ζ must be roots of unity. It is also
clear that there can only be finitely many such ζ, in a one-to-one correspondence with finitely many
pairs (xi, yi), 0 ≤ i ≤ l (the maximum l appearing for the 19 unweighted orbit-summable models is
3, see App. D). We will call such a point (xi, yi) = (αix0, βiy0) and |S(xi, yi)| = S(x0, y0) a saddle
point associated with (x0, y0). One can check directly that the (xi, yi) are indeed saddle points of
S(x, y) as well, moreover, as we will see in Lemma 5, the local behaviour of S(x0, y0) and S(xi, yi)
is the same up to the factor ζ. By the same reasoning as in [29, p. VIII], it turns out that when
computing the asymptotics of the coefficients via the Cauchy formula, the main contributions to the
contour integral come from the points (xi, yi), as the modulus of S(x, y) will be smaller elsewhere,
leading to exponentially smaller terms.
Note that while this article considers mainly the 2-dimensional case, all the definitions above extend
to more dimensions in a natural manner; only the structure of the group becomes more complicated
as we will have more than two transformations, see e.g. [10].

3 Quadrant walks starting at the origin

3.1 Full asymptotic expansion

The goal of this section is to compute the asymptotics of orbit-summable lattice walks from the origin
to an arbitrary but fixed point in the quarter plane, and in particular to show the following:

Theorem 1. Let S be a step set satisfying the general assumptions stated in Sec. 2 such that S is
orbit-summable, i.e.

xyQ(x, y; t) =
[
x>
] [
y>
] N(x, y)

k(x, y; t)
,

where

N(x, y) :=
∑

g∈G
sgn(g)g(xy).

Suppose that s0 = (x0, y0) is a dominant saddle point, with associated other saddle points si, 1 ≤ i ≤ r
(meaning that we consider r+1 saddle points in total). Furthermore, let αi, βi, ζi be the roots of unity
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as constructed in Sec. 2. Then, there are a constant c ∈ N, a constant γ > 0, and γ-polyharmonic
functions vp of degree p such that for any m ∈ N we have

q(0, (k, l);n) =
γn

nc

[
m−1∑

p=1

vp(k, l)
∑r

i=1 α
k
i β

l
iζ

n
i

np
+O

(
1

nm

)]
. (26)

The polyharmonic functions vp(k, l) are polynomials precisely if the drift of the model is zero, else they
contain an additional factor of x−k

0 y−l
0 , with (x0, y0) the dominant saddle point. They can be computed

explicitly via a Cauchy-type integral.
Lastly, the constant c can be expressed using the correlation coefficient θ defined in (21) via c = π/θ.

In order to keep the proof of Thm. 1 reasonably concise, we will first start with two somewhat technical
lemmas. In the first lemma, we will establish some periodicity properties of S(x, y) and the group, in
the case where we have multiple saddle points.

Lemma 5. Let (x0, y0) be a dominant saddle point, and (xi, yi) = (αix0, βix0) be the associated
ones, with S(xi, yi) = ζiS(x0, y0). Let furthermore Φ(x, y) = (x, φ(x, y)),Ψ(x, y) = (ψ(x, y), y) be the
generators of the group as in (11),(12). We then have, for all x, y ∈ C:

S(αix, βiy) = ζiS(x, y), (27)

ψ(αix, βiy) = αiψ(x, y), (28)

φ(αix, βiy) = βiφ(x, y). (29)

Remark: Lemma 5 still holds true in more than two dimensions, with a completely analogous proof.

Proof. As (x0, y0) is a dominant saddle point and (xi, yi) associated to it, we have |αi| = |βi| =
|ζi| = 1, and know that for each monomial xkyl appearing in S(x, y) we have (αix)

k(βiy)
l = ζix

kyl.
Consequently, for all such k, l we have αk

i β
l
i = ζi, and thus (27) holds.

We can define ψ(x, y) almost everywhere by the properties

S(ψ(x, y), y) = S(x, y), (30)

ψ(x, y) 6= x, (31)

the exception being the points where ∂S
∂x (·, y) = 0, i.e. where x is uniquely defined by the property

S(·, y) = S(x, y). We know that for any y, we have αix 6= αiψ(x, y) almost everywhere. Furthermore,
using (27), we can rewrite:

S(αiψ(x, y), βiy) = ζiS(ψ(x, y), y) = ζiS(x, y) = S(αix, βiy). (32)

Note in particular that (27) and therefore (32) hold true for all x, y ∈ C, not only saddle points. Since
ψ is rational, we therefore have (28), and by symmetry also (29).

Lastly, we will show that given an asymptotic representation as in Thm. 1 below, the functions ap-
pearing therein are indeed polyharmonic.

Lemma 6. Suppose q(B;n) is a (combinatorial) quantity satisfying

q(B;n+ 1) =
∑

x∈S
ωsq(x− s;n) ∀B ∈ Z≥0 × Z≥0, n ≥ 0, (33)

and at the same time it is of the form

q(B;n) =
γn

nc

[
m−1∑

p=1

∑r
i=1 vp,i(B)ζni

np
+O

(
1

nm+1

)]
, (34)

for all k ≥ 0, with the ζi pairwise different roots of unity. Then, the vp,i are γ-polyharmonic of degree
p.
If, additionally, for a fixed point B we know that q(B;n) = 0 ∀n ∈ N, then vp,i(B) = 0 for all p, i.
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Proof. Substituting (34) into (33) gives us

q(B;n+ 1) =
∑

s∈S
ωsq(B − s;n) ⇔

γn+1

[
m−1∑

p=1

∑r
i=1 vp,i(B)ζn+1

i

(n+ 1)p+c
+O

(
1

nm+c

)]
= γn

∑

s∈S
ωs

[
m−1∑

p=1

∑r
i=1 vp,i(B − s)ζni

np+c

]
.

Extracting the terms for p = 1 and noticing that the others are smaller by a factor of at least 1
n , we

obtain

γ
nc+1

(n+ 1)c+1

r∑

i=1

v1,i(B)ζn+1
i +O

(
1

n

)
=
∑

s∈S
ωs

r∑

i=1

v1,i(B − s)ζni . (35)

Letting n go to ∞, we notice that the fraction nc+1

(n+1)c+1 will converge to 1. This gives us

γ

r∑

i=1

v1,i(B)ζn+1
i +O

(
1

n

)
=
∑

s∈S
ωs

r∑

i=1

v1,i(B − s)ζni . (36)

All we need to do now is show that each of the v1,i(x) is γ-harmonic by itself, i.e. that (36) holds for
each summation index separately. To do so, let us forget for a moment the part O

(
1
n

)
and solve the

exact analogue to (36).
Since by assumption the ζi are all different, we know that the vectors

(ζm1 , . . . , ζ
m
l ), 0 ≤ m ≤ r − 1 (37)

are linearly independent (written as a matrix, they give a Vandermonde matrix with determinant∏
i<j(ζj − ζi) 6= 0). Therefore, the system

r∑

i=1

(
cvi,1(B)−

∑

s∈S
ωsvi,1(B − s)

)
ζni = 0 (38)

has no nontrivial solutions, and hence

cvi,1(B) =
∑

s∈S
ωsvi,1(B − s) ∀1 ≤ i ≤ l. (39)

All that remains to do now is to see that the error term O
(
1
n

)
in (36) does not change anything. To do

so, suppose now that (39) is not satisfied for some i. Then we know that there are arbitrarily large n
such that (38) does not hold, i.e. its right-hand side takes a value εn 6= 0. As the ζi are roots of unity,
there are only finitely many values which εn can take for different n, so we cannot have convergence of
εn to 0. But then, choosing n large enough, (35) cannot hold either; a contradiction. Thus, (39) must
hold, and we know that the v1,i(B) are harmonic. By induction, applying the discrete Laplacian △ to
both sides of (35), we argue in the same fashion that the vk,i(B) must be polyharmonic of degree k.
For the second part, suppose that q(B;n) = 0 for all n, but we have p, i such that vp,i(B) 6= 0. Assume
our p to be minimal with this property. Then, we know that

l∑

i=1

vp,i(B)ζni = 0, (40)

because otherwise this would be a contradiction to (34) for large n. But then we can utilize indepen-
dence of the vectors (ζk1 , ζ

k
2 , . . . , ζ

k
l ) for k = 0, . . . , l − 1 as before and arrive at a contradiction.

Finally, to show that the vp,i are polyharmonic of order p, we can apply the operator△p−1 to both sides
of (34), notice that the first p−1 terms vanish by assumption and then repeat the above argument.
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Remarks:

• In the proof of Thm. 1 we will see that in our case, for different i the vp,i(k, l) differ only by a
factor of α−k

i β−l
i . Here, given a dominant saddle point (x0, y0), and an associated one (xi, yi),

then αi, βi are the numbers such that (xi, yi) = (αix0, βiy0). This allows us to essentially talk
about only a single polyharmonic function vp for any given p; namely the one defined by the
dominant saddle point.

• We will see in Section 4.1 that we always have △vp+1 = vp + rp−1, where rp−1 is some polyhar-
monic function of degree at most p− 1. This hints at the fact that the polyharmonic functions
appearing in the asymptotic expansions are not arbitrary, but do have some form of recursive
structure.

We now have all ingredients ready for the proof of Thm. 1.

