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Abstract

In this note, we study a family of polynomials that appear naturally when analysing the
characteristic functions of the one-dimensional elephant random walk. These polynomials
depend on a memory parameter p attached to the model. For certain values of p, these
polynomials specialise to classical polynomials, such as the Chebychev polynomials in the
simplest case, or generating polynomials of various combinatorial triangular arrays (e.g.
Eulerian numbers). Although these polynomials are generically non-orthogonal (except for
p = 1

2 and p = 1), they have interlacing roots. Finally, we relate some algebraic properties
of these polynomials to the probabilistic behaviour of the elephant random walk. Our
methods are reminiscent of classical orthogonal polynomial theory and are elementary.
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1 Introduction and main results

A one-parameter family of polynomials. In this paper, our main objective is to study
a family of polynomials defined as follows: R1(x) = x and for n ⩾ 1,

Rn+1(x) = xRn(x)−
a

n
(1− x2)R′

n(x), (1)

where a ∈ R is some parameter. Due to a strong connection with the elephant random walk
(ERW) when a ∈ [−1, 1], which we shall now present, we call them elephant polynomials. The
first three elephant polynomials are given by

R1(x) = x, R2(x) = (a+ 1)x2 − a and R3(x) = x((a+ 1)2x2 − a(a+ 2)). (2)
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†Université Paris Nanterre, Modal’X, UMR CNRS 9023, UPL, France, and FP2M, CNRS FR 2036;
lucile.laulin@math.cnrs.fr
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The elephant random walk. The one-dimensional elephant random walk (Sn)n⩾0 is de-
fined as follows [15]. We denote by (Xn)n⩾0 its successive steps. The elephant starts at the
origin at time zero: S0 = 0. For the first step X1, the elephant moves one step to the right
(+1) with probability q or one step to the left (−1) with probability 1 − q, for some q in
[0, 1]. The next steps are performed by choosing uniformly at random an integer k among
the previous times. Then the elephant moves exactly in the same direction as at time k with
probability p ∈ [0, 1], or in the opposite direction with probability 1 − p. In other words,
defining for all n ⩾ 1,

Xn+1 =

 +Xk with probability p,

−Xk with probability 1− p,

with k ∼ U{1, . . . , n}, the position of the ERW at time n+ 1 is given by Sn+1 = Sn +Xn+1.
The probability q is called the first step parameter (in this paper we will take q = 1

2) and p
the memory parameter of the ERW.

The characteristic functions as trigonometric polynomials. The characteristic func-
tion of the process at time n is defined by

φn(t) = E
[
eitSn

]
. (3)

Taking q = 1
2 , we have φ1(t) = cos t and will justify later on that for n ⩾ 1,

φn+1(t) = cos(t)φn(t) +
a

n
sin(t)φ′

n(t), (4)

with a = 2p−1 ∈ [−1, 1]. The sequence {φn(t)}n⩾1 naturally defines a sequence of polynomials
{Rn(x)}n⩾1 via the formula

φn(t) = Rn(cos t). (5)

Using (4), one immediately obtain the recurrence relation (1) mentioned at the beginning of
the paper. Although the elephant random walk model is classical and well studied in the
literature (see e.g. [1, 2, 3, 5, 6, 7, 8, 10, 11, 14, 15]), the properties of the polynomials we will
prove in this paper have remained unnoticed.

Interestingly, specialising the parameter a to some particular values, we recover classical
orthogonal or combinatorial polynomials. Our main results in this direction can be summa-
rized in Table 1. The distribution of Sn in these specific cases is consistent with [3] on the
number of returns to zero, and the fact that the random walk is positive recurrent for a < 1

2 .
The very special form of the polynomials Rn at a = 0 and a = 1 in Table 1 admits a direct

probabilistic interpretation. For a = 0, the ERW’s memory parameter p = 1+a
2 = 1

2 , and
φn(t) is the characteristic function of the classical simple random walk on Z, namely cos(t)n.
It is also clear that for a = 1, one should get for φn(t) the Chebychev polynomial of the
first kind, namely, φn(t) = cos(nt), as from a probabilistic point of view the ERW’s memory
parameter p = 1, this means that at time n the elephant is either at n or −n, with probability
1
2 each. On the other hand, we don’t have a probabilistic interpretation in the other cases
appearing in Table 1, for instance a = −1 (p = 0) and a = −1

2 (p = 1
4). Note that from a

probabilistic viewpoint, it does not make sense to take a > 1 or a < −1 (which corresponds
to p > 1 or p < 0); however, the recursive definition (1) is well defined for any value of a.

In addition to the results presented in Table 1, which only concern a few values of a, we
will prove structural results on the roots of Rn(x). Our first result analyses the situation
a > 0.
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a −1 −1
2 0 1 ±∞

Rn(x)
A101280
(Prop. 8)

A034839
(Prop. 6)

xn

(Lem. 5)
Chebychev
(Lem. 5)

A008293
(Prop. 10)

P(Sn = k)

A(n−1,n+k
2

)

(n−1)!

(Prop. 9)
[12, 4]

1
22n−1

(
2n
n+k

)
(Prop. 7)

1
2n

( n
n+k
2

)
(simple RW)

δk,+n+δk,−n

2 n.a.

Table 1: For certain values of a, the polynomials Rn(x) specialise to classical polynomials or
classical combinatorial sequences, and the exact distribution of the random walk is computed.
In the last row, the quantities A(n, k) stand for the Eulerian numbers, see A008292 in [16];
by definition, they count increasing rooted trees with n+ 1 nodes and k leaves.

Proposition 1. For a > 0 and n ⩾ 1, Rn admits n real roots, which are mutually distinct
and on (−1, 1). Moreover, the zeros of Rn and the zeros of Rn+1 interlace.

See Figure 1 for an illustration of Proposition 1. When a = 0 we have Rn(x) = xn (see

Figure 1: According to Proposition 1, the first six polynomials R1(x), . . . , R6(x) have inter-
laced roots. Top left display: a = 1

4 ; top right: a = 1
2 , these are the Chebychev polynomials;

bottom left: a = 3
2 ; bottom right: a = +∞.

(1)), so that all roots collapse at 0. In the result below, we prove that the behavior of the
roots dramatically changes when a < 0, as they all become purely imaginary. However, they
still possess an interlacing property.

Proposition 2. Define Sn(x) = (−i)nRn(ix). For a < 0 and n ⩾ 1, Sn(x) is a real polyno-
mial, which admits n real roots if a ̸= −1, and |n−2| real roots if a = −1, which are mutually
distinct in all cases. Moreover, the zeros of Sn and the zeros of Sn+1 interlace.

See Figure 2 for an illustration of Proposition 2.
The interlacing property is most classical for orthogonal polynomials [17], so it is useful

to notice that:
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Figure 2: From top left to bottom right, the first six polynomials S1(x), . . . , S6(x) for a =
−1

2 ,−1,−3
2 ,−∞ have interlaced roots, according to Proposition 2 (except S2(x) = −1 in the

case a = −1)

Proposition 3. Except for a = 0 and a = 1, the Rn(x) and Sn(x) are not orthogonal.

Finally, from a probabilistic point of view, it is natural to compute the asymptotics of
R′

n(1) as n → ∞, in order to guess limit theorems for the elephant random walk. Indeed, if
a = 0, the model reduces to the classical simple random walk, for which the most classical
central limit theorem yields

φn

( t√
n

)
= Rn

(
cos
( t√

n

))
−→
n→∞

e−
t2

2 .

When n → ∞,

Rn

(
cos
( t√

n

))
= Rn

(
1− t2

2n
+O

( 1

n2

))
= 1−R′

n(1)
t2

2n
+ (R′

n(1) + 3R′′
n(1))

t4

24n2
+ . . . ,

so the asymptotics of the derivatives of Rn(x) at x = 1 should reflect the correct scaling to
have a central limit theorem.