Proof (of Thm. 1). By the assumptions, we know that we have

q(0, (k, l);n) =
[
xkyltn

]
Q(x, y; t) =

[
xk+1yl+1tn

]
∑

g∈G sgn(g)g(xy)

k(x, y; t)
. (41)

As k(x, y) = 1− tS(x, y), we can rewrite

q(0, (k, l);n) =
[
xk+1yl+1tn

] ∞∑

i=0

tiS(x, y)iN(x, y) (42)

=
[
xk+1yl+1

]
S(x, y)nN(x, y). (43)

By Cauchy’s formula, we have

q(0, (k, l);n) = − 1

4π2

∫

Γ1

∫

Γ2

S(x, y)nN(x, y)

xk+2yl+2
dxdy, (44)

with Γ1,2 being closed curves around the origin. To evaluate the asymptotics of this integral, we utilize
the saddle point method, as described for instance in [29, Chapter VIII].
The main idea is to conveniently choose our contours Γ1,Γ2 such that they make the integral as easy
to compute as possible.
With this in mind, suppose that (x0, y0) is a dominant saddle point, and pick Γ1 = {|x| = |x0|},Γ2 =
{|y| = |y0|}. We know that the modulus of S(x, y) on Γ1 ∩ Γ2 is maximal; and the only other points
where it attains the same value are the associated saddle points (xi, yi). At any other point, |S(x, y)|
will be strictly smaller – hence, when n goes to infinity, it suffices to compute the integral locally
around our saddle points, since the rest will grow exponentially slower. We could hypothetically run
into issues if N(x, y) were to be infinite, but we will see that this is not the case at our saddle points
(and for any other point, we can always just slightly shift our contour to avoid a pole). It is easy
to check that, given an ε > 0, the set |S(x0, y0) − S(x, y)| < ε is contained in a domain of the form
|x − x0| < ε1, |y − y0| < ε2. As previously mentioned, the rest of the integral can be – in order
to find the asymptotics – neglected, as it will be exponentially smaller. Changing our coordinates

to x = x0e
is/

√
n, y = y0e

it/
√
n, this corresponds to a region of the form

∣∣∣ s√
n

∣∣∣ < δ1,
∣∣∣ t√

n

∣∣∣ < δ2, or,

equivalently, |s| < δ1
√
n, |t| < δ2

√
n.

To find the asymptotics, it therefore suffices to compute the integrals
∫ δ1

√
n

−δ1
√
n

∫ δ2
√
n

−δ2
√
n

Fj(s, t, k, l, n)dtds, (45)

where Fj(s, t, k, l, n) is the expression obtained by substituting x = xje
is/

√
n, y = yje

it/
√
n, for (xj , yj)

the relevant saddle points (i.e. (x0, y0) and the ones associated to it, as outlined in Section 2). We will
see that, given any fixed m ∈ N, each such integral can be written in the form

γn

nc

∫ δ1
√
n

−δ1
√
n

∫ δ2
√
n

−δ2
√
n

e−Q(s,t)

(
p0(s, t) +

p1(s, t)

n
+
p2(s, t)

n2
+ · · ·+O

(
1

nm

))
dtds, (46)
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where Q(s, t) is some (positive definite) quadratic form and the pj(s, t) are polynomials. Assume
w.l.o.g. that δ1 ≥ δ2. For s, t > δ2

√
n, we can see that the integral over the remaining part of R is

exponentially small in n, and therefore we can consider the integral

γn

nc

∫ ∞

−∞

∫ ∞

−∞
e−Q(s,t)

(
p0(s, t) +

p1(s, t)

n
+ · · ·+O

(
1

nm

))
dtds. (47)

Consequently, all we need to do is to consider the latter integral for all saddle points with maximum
absolute value (of which there are finitely many), and by computing all the expressions up to a fixed
pj(s, t), we will then have obtained the asymptotics of (44) and at the same time shown (26).
In the following, we will proceed in two steps: first, we pick a dominant saddle point and show that,
locally around this point, everything works out smoothly. Then, we pick any associated saddle point
and show that, up to powers of roots of unity, nothing changes from the first step.

1. Suppose (x0, y0) is a dominant saddle point, let γ := S(x0, y0) and fix a m ∈ N. First, we show
that 0 = |N(x0, y0)| < ∞. This is due to (x0, y0) being a saddle point: we have ∂S

∂y (x0, y0) = 0

and thus y0 is the unique solution to S(x0, ·) = S(x0, y0). Therefore, φ(y0) = y0, and in the
same manner we can see ψ(x0) = x0. It follows immediately that the alternating orbit sum of
xy evaluated at (x0, y0) is 0; in particular it is finite.
Our next step is to show that we can rewrite the integrand (that is, the one in (44)) as in (47).
To do so, we substitute x 7→ x0 exp

is√
n
=: es, y 7→ y0 exp

it√
n
=: et, and then separate the integral

into three parts: S(es, et)n, N(es, et) and the denominator 1/ek+1
s ek+1

t (note that a power in the
denominator vanishes due to the substitution rule).

(a) Part 1: S(es, et)n

As (x0, y0) is a dominant saddle point of S(x, y) and therefore ∂S
∂x (x0, y0) =

∂S
∂y (x0, y0) = 0,

we have a Taylor expansion of S(x, y) around (x0, y0) of the form

S(x, y) = γ − u(x− x0)2 − v(x− x0)(y − y0)− w(y − y0)2 + . . . (48)

After our substitution, this gives us (note that es, et are functions of s, t and n)

S (es, et) = γ − u s
2

4n
− v st

n
− w t2

4n
+A(s, t, n), (49)

with A(s, t, n) = n−3/2
∑2m−1

j=0
aj(s,t)

nj/2 +O
(
n−m−3/2

)
, and the rj homogeneous polynomials.

We know that Q̂(s, t) :=
[
u
4 s

2 + vst+ w
4 t

2
]

is a positive definite quadratic form (seeing as
our saddle point is a local minimizer of S(x, y) in R+ × R+). Consequently, we can write

logS(es, et) = log
(
γ −

[
Q̂(s, t)−A(s, t, n)

])
(50)

= log γ − 1

γ
Q̂(s, t)

︸ ︷︷ ︸
=:Q(s,t)

+B(s, t, n), (51)

with once again B(s, t, n) = n−3/2
∑2m−1

j=0
bj(s,t)

nj/2 +O
(
n−m−3/2

)
, the b′j homogeneous poly-

nomials and Q(s, t) a positive definite quadratic form. Consequently,

S(es, et)
n = exp [n logS(es, et)] = γn exp [−Q(s, t)] exp [nB(s, t, n)] . (52)

Comparing this to (44), the first two factors are already precisely as we want them, and the
last factor is of the form

∑
m≥1

qm(s,t)
nm/2 , with the qm(s, t) homogeneous of degree m.

(b) Part 2: N(es, et)
As we have seen that |N(x0, y0)| < ∞, and seeing as N(x, y) is a rational function in x, y,
it follows that we can write

N(es, et) =

2m−1∑

j=0

dj(s, t)

nj/2
+O

(
n−m−1

)
, (53)

with the dj(s, t) homogeneous polynomials of degree j.
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(c) Part 3: 1/ek+1
s el+1

t

Lastly, we have

1

ek+1
s el+1

t

= x−k−1
0 y−l−1

0

∑

j≥0

1

nj/2

(−i[(k + 1)s+ (l + 1)t])
j

j!
. (54)

Note in particular that this last factor is the only part which depends on the endpoint (k, l).

Multiplying the power series together and sorting them by powers of n, we obtain as a result the
contribution of this saddle point to (47) of the form

γn

nc

[
m−1∑

p=0

1

np/2

1

xk+1
0 yl+1

0

∫ ∞

−∞

∫ ∞

−∞
e−Q(s,t)q′p(s, t, k, l)dsdt+O

(
1

nm−1/2

)]
, (55)

where the q′i,p(s, t, k, l) are polynomials in s, t, k, l. One can easily see, however, that q′p(s, t, k, l)
is homogeneous of degree p; for odd p the double integral therefore vanishes by symmetry. Thus
we can rewrite (55) as

γ

nc

[
m−1∑

p=0

1

np

1

xk+1
0 yl+1

0

∫ ∞

−∞

∫ ∞

−∞
e−Q(s,t)qp(s, t, k, l)dsdt+O

(
1

nm

)]
, (56)

with qp := q′2p. The factor 1
nc in (55) stems from the fact that we obtain a factor of 1/n by the

substitution rule, and that the integral might vanish for small values of p.

2. Suppose now that we have another saddle point (xi, yi) = (αix0, βiy0) associated to (x0, y0),
and pick ζi such that S(xi, yi) = ζiS(x0, y0) (notice that we then have |ζi| = 1, as discussed in
Section 2). Our goal is now to describe the series expansion of the numerator around (xi, yi)
using the one around (x0, y0). We substitute as before x 7→ e′s := xi exp

is√
n
, y 7→ e′t := yi exp

it√
n
.

Due to Lemma 5, we can now conclude that the series representation (w.r.t. n at ∞) around
S(e′s, e

′
t) is the same as the one of ζiS(es, et), and the representation of N(e′s, e

′
t) is the same as

αiβiN(es, et). Lastly, the expansion of 1/e′(k+1)
s e

′(l+1)
t clearly changes only by adding a factor of

αk+1
i βl+1

i as well. Therefore, we can conclude that the contribution of the saddle point (xi, yi)
is the same as the one of (x0, y0) up to a factor of ζni α

−k
i β−k

i .