Proposition 4. For all n ⩾ 1 and a ∈ [0, 1],

R′
n(1) =

Γ(n+ 2)Γ(2a)− Γ(n+ 1 + 2a)

(1− 2a)Γ(2a)Γ(n+ 1)
. (6)

Moreover, we have the following asymptotics as n → ∞:

R′
n(1) ∼



n

1− 2a
if a < 1

2 ,

n ln(n) if a = 1
2 ,

n2a

(2a− 1)Γ(2a)
if a > 1

2 .
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As R′
n(1) represents the second-order moment of the elephant random walk, the propo-

sition above aligns with the initial (and by now well-established) observations regarding the
asymptotic behavior of this moment, such as in [15]. The values of the higher-order derivatives
R′′

n(1), etc., seems to be fairly more complicated.

2 Interlacing property

We start with stating elementary properties of the Rn(x).

Lemma 5. For all a ∈ R, Rn is odd (resp. even) for odd (resp. even) values of n, and
one has Rn(1) = 1 and Rn(−1) = (−1)n. For a ∈ R \ {−1}, the polynomial Rn has degree
n and dominant coefficient (a + 1)n−1. Moreover, for a = 0 one has Rn(x) = xn and for
a = 1, Rn(x) = Tn(x), the nth Chebychev polynomial of the first kind. For a = −1, one

has R1(x) = x and for n ⩾ 2, Rn(x) has degree n − 2, with dominant coefficient 2n−2

(n−1)! .
Furthermore, when a > 0 the coefficients of the polynomial Rn have alternating signs, and
when a ∈ [−1, 0] the coefficients are nonnegative. Viewed as a polynomial in a, Rn has degree
n− 1.

Proof. The above lemma is obvious, with perhaps the exception of the connection with Cheby-
chev polynomials. By definition Tn(cos t) = cos(nt), and then it is clear that cos(nt) satisfies
(4) as well as the initial condition, when a = 1. The sign of the coefficients is easily obtained
by induction.

Proof of the identity (4). Remember that φn(t) is the characteristic function of the position
Sn of the elephant random walk at time n, see (3). Let us denote by (Fn)n⩾0 the natural
filtration of (Sn)n⩾0. It is known that by simple calculations we have P(Xn+1 = 1|Fn) =
1
1

(
1 + aSn

n

)
. Then,

φn+1(t) = E
[
eitSn+1

]
= E

[
eitSnE

[
eitXn+1 |Fn

]]
= E

[
eitSn

(
1

2

(
1 + a

Sn

n

)
eit +

1

2

(
1− a

Sn

n

)
e−it

)]
=

eit + e−it

2
E
[
eitSn

]
+ a

eit − e−it

2n
E
[
Sne

itSn
]

= cos(t)φn(t) +
a

n
sin(t)φ′

n(t).

Proof of Proposition 1. The techniques used are elementary and reminiscent of orthogonal
polynomials theory, see [17]. Let us denote the n (a priori complex and non-distinct) roots of

Rn by α
(n)
1 , . . . , α

(n)
n . We will prove by induction that for all n ⩾ 1, the α

(n)
k are real, are in

(−1, 1) and satisfy sign
(
R′

n(α
(n)
k )
)
= (−1)k+n. In particular, they should be simple roots.

This is easily verified for n = 1, with R1(x) = x and α
(1)
1 = 0. Let us now assume that

the previous assumption holds for some n. Using (1), one immediately obtain that

Rn+1

(
α
(n)
k

)
= −a

n

(
1−

(
α
(n)
k

)2)
R′

n

(
α
(n)
k

)
.

In particular, since a > 0 we deduce that

sign
(
Rn+1(α

(n)
k )
)
= (−1)k+n+1. (7)
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Introduce α
(n)
0 = −1 and α

(n)
n+1 = 1. Note that (7) is true for k = 0 and k = n+1 as well, using

Rn+1(1) = 1 and Rn+1(−1) = (−1)n+1 (see Lemma 5). We now apply to the function Rn+1

the intermediate value theorem on the interval [α
(n)
k , α

(n)
k+1], for any k from 0 to n. Since by (7)

the signs of Rn+1(α
(n)
k ) and Rn+1(α

(n)
k+1) are opposite, we immediately obtain the existence of

a zero, which we denote by α
(n+1)
k+1 . By construction we obtain n+ 1 points in (−1, 1), which

are mutually distinct. Finally, since these zeros must be simple, the derivatives R′
n+1(α

(n+1)
k )

must be non-zero and of alternating sign.

Proof of Proposition 2. It is very similar to the one of Proposition 1. Let us first assume that
a ∈ (−1, 0). Using (1) we obtain the recurrence relation

Sn+1(x) = xSn(x) +
a

n
(1 + x2)S′

n(x), (8)

which is valid for all n ⩾ 1. The dominant coefficient of Sn(x) is (a+ 1)n−1xn by Lemma 5,
so that

Sn(+∞) = +∞ and Sn(−∞) = (−1)n∞. (9)

Following the proof of the previous proposition, let us denote the n (a priori complex and

non-distinct) roots of Sn by β
(n)
1 , . . . , β

(n)
n . We will prove by induction that for all n ⩾ 1,

the β
(n)
k are real and satisfy sign

(
S′
n(β

(n)
k )
)
= (−1)k+n. In particular, they should be simple

roots. Using (8) we find

Sn+1

(
β
(n)
k

)
=

a

n

(
1 +

(
β
(n)
k

)2)
S′
n

(
β
(n)
k

)
.

In particular, since a < 0 we deduce that

sign
(
Sn+1(β

(n)
k )
)
= (−1)k+n+1. (10)

Introduce β
(n)
0 = −∞ and β

(n)
n+1 = +∞. Note that (10) is true for k = 0 and k = n + 1 as

well, using the limits Sn+1(±∞) computed in (9). We now apply to the function Sn+1 the

intermediate value theorem on the interval [β
(n)
k , β

(n)
k+1], for any k from 0 to n. Since by (10)

the signs of Sn+1(β
(n)
k ) and Sn+1(β

(n)
k+1) are opposite, we immediately obtain the existence

of a zero, which we denote by β
(n+1)
k+1 . By construction we obtain n + 1 points in R, which

are mutually distinct. Finally, since these zeros must be simple, the derivatives S′
n+1(β

(n+1)
k )

must be non-zero and of alternating sign.

If now a < −1, we prove similarly by induction that for all n ⩾ 1, the β
(n)
k are real

and satisfy sign
(
S′
n(β

(n)
k )
)
= (−1)k, using the following changes: (9) should be replaced by

Sn(+∞) = (−1)n−1∞ and Sn(−∞) = −∞; Equation (10) should be modified as follows:

sign
(
Sn+1(β

(n)
k )
)
= (−1)k+1.

Finally, the case a = −1 is very similar to the previous situation where a < −1, with the
only difference that the degree of Sn is n− 2. More precisely, one has S1(x) = x, S2(x) = −1

and for n ⩾ 2, the dominant term of Sn(x) is − 2n−2

(n−1)!x
n−2. The proof continues similarly as

in the case a < −1.

Proof of Proposition 3. Let us do the proof in the case of Rn(x); one would conclude in the
case of the sequence Sn(x) by similar arguments. If the sequence Rn(x) is orthogonal, it has
to satisfy a recurrence relation of the form

Rn+1(x) = (αnx+ βn)Rn(x) + γnRn−1(x). (11)
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Analysing the dominant coefficient (see Lemma 5), one should have αn = a + 1. Moreover,
due to the parity of the Rn(x), see again Lemma 5, one must take βn = 0. We thus deduce
γn = −a from Rn(1) = 1 (see Lemma 5), so that (11) becomes

Rn+1(x) = (a+ 1)xRn(x)− aRn−1(x). (12)

Actually, setting R0(x) = 1, the identity (12) holds true for n = 1 and 2; compare with (2).
We now look at (12) in the case n = 3. Computing R4(x)− (a+1)xR3(x) gives a second-

degree polynomial, which if (12) were true, should be proportional to R2(x). However, an
elementary computation shows that the resultant of the polynomials R4(x) − (a + 1)xR3(x)

and R2(x) is given by a4(a−1)2

9 . In other words, except for a = 0 and a = 1, the recurrence
relation (12) (and thus (11) as well) is not satisfied for n = 3.