By Lemma 6, we deduce that the vp(k, l) are indeed γ-polyharmonic of degree p (note that for our
dominant saddle point we have α = β = ζ = 1).
Seeing as the only point in the construction where k, l appear is in (54), one finds that the vp(k, l) are,
up to a factor of x−k

0 y−l
0 , bivariate polynomials in k, l. Due to Lemma 4, they are therefore polynomials

if and only if the model has zero drift.
The fact that c = π/θ (with θ the correlation coefficient as defined in (21) follows from [22, Thm. 7].

The construction used in the proof allows us to give some further properties of the polyharmonic
functions appearing in the asymptotic expansion.

Corollary 1. The degree of the polynomial part of vp(k, l) (that is, without the factor of x−k
0 y−l

0 ) is
c+ 2p− 1.

Proof. By looking once again at the proof of Thm. 1 and in particular (54). From there, the statement
follows immediately.

Corollary 2. For any orbit-summable model, we have π/θ ∈ N.

Remarks:

• Thm. 1 holds true in higher dimensions as well, and indeed the proof translates directly. The
one difference lies in the powers of n which appear: by the substitution rule dxi

dsi
= cie

isi/
√
n, one

obtains an additional factor of n−1/2. Thus, for even dimensions the constant c in (26) will be
integer, whereas for odd dimensions it will be in 1

2 +N. An example case for three dimensions is
treated in App. B.
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• When looking at models with large steps, the one thing that could go wrong is that the numerator
might have a singularity at a saddle point. Usually, this seems not to be the case, and for a given
model this condition is very easy to check. An example is treated in App. A.

• A table of the first three asymptotic terms for the 19 unweighted orbit-summable models is given
in App. D.

3.2 Example: the Gouyou-Beauchamps model

In this section, we will illustrate the result of Thm. 1 by computing the asymptotics for the Gouyou-
Beauchamps model, and in doing so find an explicit formula for the polyharmonic functions appearing
therein.
The Gouyou-Beauchamps Walk is defined by the step set {տ,ց,←,→}. Its step polynomial is
S(x, y) = y

x + x
y + 1

x + x, and solving Sx = Sy = 0 yields the four solutions (x, y) = (±1,±1). We find
that S(1, 1) = 4, S(−1, 1) = −4, S(1,−1) = S(−1,−1) = 0. Verifying that the second derivatives do
not vanish, we therefore have the dominant saddle point (1, 1) and one other associated to it, namely
(−1, 1), to consider. Note that the appearance of two saddle points is not at all surprising here, due
to parity (or, in more general terms, periodicity) considerations: depending on the first coordinate,
we can only hit a point after an even or odd number of steps. Therefore we can already expect at
this point the asymptotics resulting from the saddle points to be precisely the same up to a factor of
(−1)k+n, which coincides with the statement of Thm. 1. Hence, we will only consider the dominant
saddle point here.
The alternating orbit sum of xy can be checked to be

N(x, y) := − (−1 + x2)(−1 + y)(x4 + y3 − x2y − x2y2)
x3y2

. (57)

Out integrand is therefore of the form

S(x, y)nN(x, y)

xk+2yl+2
,

where after letting x 7→ es := eis/
√
n, y 7→ et := eit/

√
n, by the substitution rule we will end up with

− 1

n

S(es, et)
nN(es, et)

ek+1
s el+1

t

.

The first factor of −1/n is entirely harmless; we will therefore proceed to compute each of the factors
in the second fraction separately.

1. Series representation of S(es, et)n:
First, we can compute (we let m :=

√
n for readability)

S(es, et) = 4−
∑

j≥2

aj
mj

= 4− s2 + (s− t)2
n︸ ︷︷ ︸

=:4Q(s,t)

+
∑

j≥3

aj
mj

︸ ︷︷ ︸
=:A(s,t,m)

, (58)

with

aj := ij
sj + (s− t)j

j!
(1 + (−1)j).

From here we obtain

log [S(es, et)] = log 4− Q(s, t)

n
+B(s, t,m), (59)
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where B(s, t,m) =
∑

j≥3
bj
mj , with

bj =
∑

i1+i2+···+in=j

(−1/4)n
n

n∏

p=1

aip ,

with the ij positive integers.
Finally, we can compute

S(es, et)
n = exp (n log [S(es, et)]) (60)

= exp (n log [4 +B(s, t,m)]−Q(s, t)) (61)

= 4ne−Q(s,t) exp [B(s, t,m)]︸ ︷︷ ︸
:=C(s,t,m)

, (62)

where C(s, t,m) =
∑

k≥1
cj
jk

with

cj =
∑

i1+···+in=j

1

n!

n∏

p=1

bip ,

with the ij again positive integers.

2. Series representation of N(es, et):
Using (57), we find that

N (es, et) =
∑

j≥1

dj
mj

, (63)

with

dj :=
ij

j!

[

−(−4)jsj + (2s− 3t)j − 2j(s− t)j − (t− 2s)j + (t− 4s)j + (−2)j(s+ t)j − (−3)jtj
]

.

3. Series representation of 1/ek+1
s el+1

t :
Lastly, we have

1

ek+1
s el+1

t

= exp [−i(s(k + 1) + t(l + 1))/m] =
∑

j≥0

1

mj

(−i((k + 1)s+ (l + 1)t))
j

j!︸ ︷︷ ︸
=:fj

.

Overall, we obtain as product of the three factors computed above

4ne−Q(s,t)
∑

p≥0

1

mp


 ∑

j1+j2+j3=p

cj1dj2fj3




︸ ︷︷ ︸
=:qp

,

for j1, j2, j3 nonnegative integers. In particular, we notice that qp is homogeneous of degree p in s, t,
and of degree p in k, l. In order to compute the contribution up to order O

(
1
nj

)
of this saddle point

to the asymptotics, all we need to do now is compute

4n
1

4π2n

2r−1∑

p=0

∫ ∞

−∞

∫ ∞

−∞
e−Q(s,t)qp(s, t, k, l)dtds.
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This gives us an explicit formula for the asymptotics of this model. In particular, we can check directly
that all coefficients of 1

mk for odd k vanish. By computing the integrals, we see that

v1(k, l) =
64

π
(1 + k)(1 + l)(2 + k + l)(3 + k + 2l),

v2(k, l) =−
32

π
(1 + k)(1 + l)(2 + k + l)(3 + k + 2l)(35 + 2k2 + 4k(2 + l) + 4l(3 + l)),

v3(k, l) =
8

π
(1 + k)(1 + l)(2 + k + l)(3 + k + 2l)(25 + 2k2 + 4k(2 + l)

+ 4l(3 + l))(61 + 2k2 + 4k(2 + l) + 4l(3 + l)).

The harmonic function v1(k, l) has already been computed some time ago in [5, 44].

3.3 Periodicity

Considering the combinatorial context, it is clear that in any asymptotic expansion as in (26), the
discrete harmonic function v1(k, l) will always be positive. When looking at the computations in
App. D, it appears as if there is an even stronger pattern; namely that vp(k, l) is positive for even p,
and negative for odd p. It turns out, however, that this is not generally true; a counterexample is
given for instance by computing enough terms in the expansion of the Simple Walk [17].
It is also a direct consequence of Thm. 1 that the number of saddle points is closely tied to the
periodicity of the model. If we have a single saddle point, then clearly our model is aperiodic; but the
number of saddle points also corresponds directly to the periodicity.

Lemma 7. Suppose that our model is irreducible (that is, the step set S generates all of Z2), and that
it is m-periodic. Then we have exactly m − 1 saddle points s1, . . . , sm−1 associated to our dominant
saddle point s0 = (x0, y0). The corresponding ζi are – in some order – the m-th roots of unity.

Proof. Let r be the number of saddle points. We use the representation (26) for the asymptotics of
q(k, l;n). We know that the αi, βi, ζi are roots of unity. We can therefore pick k, l such that αk

i = βl
i = 1

for all i. We then know, since our model is m-periodic, that there is a z, 0 ≤ z ≤ m− 1, such that we
have

χ(n) := 1 + ζn1 + · · ·+ ζnr−1 =

{
0 n 6≡ z mod m,

m n ≡ z mod m.
(64)

Note that as value for χ(k · m), k ∈ Z, we could pick any constant, because to compensate we can
just multiply the corresponding polyharmonic functions in (26) with a constant factor. By definition,
we know that χ is a character on Z/mZ. Therefore, it can be uniquely written as sum of irreducible
characters [36], which in this case are all the m-th roots of unity. From this, and the fact that the ζi
are pairwise different, it follows already that the ζi are (in some ordering) the m-th roots of unity.

The regularity condition in Lemma 7 is necessary, as can be seen for the Diagonal Walk for instance.
This walk is 2-periodic, but we still have 4 saddle points. The reason for the two extra saddle points is
that there are some points the walk will never reach, which, heuristically speaking, translates to two
additional conditions on k, l for which two saddle points then do not suffice to express them.