3 Special cases of the memory parameter

3.1 The case a = −1
2

Proposition 6. Let a = −1
2 . For all n ⩾ 1, we have

Rn(x) =
1

2n−1

⌊n
2
⌋∑

k=0

(
n

2k

)
xn−2k =

(
x− 1

2

)n

+

(
x+ 1

2

)n

.

And indeed, for a = −1/2, with (4) and (5) we find

R1(x) = x, R2(x) =
x2 + 1

2
, R3(x) =

x3 + 3x

22
, R4(x) =

x4 + 6x2 + 1

23
, etc.

The coefficients in the expansions of the above polynomials are thus connected with the
sequence A034839, corresponding to the triangular array formed by taking every other term
of each row of Pascal’s triangle.

Proof of Proposition 6. It is a direct consequence of the recurrence equation (1). Indeed, an
obvious computation shows that(

x− 1

2

)n+1

+

(
x+ 1

2

)n+1

= x

((
x− 1

2

)n

+

(
x+ 1

2

)n)
+

1− x2

4

((
x− 1

2

)n−1

+

(
x+ 1

2

)n−1
)
,

which corresponds to (1) with a = −1
2 . Therefore Rn(x) and

(
x−1
2

)n
+
(
x+1
2

)n
have the same

initial term for n = 1 and satisfy the same recurrence, hence are equal for all n.

Proposition 7. Let a = −1
2 (equivalently p = 1

4). For all n ⩾ 1, −n ⩽ k ⩽ n, k and n
having same parity, one has

P(Sn = k) =
1

22n−1

(
2n

n+ k

)
. (13)

In particular, for any n ⩾ 1, we have

P(S2n = 0) =
1

24n−1

(
4n

2n

)
∼

n→∞

√
2

πn
.

7
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It is interesting to compare (13) with the distribution of the classical symmetric simple
random walk on Z (corresponding to p = 1

2 in our model): P(Sn = k) = 1
2n

( n
n+k
2

)
, it is as if

all elements of the binomial coefficient should be divided by 2.

Proof. For the sake of conciseness, we focus on the case k = 0. Due to the periodicity of the
model and for any memory parameter, one has P(S2n−1 = 0) = 0. Moreover, by Proposition 6
we have

P(S2n = 0) =
1

2π

∫ π

−π
φ2n(t)dt =

1

2π

∫ π

−π

((cos t− 1

2

)2n
+
(cos t+ 1

2

)2n)
dt, (14)

from which the value given in Proposition 7 follows from standard integral computations (or
simply taking generating functions in (14)). We obtain similarly the complete distribution of
Sn, using the relation

P(Sn = k) =
1

2π

∫ π

−π
e−iktφn(t)dt.

3.2 The case a = −1

Define a triangle of integers T (n, k) for n ⩾ 1 and 0 ⩽ k ⩽ ⌊n−1
2 ⌋ as follows:

T (1, 0) = 1 and for n ⩾ 2, T (n, k) = (k + 1)T (n− 1, k) + (2n− 4k)T (n− 1, k − 1). (15)

Further, for all n ⩾ 1, define

Un(y) =

⌊n−1
2

⌋∑
k=0

T (n, k)yk. (16)

The T (n, k) and Un(y) for n up to 7 are reproduced below:

1, U1(y) = 1,
1, U2(y) = 1,
1, 2, U3(y) = 1 + 2y,
1, 8, U4(y) = 1 + 8y,
1, 22, 16, U5(y) = 1 + 22y + 16y2,
1, 52, 136, U6(y) = 1 + 52y + 136y2,
1, 114, 720, 272, U7(y) = 1 + 114y + 720y2 + 272y3.