4 Quadrant walks with arbitrary starting point

4.1 Full asymptotic expansion

If we want to count walks starting from a point other than (0, 0), then the only thing that changes
is that we have a different monomial xk+1yl+1 in the functional equation (6). It follows that we can
proceed in exactly the same manner as before in order to obtain an expression as in (17), where only
the sum on the right hand side changes. Hence, we can proceed in a the same manner as for Thm. 1,
which allows us to recover the result of [22, Thm. 7], which states that the first order term in the
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asymptotics of the number of walks terminating at y and starting at x will be given – up to, once
again, an exponential term and some power of n, and possible parity constraints – by the product of
two functions; a harmonic function in x and a function in y which is adjoint harmonic. This is fairly
natural, seeing as the underlying combinatorial problem is highly symmetrical: any path from x to y
corresponds to a path from y to x with reversed steps. This, and a similar statement for the higher
order terms, can be formalized in Thm. 2 below and the following Thm. 3.

Theorem 2. Suppose that S is a step set satisfying the general assumptions stated in Section 2 and
that S is orbit-summable. Then, with (x0, y0) being a dominant saddle point and (si) the associated
ones such that si = (xi, yi) = (αix0, βiy0) and S(xi, yi) = ζiS(x0, y0), then there are a constant c ∈ N

and γ ∈ R+ as well as functions vp(k, l, u, v) such that for any m ∈ N we have

q((u, v), (k, l);n) =
γn

nc

[
m−1∑

p=1

vp(k, l, u, v)
∑r

i=1 α
u−k
i βv−l

i ζni
np

+O
(

1

nm

)]
. (65)

The vp(k, l, u, v) are polynomials precisely if the drift is zero (else they contain exponential factors).
In this case they are of bidegree c + 2p − 1 in both (k, l) and (u, v), and of total degree 2c + 4p − 2.
Each vp(k, l, u, v) is multivariate polyharmonic of degree p.

Before proving Thm. 2, we first show the following lemma, which is a natural extension of Lemma 6.

Lemma 8. Suppose that q(A,B;n) is a (combinatorial) quantity satisfying

∑

s∈S
ωsq(A− s,B;n− 1) = q(A,B;n), (66)

∑

s∈S
ωsq(A,B + s;n− 1) = q(A,B;n), (67)

for all A,B ∈ Z≥×Z≥0, n ≥ 0. Assume furthermore that q(A,B;n) has an asymptotic representation
of the form

q(A,B;n) =
γn

nc

[
m−1∑

p=1

∑l
i=1 vp,i(A,B)ζni

np
+O

(
1

nm

)]
(68)

for all k, with the ζi pairwise different and of modulus 1. Then, each vp,i is multivariate polyharmonic
of order p.

Proof. The proof works in the very same manner as the proof of Lemma 6; at each step we can choose
whether to apply the identity (66) or (67), leading to an additional instance of△ or △̃ respectively.

Proof (of Thm. 2). Analogous to the proof of Thm. 1. We note that the contribution of N(e′s, e
′
y) for

an associated saddle point changes by a factor of αu+1
i βv+1

i instead of a factor of αiβi, and only need
to keep track of the coefficients u, v throughout, which however behave exactly in the same manner as
k, l.
Finally, the polyharmonicity properties are a direct consequence of Lemma 8.

Remark:

• While the starting point (u, v) and the end point (k, l) of the walk end up playing a very similar
role (see also Thm. 3), which is not at all surprising from a combinatorial point of view, this is not
at all obvious from the proof: the role of (k, l) is very easily summarized as these coefficients only
appear in the integrand as a factor of x−k−1y−l−1, the starting point does not appear directly as
factor xu+1yv+1, but instead as its orbit sum. A priori, without the combinatorial interpretation,
it does not seem to be obvious that both of these occurrences lead to a symmetrical role in the
result.
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In the following, we will want to describe the coefficients vp(k, l, u, v) appearing in Thm. 2 more
precisely. We will consider the drift zero case, which is however not a real restriction as we can
transform any other model via a zero drift one using the Cramer transformation discussed in Section 2.
The goal will be to prove the following theorem:

Theorem 3. The polynomials vp(k, l, u, v) in the zero drift case of Thm. 2 each have a representation
of the form

vp(k, l, u, v) =
∑

1≤i,j≤p,
i+j≤p+1

ai,jh
j
i (k, l)g

j
i (u, v), (69)

where the ai,j are constants, the hji are polyharmonic of degree (at most) i, and the gji are adjoint
polyharmonic of degree (at most) p+ 1− i.

In order to prove Thm. 3, it turns out to be very useful to have a polynomial basis of the space of
polyharmonic functions for any given model. As the group is finite by assumption and π/θ ∈ Z by
Cor. 2, we can use the basis given in [41], which consists of sequences hmn of n-polyharmonic functions
satisfying:

1. △hmn+1 = hmn ,

2. the hmn (k, l) are bivariate polynomials of increasing degree in both n and m: the degree will
increase by 2 for each step in n, whereas it will increase by at least 2 and at most c+ 1 for each
step in m.

Proof (of Thm. 3). Taking u, v as parameters, we can for each (u, v) write vp(k, l, u, v) as a sum of the
basis functions hji (k, l), and obtain

∑

1≤i,j≤p,
i+j≤p+1

hji (k, l)g
j
i (u, v). (70)

Since we know that vp(k, l, u, v) is a bivariate polynomial of bidegree c+2p−1 in both (k, l) and (u, v)
(which is also where the conditions i, j ≤ p and i + j ≤ p + 1 come from), the only thing we need to
show is that gji is adjoint polyharmonic of degree p+ 1 − i for any j. To do so, we utilize Lemma 8.
First, consider i = p. We then have

△̃
(
△p−1qp(k, l, u, v)

)
= △̃h11(k, l)g1p(u, v) = h11(k, l)△̃g1p(u, v) = 0, (71)

therefore v1p(u, v) is adjoint harmonic. Seeing as the discrete Laplacians are linear, we can now proceed
by induction, in each step applying the same argument as above to all terms which are polyharmonic
(in (k, l)) of order j, i.e. the multiples of h1j , . . . , h

p+1−j
j . The statement follows.

Remarks:

• Thm. 3 tells us in particular that we can write each coefficient vp as a product of polyharmonic
and adjoint polyharmonic functions, so that the degree of the former and latter adds up to at
most p+ 1. This can be viewed as an extension of [22, Thm. 7], where an equivalent statement
is shown for v1 (albeit in a much more general setting).

• By simple degree considerations, the only base function hjp appearing in vp(k, l, u, v) can be h1p.
From this it follows that△vp+1(k, l, u, v) = vp(k, l, u, v)+rp−1(k, l, u, v), with rp−1 polyharmonic
of degree at most p− 1.

• If the model is symmetric, then one can easily see that ai,j = aj,i due to the symmetry of
the underlying combinatorial problem (q(A,B;n) = q̃(B,A;n), where q̃ denotes the paths with
reversed steps). This holds true for an appropriate choice of basis in some other cases as well;
for examples of this, see App. C.
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• A priori it is not at all clear which elements of the basis hji constructed in [41] actually appear
in connection with some combinatorial problems, i.e. if this basis is combinatorially reasonably
chosen. As we will see in Sec. 4.2 and App. D, this seems to be the case.

• We can in fact give an upper bound on the number of summands appearing in the decomposition
(69). First of all, we know for all p that all (i, j) such that hji appears in the decomposition are
contained in the subset {(i, j) : i + j ≤ p + 1}. If one writes the hji as a table, this gives us a
triangular shape of size increasing with p. Along the lines i + j = k, we will have functions of
degree at least 2(k − 1). We can now count the number of possible products of a given function
hji with a base function h̃nm of the adjoint Laplacian. In order not to exceed the maximum degree,
we can multiply h11 with the entire triangle of adjoint base functions. For h21 and h12, we cannot
multiply them with any h̃nm with m+ n = p+ 1, and so on. All in all, this gives us a maximum
of p(p+1)(p+2)(p+3)

24 summands. This maximum is achieved e.g. for the Simple Walk for v1,2,3.
Generally, the larger the value of π/θ, the less summands we will have (since the degrees of the
hji increase more quickly).

In the following, we will see what this decomposition looks like in case of the Simple Walk. The
Gouyou-Beauchamps model and the Tandem Walk are treated in App. C.

4.2 Example: the Simple Walk

In the following, to keep the expressions a bit shorter, we will give the expressions as after the substi-
tution k 7→ k − 1, l 7→ l− 1 etc. (i.e. we have kl instead of (k + 1)(l+ 1)). This corresponds to a shift
of the quarter plane, where instead of Z≥0 × Z≥0 we now consider Z>0 × Z>0. For the Simple Walk,
with S = {→, ↓,←, ↑}, we then have (after rescaling by multiplicative constants)

h11(k, l) =kl,

h21(k, l) =kl(k − l)(k + l),

h31(k, l) =kl(14− 5k2 + 3k4 − 5l2 − 10k2l2 + 3l4),

h12(k, l) =kl(l − 1)(l + 1),

h22(k, l) =kl(l − 1)(l + 1)(7 + 5k2 − 3l2),

h13(k, l) =kl(l − 2)(l − 1)(l + 1)(l + 2).

By symmetry, we can pick the base functions h̃ji (u, v) = hji (u, v) for the adjoint Laplacian. For the first
three asymptotic terms with arbitrary starting and ending points, we obtain (again up to multiplicative
constants)

v1(k, l, u, v) =kluv,

v2(k, l, u, v) =kluv(7 + 2k2 + 2l2 + 2u2 + 2v2),

v3(k, l, u, v) =kluv(167 + 140k2 + 12k4 + 140l2 + 24k2l2 + 12l4 + 140u2 + 40k2u2

+ 24l2u2 + 12u4 + 140v2 + 24k2v2 + 40l2v2 + 24u2v2 + 12v4).

One can check that Cor. 3 takes the form

v1 =h11h̃
1
1,

v2 =4
(
h12h̃

1
1 + h11h̃

1
2

)
+ 2

(
h21h̃

1
1 + h̃12h

1
1

)
+ 15h11h̃

1
1,

v3 =
192

5

(
h13h̃

1
1 + h̃13h

1
1

)
+

64

5

(
h22h̃

1
1 + h̃22h

1
1

)
+ 4

(
h31h̃

1
1 + h̃31h

1
1

)
+ 64

(
h12h̃

2
1 + h̃12h

2
1

)

+ 128h12h̃
1
2 + 24h21h̃

2
1 + 576

(
h12h̃

1
1 + h̃12h

1
1

)
+ 288

(
h21h̃

1
1 + h̃21h

1
1

)
+ 951h11h̃

1
1.

As the degree of hji is truly increasing by only 2 whenever we increase either i or j by one, it turns out
that we have indeed 1, 5 and 15 different summands respectively. Due to the symmetry of this model,
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the second and third equations can be simplified a bit: for v2, letting g2 := 4h12 + 2h21 (clearly, g2 is
then biharmonic) gives us

v2 = g2h̃11 + h11g̃2 + 15h11h̃
1
1.

For v3, letting in the same manner g3 := 192
5 h13 +

64
5 h

2
2 + 4h31, we have

g3h̃11 + g̃3h
1
1 + 144

(
g2h̃11 + g̃2h

1
1

)
+ 64

(
h12h̃

2
1 + h̃12h

2
1

)
+ 951h11h̃

1
1.

While one can view the definition of g2,3 as purely a crutch to make the resulting expressions shorter,
they do in fact give in a sense a natural decomposition of the vi: g2 consists of the highest order terms
in v2, while g3 consists of those in v3.

Remarks:

• By the above, when taking a scaling limit, then we have

lim
µ→0

mαvi

( x
m
,
y

m

)
= lim

µ→0
mαgi

( x
m
,
y

m

)
,

where α is an appropriate scaling constant, which means that the gi already give us all the terms
which will not vanish in this kind of limit.

• By [18, Thm. 2.3], we know that the continuous heat kernel pt(x, y, u, v) of a Brownian motion
with covariance matrix

Σ =

(
σ11 σ12
σ12 σ22

)

with σ11 = E[X2], σ12 = E[XY ], σ22 = E[Y 2] (the scaling limit of this model) allows for an
asymptotic representation of the form

pt(x, y, u, v) =
1

t2

∑

k≥1

fk(x, y, u, v)

tk
. (72)

Seeing as this representation looks almost the same as the one for the discrete case in Thm. 2, it
is natural to compare the functions vp to their continuous counterparts fp. For v1, for instance,
by [22] we know that we will have (after appropriate scaling by a constant) v1(k, l, u, v) →
f1(k, l, u, v). However, this is not at all clear for p > 1. For the Simple Walk, one can check that
v2 → f2, but this fails for p = 3: we have

f3(k, l, u, v)

= kluv(3k4 + 6k2
l
2 + 3l4 + 22k2

u
2 + 6l2u2 + 3u4 + 6k2

v
2 + 22l2v2 + 6u2

v
2 + 3v4),

whereas the scaling limit of v3(k, l, u, v) turns out to be

kluv(3k4 + 6k2
l
2 + 3l4 + 10k2

u
2 + 6l2u2 + 3u4 + 6k2

v
2 + 10l2v2 + 6u2

v
2 + 3v4),

where the coefficients of k2u2 and l2v2 do not match.

5 Outlook

• We know by [22, Thm. 7] that, for any (not necessary orbit-summable) model with a finite number
of steps, the first order term of the asymptotics of q(k, l;n) behaves as in Thm. 1. However, not
much is known about the higher order terms. In this context, one could view Thm. 1 as a
partial generalization for the case of orbit-summable models with finite group, but it would be
interesting to see whether something similar holds true for a more general class of models, which
could for example also include models with large steps, as in e.g. [26]. While it appears at first
that this might fail due to the more complicated structure of the group, in [6] the notion of an
orbit is extended to a more general context, which might make an approach using a saddle point
method feasible.
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• While in the zero-drift case there is a unique combinatorially relevant harmonic function for a
given model (namely the positive one), there is no equivalent in the polyharmonic case, nor a
reasonable combinatorial interpretation. It would be very interesting to know if there is such an
interpretation, or at least, in some sense, a ’canonical’ p-polyharmonic function. Intuitively, one
may think such a canonical function should coincide in its scaling limit with the (continuous)
polyharmonic function appearing in the corresponding continuous heat kernel, but seeing as the
higher order asymptotics of the discrete and continuous cases do not coincide (see Sec. 4.2), this
might not be an ideal choice. Maybe the functions g2, g3, . . . as defined at the end of Section 4.2
could serve as candidates for such canonical representatives instead.

• While the saddle point method as used in this article works well to compute precise asymptotics
for any given starting point given that the model has finite group and is orbit-summable, it
seems that it would be hard to apply when one of these conditions does not hold. If the path
counting function is algebraic (which implies a finite group), sometimes it is possible to obtain an
explicit expression which can then be utilized to extract asymptotics [14, 11, 30]. In the infinite
group case, however, things seem to be more complicated. In the one-dimensional setting, a
probabilistic approach seems to work in order to show an asymptotic expansion similar to (3),
using only moment conditions [21]. In two dimensions, one can tackle this problem using an
explicit parametrization of the zero-set of the kernel via elliptic (in particular Jacobi theta-
functions as in [42]). This method can then be utilized to show for some cases with infinite group
(for instance the model with steps {←, ↑,→, ↓,ր}) that the asymptotics of the number of walks
returning to the origin contain logarithmic terms [24], which makes an asymptotic expansion as
in (26) impossible. However, it turns out that the coefficients still have a similar structure in the
sense that they consist of polyharmonic functions.

• Finally, one could pose similar questions for different domains, be it a higher dimension or a
different cone, for instance the three quarter plane. See for example [13, 47, 46, 6, 12, 48, 10].
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A An example with large steps

Consider the model with steps (1, 0), (−1, 0), (0,−1), (−2, 1). In [6, Prop. 16] it is shown that

Q(x, y; t) =
[
x>y>

] (x2 + 1)(x+ y)(y − x)(x2y − 2x− y)(x3 − x− 2y)

x7y3(1 − tS(x, y)) ,

with S(x, y) the step counting polynomial

S(x, y) = x+ x−1 + y−1 + x−2y.

We find the dominant saddle point to be at s0 :=
(√

3,
√
3
)
, and one other saddle point at s1 =(

−
√
3,−
√
3
)

associated to it. We can check that we have1, using the notation as in the proof of
Thm. 1, N(s0) = 0 (in particular it is not infinite), thus we can proceed in the same manner as in
aforementioned theorem. We obtain

γ = 2
√
3, c = 3,

and have

v1(k, l) =
16

π
·
√
3
−1−k−l

(1 + k)(1 + l)(3 + k + 2l),

v2(k, l) = − 2

π

√
3
−1−k−l

(1 + k)(1 + l)(3 + k + 2l)(107 + 4k2 + 32l + 16l2 + 8k(1 + l)),

v3(k, l) =
1

8π

√
3
−3−k−l

(1 + k)(1 + l)(3 + k + 2l)(15205 + 16k4 + 8672l + 4976l2 + 832l3 + 256l4 + 64k3(1 + l)

+ 8k2(157 + 48l + 24l2) + 16k(149 + 157l + 36l2 + 16l3)).

B A three-dimensional example

Consider the model with steps (−1,−1,−1), (−1,−1, 1), (−1, 1, 0), (1, 0, 0). In [10, 4.3] it is shown that
we have

Q(x, y, z; t) =
[

x
>0

] [

y
>0

] [

z
>0

]

(

x− x−1y − x−1y−1z − x−1y−1z−1
) (

y − y−1z − y−1z−1
) (

z − z−1
)

xyz (1− tS(x, y, z))
,

with the step counting polynomial

S(x, y, z) = x−1y−1z−1 + x−1y−1z + x−1y + x.

We can find the dominant saddle point of S(x, y, z) to be at s0 =
(
23/4, 21/2, 1

)
, with 7 others associated

to it. Using the notation as in (26), we can check that

γ = 2 · 23/4, c =
7

2
,

1This is in fact a consequence of K(x, y) still being quadratic in y, which allows one to argue in a fashion similar as
in the proof of Thm. 1.
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and that we have

v1(k, l,m) =
26

π3/2
2−3k/4−l/2(1 + k)(1 + l)(1 +m),

v2(k, l,m) =− 24

π3/2
2−3k/4−l/2(1 + k)(1 + l)(1 +m)(63− 8k + 2k2 − 4l + 4l2 + 16m+ 8m2),

v3(k, l,m) =
2

π3/2
2−3k/4−l/2(1 + k)(1 + l)(1 +m)(5313− 32k3 + 4k4 − 32l3 + 16l4 + 3040m

+ 1776m2 + 256m3 + 64m4 − 32k(43 − 3l + 3l2 + 12m + 6m2)

+ 8l2(93 + 16m + 8m2) + 4k2(99− 4l + 4l2 + 16m+ 8m2)− 8l(103 + 48m + 24m2)).

C Decomposition of polyharmonic functions

In this section we will, as in Sec. 4.2, once again give the expressions after the substitution k 7→ k− 1,
l 7→ l − 1 etc.

C.1 Gouyou-Beauchamps

For the Gouyou-Beauchamps model with steps S = {←,→,տ,ց}, we obtain as a basis of the poly-
harmonic functions (from here on, all functions will be given only up to constant multiples):

h11 =kl(k + l)(k + 2l),

h21 =kl(k + l)(k + 2l)(42− 7k2 + k4 − 14kl+ 4k3l− 14l2 − 8kl3 − 4l4),

h31 =kl(k + l)(k + 2l)(52976− 11880k2 + 2211k4 − 110k6 + 3k8 − 23760kl+ 8844k3l − 660k5l + 24k7l

− 23760l2 + 4620k2l2 − 1100k4l2 + 32k6l2 − 8448kl3 − 144k5l3 − 4224l4 + 2200k2l4 − 424k4l4

+ 2640kl5 − 288k3l5 + 880l6 + 128k2l6 + 192kl7 + 48l8),

h12 =kl(k + l)(k + 2l)(−20 + k2 + 2kl+ 2l2),

h22 =kl(k + l)(k + 2l)(−3010+ 567k2 − 78k4 + k6 + 1134kl− 312k3l + 6k5l + 1134l2 − 84k2l2

+ 10k4l2 + 456kl3 + 228l4 − 20k2l4 − 24kl5 − 8l6),

h13 =kl(k + l)(k + 2l)(−373 + k2 + 3k4 + 2kl+ 12k3l+ 2l2 − 4k2l2 − 32kl3 − 16l4).

In this case, due to the symmetry of the model we can pick h̃mn (u, v) := hmn (u, v). We consider once
again the first three vp(k, l, u, v) as appearing in Thm. 2. We obtain

v1(k, l, u, v) =kl(k + l)(k + 2l)uv(u+ v)(u+ 2v),

v2(k, l, u, v) =kl(k + l)(k + 2l)uv(u+ v)(u+ 2v)(15 + 2k2 + 4kl+ 4l2 + 2u2 + 4uv + 4v2),

v3(k, l, u, v) =kl(k + l)(k + 2l)uv(u+ v)(u+ 2v)(1225 + 420k2 + 20k4 + 840kl+ 80k3l + 840l2

+ 160k2l2 + 160kl3 + 80l4 + 420u2 + 48k2u2 + 96klu2 + 96l2u2 + 20u4 + 840uv

+ 96k2uv + 192kluv+ 192l2uv + 80u3v + 840v2 + 96k2v2 + 192klv2 + 192l2v2

+ 160u2v2 + 160uv3 + 80v4).

We obtain

v1 =h11h̃
1
1,

v2 =2
(
h12h̃

1
1 + h11h̃

1
2

)
+ 95h11h̃

1
1,

v3 =− 40
(
h13h̃

1
1 + h11h̃

1
3

)
+ 48h12h̃

1
2 + 2400

(
h12h̃

1
1 + h11h̃

1
2

)
+ 140

(
h21h̃

1
1 + h11h̃

2
1

)
+ 36425h11h̃

1
1.

Here we notice that the number of summands is noticably reduced: as the degree of hji increases by 4
whenever j increases by one, there are a lot less suitable combinations of base functions.
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C.2 Tandem Walk

For the Tandem Walk, with steps S = {→, ↓,տ}, we have

v1(k, l, u, v) =kl(k + l)(k + 2l)uv(u+ v)(u+ 2v),

v2(k, l, u, v) =kl(k + l)(k + 2l)uv(u+ v)(u+ 2v)(15 + 2k2 + 4kl+ 4l2 + 2u2 + 4uv + 4v2),

v3(k, l, u, v) =kl(k + l)(k + 2l)uv(u+ v)(u+ 2v)(1225 + 420k2 + 20k4 + 840kl+ 80k3l + 840l2

+ 160k2l2 + 160kl3 + 80l4 + 420u2 + 48k2u2 + 96klu2 + 96l2u2 + 20u4 + 840uv

+ 96k2uv + 192kluv+ 192l2uv + 80u3v + 840v2 + 96k2v2 + 192klv2 + 192l2v2

+ 160u2v2 + 160uv3 + 80v4).

We can compute

v1(k, l, u, v) =kluv(k + l)(u+ v),

v2(k, l, u, v) =kl(k + l)uv(u+ v)(20 + 3k2 + 3kl+ 3l2 + 3u2 + 3uv + 3v2),

v3(k, l, u, v) =kl(k + l)uv(u+ v)(881 + 375k2 + 12k3 + 18k4 + 375kl+ 18k2l + 36k3l + 375l2 − 18kl2

+ 54k2l2 − 12l3 + 36kl3 + 18l4 + 375u2 + 45k2u2 + 45klu2 + 45l2u2 − 12u3 + 18u4

+ 375uv+ 45k2uv + 45kluv+ 45l2uv − 18u2v + 36u3v + 375v2 + 45k2v2 + 45klv2

+ 45l2v2 + 18uv2 + 54u2v2 + 12v3 + 36uv3 + 18v4).

We can check that, although the model is not symmetric, we can let h̃mn (u, v) := hmn (v, u), and obtain

v1 =h11h̃
1
1,

v2 =3
(
h12h̃

1
1 + h11h̃

1
2

)
+ 38h11h̃

1
1,

v3 =18
(
h13h̃

3
1 + h11h̃

1
3

)
+ 45h12h̃

1
2 + 660

(
h12h̃

1
1 + h11h̃

1
2

)
+

10

3

(
h21h̃

1
1 + h11h̃

2
1

)
+ 14780h11h̃

1
1.

Note that even though we have v3(k, l, 1, 1) 6= v3(1, 1, k, l) (i.e. we cannot just exchange starting and
endpoint and hope to obtain the same number of paths), the resulting representation for v3 in terms of
products of the base functions is symmetrical. This is, as mentioned in the remark after Thm. 3, still
due to a symmetry property, using the fact that the polyharmonic and adjoint polyharmonic functions
are the same: the number of paths from a point x to a point y is forcibly the same as the number of
paths from y to x with the reversed step set.

D Table of polyharmonic functions

This section contains the first three asymptotic terms of the 19 orbit-summable examples from [15].
Models 1 to 16 correspond to the models in [15, Table 1], models 17 and 18 to the first two in [15,
Table 2], and finally model 19 is the same as the first one in [15, Table 3]. The remaining for models
do not satisfy (17). All these models have, according to Thm. 1, asymptotics of the form

q(k, l;n) =
a

π
· γ

n

nc

[
3∑

p=1

vp(k, l)
∑m

i=1 α
−k
i β−l

i ζni
np

+O
(

1

n4

)]
. (73)

Here, a is a multiplicative constant (which one could just as well move into the vp, but is separate here
to keep things shorter). The constants α, β, γ are defined as in Section 2, that is, given our dominant
saddle point (x0, y0) with x0, y0 > 0, and another saddle point (xi, yi) we have αi = xi/x0, βi = yi/y0
and ζi = S(xi, yi)/S(x0, y0). In particular, they all have modulus 1. The number of relevant saddle
points is given by m. Also, it will be noted for each example if and when the cancellations occur that
lead to the coefficients to vanish, i.e. for which constellations of n, k and l we will have q(k, l;n) = 0
(which is also a direct consequence of (73) and can be checked to agree with basic combinatorial
considerations).
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D.1 Model 1 (Simple Walk)

S = x+ y + x−1 + y−1.
Relevant saddle points: (1, 1), (−1,−1).
γ = 4,
c = 2,
a = 16.
Periodicity: q(k, l, n) vanishes if j + k 6≡ n mod 2.

v1(k, l) = (1 + k)(1 + l),

v2(k, l) = −
1

2
(1 + k)(1 + l)(15 + 2k(2 + k) + 2l(2 + l)),

v3(k, l) =
1

4
(1 + k)(1 + l)(317 + 168l+ 4(k(2 + k)(21 + k(2 + k)) + 4k(2 + k)l

+ (25 + 2k(2 + k))l2 + 4l3 + l4)).

D.2 Model 2 (Diagonal Walk)

S = xy + xy−1 + x−1y + x−1y−1.
Relevant saddle points: (1, 1), (−1,−1), (1,−1), (−1, 1).
γ = 4,
c = 2,
a = 2.
Periodicity: q(k, l, n) vanishes if j + k 6≡ n+ k or j + k 6≡ mod 2.

v1(k, l) =(1 + k)(1 + l),

v2(k, l) =−
1

2
(1 + k)(1 + l)(9 + k(2 + k) + l(2 + l)),

v3(k, l) =
1

4
(1 + k)(1 + l)(113 + 4k3 + k4 + 4k(13 + l(2 + l))

+ 2k2(15 + l(2 + l)) + l(2 + l)(26 + l(2 + l))).

D.3 Model 3

S = xy + y + x−1y + x−1y + x−1 + x−1y−1.
Relevant saddle points: (1, 1), (1,−1).
γ = 6,
c = 2,
a = 3

√
6

2 .
Periodicity: q(k, l;n) vanishes if l 6≡ n mod 2.

v1(k, l) =
2
√
6

π
(1 + k)(1 + l),

v2(k, l) =−
1

16
(1 + k)(1 + l)(75 + 12k(2 + k) + 8l(2 + l)),

v3(k, l) =
1

512
(1 + k)(1 + l)(7793 + 3424l+ 8(3k(2 + k)(103 + 6k(2 + k)) + 48k(2 + k)l

+ 6(41 + 4k(2 + k))l2 + 32l3 + 8l4)).

D.4 Model 4 (King’s Walk)

S = xy + y + x−1y + x+ x−1 + xy−1 + x−1 + x−1y−1.
Relevant saddle point: (1, 1).
γ = 8,

26



c = 2,
a = 128

27 .

v1(k, l) =(1 + k)(1 + l),

v2(k, l) =−
1

3
(1 + k)(1 + l)(15 + 2k(2 + k) + 2l(2 + l)),

v3(k, l) =
1

18
(1 + k)(1 + l)(307 + 168l+ 4(k(2 + k)(21 + k(2 + k))

+ 4k(2 + k)l + (25 + 2k(2 + k))l2 + 4l3 + l4)).

D.5 Model 5

S = xy + x−1y + y−1.

Relevant saddle points:
(
1, 1√

2

)
,
(
1,− 1√

2

)
,
(
−1, i√

2

)
,
(
−1, −i√

2

)
.

γ = 2
√
2,

c = 2,
a = 4

√
2.

Periodicity: q(k, l;n) vanishes if n+ l ≡ 0 mod 4∧ k ≡ 0 mod 2 or n+ l ≡ 2 mod 4∧ k ≡ 1 mod 2.

v1(k, l) =2l/2(1 + k)(1 + l),

v2(k, l) =−
1

4
2l/2(1 + k)(1 + l)(27 + 8k + 4k2 + 10l+ 2l2),

v3(k, l) =
1

32
2l/2(1 + k)(1 + l)(1049 + 64k3 + 16k4 + 748l+ 264l2 + 40l3

+ 4l4 + 16k(43 + 14l+ 2l2) + 8k2(51 + 14l+ 2l2)).

D.6 Model 6

S = xy + x−1y + y−1 + x+ x−1.

Relevant saddle point:
(
1, 1√

2

)
.

γ = 2 + 2
√
2,

c = 2,
a = 2

√
7 + 5

√
2.

v1(k, l) =2l/2(1 + k)(1 + l),

v2(k, l) =−
−239 + 169

√
2

2
2l/2(1 + k)(1 + l)(116592 + 82443

√
2

+ 4(3363 + 2378
√
2)k(2 + k) + 2l(26327+ 18616

√
2 + (8119 + 5741

√
2)l)),

v3(k, l) =
−47321 + 33461

√
2

16
2l/2(787537656+ 556873217

√
2

+ 32(941664+ 665857
√
2)k3 + 8(941664+ 665857

√
2)k4

+ 16k(24218939+ 17125376
√
2 + l(9255076+ 6544327

√
2(2273378+ 1607521

√
2)l))

+ 8k2(27985595+ 19788804
√
2 + l(9255076+ 6544327

√
2 + (2273378+ 1607521

√
2)l))

+ 2l(345292494+ 244158664
√
2 + l(168998590+ 119500049

√
2

+ l(35593948+ 25168722
√
2 + (5488420+ 3880899

√
2)l)))).

D.7 Model 7

S = y + y−1 + xy + x−1y.

Relevant saddle points:
(
1, 1√

3

)
,
(
1,− 1√

3

)
.
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γ = 2
√
3,

c = 2,
a = 6

√
3.

Periodicity: q(k, l;n) vanishes if if n+ l 6≡ 0 mod 2.

v1(k, l) =3l/2(1 + k)(1 + l),

v2(k, l) =−
1

8
3l/2(1 + k)(1 + l)(57 + 24k + 12k2 + 20l+ 4l2),

v3(k, l) =
1

128
3l/2(1 + k)(1 + l)(4649 + 576k3 + 144k4 + 3160l+ 1080l2 + 160l3

+ 16l4 + 48k(85 + 28l+ 4l2) + 24k2(109 + 28l+ 4l2)).

D.8 Model 8

S = xy + y + x−1y + x+ x−1 + y−1.

Relevant saddle point:
(
1, 1√

3

)
.

γ = 2 + 2
√
3,

c = 2,
a = 2

√
10 + 6

√
3.

v1(k, l) =3l/2(1 + k)(1 + l),

v2(k, l) =
−332313+ 191861

√
3

48
3l/2(1 + k)(1 + l)(16850187+ 9728460

√
3

+ 12(191861+ 110771
√
3)k(2 + k) + 4l(1623931+ 937577

√
3 + (524174 + 302632

√
3)l)),

v3(k, l) =
897909603− 518408351

√
3

4608
3l/2(1 + k)(1 + l)

· (3(6408751361721+ 3700094323859
√
3) + 1152(897909603+ 518408351

√
3)k3

+ 288(897909603+ 518408351
√
3)k4 + 16(925894850856+ 534565641383

√
3)l

+ 16(434596264689+ 250914270407
√
3)l2 + 128(10381790502+ 5993929541

√
3)l3

+ 64(3351044259+ 1934726305
√
3)l4 + 96k(113649411684+ 65615518429

√
3

+ 4(9395817327+ 5424677663
√
3)l + 8(1226567328+ 708158977

√
3)l2)

+ 48k2(135199242156+ 78057318853
√
3 + 4(9395817327+ 5424677663

√
3)l

+ 8(1226567328+ 708158977
√
3)l2)).

D.9 Model 9

S = xy + y + x−1y + x−1y−1 + xy−1.

Relevant saddle points:
(
1,
√

2
3

)
,
(
1,−

√
2
3

)
.

γ = 2
√
6,

c = 2,
a = 12

√
6

5
√
5
.
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Periodicity: q(k, l;n) is non-zero if l + n ≡ 0 mod 2.

v1(k, l) =

(
3

2

)l/2

(1 + k)(1 + l),

v2(k, l) =−
1

2

(
3

2

)l/2

(1 + k)(1 + l)(93 + 24k + 12k2 + 14l+ 10l2),

v3(k, l) =
1

20000

(
3

2

)l/2

(1 + k)(1 + l)(59581 + 2880k3 + 720k4 + 20540l+ 14400l2 + 1400l3

+ 500l4 + 240k(133+ 10l+ 10l2) + 120k2(157 + 10l+ 10l2)).

D.10 Model 10

S = xy + y + x−1y + x+ x−1 + xy−1 + x−1y−1.

Relevant saddle point:
(
1,
√

2
3

)
.

γ = 2 + 2
√
6,

c = 2,

a =
2
√

(15893+4923
√
6

19
√
19

.

v1(k, l) =

(
3

2

)l/2

(1 + k)(1 + l),

v2(k, l) =−

√
1/5(−19 + 9

√
6)

(21660(1 +
√
6)3/2(4027973401873+ 1644413252328

√
6)

(
3

2

)l/2

(1 + k)(1 + l)

· (45(18505016772606410202221+ 7554641462421834757881
√
6)

+ 114(849879402283532379258+ 346961813082711773063
√
6)k(2 + k)

+ 19l(10112697572977267931562+ 4128491496146047169957
√
6

+ 19(333219362627049080772+ 136036235141952170767
√
6)l)),

v3(k, l) =

√
−95 + 45

√
6

312770400(1+
√
6)39/2(7 + 2

√
6)5(2390878567+ 976071762

√
6)

(
3

2

)l/2

(1 + k)(1 + l)

· (22785474319872188716997492431026219+ 9302130938496072914827735095375459
√
6

+ 190(58714971272234353430633623258438+ 23970286646524502952271000638793
√
6)l

+ 38(2736(8664069065571669392670303409+ 3537091384480473116541295049
√
6)k3

+ 684(8664069065571669392670303409+ 3537091384480473116541295049
√
6)k4

+ 19l2(7(1500064194302005269895412262701+ 612398642909845697072016762286
√
6)

+ 19l(80841533399881759930812247918+ 33003417808979012226614318448
√
6

+ 19(1331888155405956061399604179+ 543741062533549475178623769
√
6)l))

+ 12k(24218384855131622572815433525886+ 9887114214903395698238202393071
√
6

+ 38l(85765441941624024361847057633+ 35013595053545704368047082063
√
6

+ 19(3396994401828483455926278281+ 1386817157261791314493514666
√
6)l))

+ 6k2(5(5633840069806460763174618376078+ 2300005577245298287876206587083
√
6)

+ 38l(85765441941624024361847057633+ 35013595053545704368047082063
√
6

+ 19(3396994401828483455926278281+ 1386817157261791314493514666
√
6)l)))).
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D.11 Model 11

S = y + xy−1 + y−1 + x−1y−1.
Relevant saddle points:

(
1,
√
3
)
,
(
1,−
√
3
)
.

γ = 2
√
3,

c = 2,
a = 6

√
3.

Periodicity: q(k, l;n) is non-zero if l + n ≡ 0 mod 2.

v1(k, l) =3−l/2(1 + k)(1 + l),

v2(k, l) =−
1

8
3−l/2(1 + k)(1 + l)(57 + 12k(2 + k) + 4(−1 + l)l),

v3(k, l) =
1

128
3−l/2(1 + k)(1 + l)(4649− 824l+ 8(3k(2 + k)(85 + 6k(2 + k))− 36k(2 + k)l

+ 3(29 + 4k(2 + k))l2 − 4l3 + 2l4)).

D.12 Model 12

S = y + xy−1 + y−1 + x−1y−1 + x+ x−1.
Relevant saddle point:

(
1,
√
3
)
.

γ = 2 + 2
√
3,

c = 2,
a = 2

√
10 + 6

√
3.

v1(k, l) =3−l/2(1 + k)(1 + l),

v2(k, l) =
191861

√
3− 332313

48
3−l/2(1 + k)(1 + l)(16850187+ 9728460

√
3 + 12(191861

+ 110771
√
3)k(2 + k) + 4l(472765+ 272951

√
3 + (524174 + 302632

√
3)l)),

v3(k, l) =
897909603− 518408351

√
3

4608
3−l/2(1 + k)(1 + l)(3(6408751361721+ 3700094323859

√
3)

+ 1152(897909603+ 518408351
√
3)k3 + 288(897909603+ 518408351

√
3)k4

+ 96k(113649411684+ 65615518429
√
3 + 4l(416721297+ 240594153

√
3

+ 2(1226567328+ 708158977
√
3)l)) + 48k2(135199242156+ 78057318853

√
3

+ 4l(416721297+ 240594153
√
3 + 2(1226567328+ 708158977

√
3)l))

+ 16l(254773295988+ 147093431021
√
3 + l(316845801201+ 182931008615

√
3

+ 4l(6044773068+ 3489951358
√
3 + (3351044259+ 1934726305

√
3)l)))).

D.13 Model 13

S = xy + xy−1 + x−1y + x−1y−1 + y−1.

Relevant saddle points:
(
1,
√

3
2

)
,
(
1,−

√
3
2

)
.

γ = 2
√
6,

c = 2,
a = 12

√
6

5
√
5

.
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Periodicity: q(k, l;n) is non-zero if n+ l ≡ 0 mod 2.

v1(k, l) =

(
2

3

)l/2

(1 + k)(1 + l),

v2(k, l) =−
1

20

(
2

3

)l/2

(1 + k)(1 + l)(93 + 12k(2 + k) + 2l(13 + 5l)),

v3(k, l) =
1

4000

(
2

3

)l/2

(1 + k)(1 + l)(59581 + 32660l+ 20(6k(2 + k)(133 + 6k(2 + k))

+ 180k(2 + k)l + 60(14 + k(2 + k))l2 + 130l3 + 25l4)).

D.14 Model 14

S = xy + xy−1 + x−1y + x−1y−1 + x+ x−1 + y−1.

Relevant saddle point:
(
1,
√

3
2

)
.

γ = 2 + 2
√
6,

c = 2,
a = 15893+4923

√
6

19
√
19

.

v1(k, l) =

(
2

3

)l/2

(1 + k)(1 + l),

v2(k, l) =−
√
5

4332(1 +
√
6)23/2(119287 + 48682

√
6)

(
2

3

)l/2

(1 + k)(1 + l)

· (45(923103972550017581+ 376855618721953841
√
6)

+ 114(42395371053890538+ 17307837756843143
√
6)k(2 + k)

+ 19l(758833876782694710+ 309792632946741935
√
6 + 19(16622309568974292

+ 6786029465163487
√
6)l)),

v3(k, l) =

√
5(847 + 342

√
6)

12510816(1+
√
6)392(7 + 2

√
6)5(2390878567+ 976071762

√
6)

(
2

3

)l/2

(1 + k)(1 + l)

(22785474319872188716997492431026219+ 9302130938496072914827735095375459
√
6

+ 38(407278641540756052645599450611474+ 166270809151458123021641573213639
√
6)l

+ 38(2736(8664069065571669392670303409+ 3537091384480473116541295049
√
6)k3

+ 684(8664069065571669392670303409+ 3537091384480473116541295049
√
6)k4

+ 19l2(12049478807347825345170268735043+ 4919179124080296718913160023698
√
6

+ 19l(121605466221823561401927587290+ 49645223696120508000536494440
√
6

+ 19(1331888155405956061399604179+ 543741062533549475178623769
√
6)l))

+ 12k(24218384855131622572815433525886+ 9887114214903395698238202393071
√
6

+ 38l(172406132597340718288550091723+ 70384508898350435533460032553
√
6

+ 19(3396994401828483455926278281+ 1386817157261791314493514666
√
6)l))

+ 6k2(5(5633840069806460763174618376078+ 2300005577245298287876206587083
√
6)

+ 38l(172406132597340718288550091723+ 70384508898350435533460032553
√
6

+ 19(3396994401828483455926278281+ 1386817157261791314493514666
√
6)l)))).
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D.15 Model 15

S = y + xy−1 + x−1y−1.
Relevant saddle points:

(
1,
√
2
)
,
(
1,−
√
2
)
,
(
−1, i

√
2
)
,
(
−1,−i

√
2
)
.

γ = 2
√
2,

c = 2,
a = 4

√
2.

Periodicity: q(k, l;n) is non-zero if n + l ≡ 0 mod 4 ∧ k ≡ 1 mod 2 or n + l ≡ 2 mod 3 ∧ k ≡ 0
mod 2.

v1(k, l) =2−l/2(1 + k)(1 + l),

v2(k, l) =−
1

4
2−l/2(1 + k)(1 + l)27 + 4k(2 + k) + 2(−1 + l)l),

v3(k, l) =
1

32
2−l/2(1 + k)(1 + l)(1049 + 8k(2 + k)(43 + 2k(2 + k))− 188l− 48k(2 + k)l

+ 8(21 + 2k(2 + k))l2 − 8l3 + 4l4).

D.16 Model 16

S = y + x+ x−1 + xy−1 + x−1y−1.
Relevant saddle point:

(
1,
√
2
)
.

γ = 2 + 2
√
2,

c = 2,
a = 2

√
7 + 5

√
2.

v1(k, l) =2−l/2(1 + k)(1 + l),

v2(k, l) =
4756− 3363

√
2

8
2−l/2(1 + k)(1 + l)(116592 + 82443

√
2

+ 4(3363 + 2378
√
2)k(2 + k) + 2l(6149 + 4348

√
2 + (8119 + 5741

√
2)l)),

v3(k, l) =
−941664+ 665857

√
2

64
2−l/2(1 + k)(1 + l)(787537656+ 556873217

√
2

+ 32(941664+ 665857
√
2)k3 + 8(941664 + 665857

√
2)k4 + 16k(24218939

+ 17125376
√
2 + l(−161564− 114243

√
2 + (2273378+ 1607521

√
2)l))

+ 8k2(27985595+ 19788804
√
2 + l(−161564− 114243

√
2 + (2273378+ 1607521

√
2)l))

+ 2l(77265162+ 54634720
√
2 + l(114437518+ 80919545

√
2 + l(8313412+ 5878470

√
2

+ (5488420+ 3880899
√
2)l)))).

D.17 Model 17 (Tandem Walk)

S = y + x−1 + xy−1.
Relevant saddle points: (1, 1),

(
e4πi/3, e2πi/3

)
,
(
e2πi/3, e4πi/3

)
.

γ = 3,
c = 3,
a = 27

√
3

2 .
Periodicity: q(k, l;n) is non-zero if 2k + l ≡ n mod 3.

v1(k, l) =(1 + k)(1 + l)(2 + k + l),

v2(k, l) = −
1

3
(1 + k)(1 + l)(2 + k + l)(38 + 3k2 + 9l + 3l2 + 3k(3 + l)),

v3(k, l) =
1

18
(1 + k)(1 + l)(2 + k + l)(1930 + 9k4 + 954l+ 417l2 + 60l3 + 9l4

+ 6k3(8 + 3l) + 3k2(121 + 33l+ 9l2) + 3k(300 + 157l+ 39l2 + 6l3)).
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D.18 Model 18

S = y + x+ xy−1 + y−1 + x−1 + x−1y.
Relevant saddle point: (1, 1).
γ = 6,
c = 3,
a = 27

√
3

2 .

v1(k, l) =(1 + k)(1 + l)(2 + k + l),

v2(k, l) =− (1 + k)(1 + l)(2 + k + l)(11 + k2 + k(3 + l) + l(3 + l)),

v3(k, l) =
9

104
(1 + k)(1 + l)(2 + k + l)(940 + 6k4 + 12k3(3 + l) + 3l(3 + l)(57 + 2l(3 + l))

+ 3k(3 + l)(57 + 4l(3 + l)) + 9k2(25 + 2l(4 + l))).

D.19 Model 19 (Gouyou-Beauchamps)

S = x+ x−1 + xy−1 + x−1y.
Relevant saddle points: (1, 1), (−1, 1).
γ = 4,
c = 4,
a = 64.
Periodicity: q(k, l;n) is non-zero if k + n ≡ 0 mod 2.

v1(k, l) =(1 + k)(1 + l)(2 + k + l)(3 + k + 2l),

v2(k, l) =−
1

2
(1 + k)(1 + l)(2 + k + l)(3 + k + 2l)(35 + 2k2 + 4k(2 + l) + 4l(3 + l)),

v3(k, l) =
1

8
(1 + k)(1 + l)(2 + k + l)(3 + k + 2l)(25 + 2k2 + 4k(2 + l)

+ 4l(3 + l))(61 + 2k2 + 4k(2 + l) + 4l(3 + l)).
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