See A101280 in the OEIS for various properties and characterizations of these numbers.

Proposition 8. Let a = −1 and Un be the polynomials defined in (16). We have for all
n ⩾ 2,

Rn(x) =
(2x)n−2

(n− 1)!
Un−1

(
1

4x2

)
. (17)

Proof. Let us make a change of function as in (17). A straightforward computation from (1)
(with a = −1) shows that the polynomial sequence (Un)n⩾0 defined by (17) must satisfy the
following recurrence relation: U1(y) = 1 and for n ⩾ 2,

Un(y) = (2ny + 1− 4y)Un−1(y) + y(1− 4y)U ′
n−1(y).

On the other hand, based on (15) it is clear that the polynomials defined in (16) satisfy the
same recurrence equation, so we conclude by uniqueness.

8
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In the OEIS [16], it is mentioned that the generating function of the Un(y) admits the
following closed-form expression:∑

n⩾1

Un(y)
zn

n!
=

∑
n⩾1,k⩾0

T (n, k)yk
zn

n!
=

C(y)(2− C(y))

exp
(
−z

√
1− 4y

)
+ 1− C(y)

− C(y), (18)

where C(y) = 1−
√
1−4y
2y is the generating function of Catalan numbers. Notice that this

equation holds for (y, z) such that |y| < 1
4 and z ∈ C.

We now turn to the distribution of the random walk when a = −1, and give a new proof
of the result. Denote by A(n, k) the Eulerian numbers, defined for n ⩾ 1 and k ∈ {1, . . . , n}.
Besides their combinatorial interpretation in terms of increasing rooted trees with n + 1
nodes and k leaves, the Eulerian numbers admit the following probabilistic interpretation:
for k ∈ {1, . . . , n}, A(n,k)

n! is the probability that a sum of n independent uniform random
variables on [0, 1] lies between k − 1 and k, see [18].

Proposition 9 ([12, 4]). Let a = −1 (equivalently p = 0). For any n ⩾ 2 and −(n − 2) ⩽
k ⩽ n− 2 with the same parity as n, we have

P(Sn = k) =
A
(
n− 1, n+k

2

)
(n− 1)!

.

In particular, for any n ⩾ 1, P(S2n−1 = 0) = 0 and

P(S2n = 0) =
A(2n− 1, n)

(2n− 1)!
∼

n→∞

√
3

πn
,

where A(2n− 1, n) denotes the central Eulerian number, equal to
∑n

k=0(−1)k(n− k)2n−1
(
2n
k

)
.

It suggests that a bijective proof of Proposition 9 should exist, meaning to find a bijection
between ERW of length n, ending at altitude k, and increasing rooted trees with n+1 nodes
and k leaves, with the parity condition on n and k mentioned in Proposition 9. Using the
connection between ERW and Pólya urn models, let’s mention that this result was already
known for p = 0 (see [12, Sec. 7.2.2] and [4, Lem. 2.1]). It is also interesting to note that
the Pólya urn model in this case is equivalent to a time-shifted Internal Diffusion Limited
Aggregation model (also called growth model visited by an explorer in [9]), for which the
distribution had also been obtained in [13, Thm 1]. In these earlier articles, other techniques
were used to prove the result.

Proof of Proposition 9. We prove the statement about the return probability P(S2n = 0), the
exact same proof would allow us to describe the full distribution of the model. It follows from
(17) that

P(S2n = 0) =
1

2π

∫ π

−π
φ2n(t)dt =

1

2π

22n−2

(2n− 1)!

∫ π

−π

(
cos t

)2n−2
U2n−1

( 1

4 cos2 t

)
dt.

We now use the following identity, stated in A101280:

(1 + x)2n−2U2n−1

(
x

(1 + x)2

)
=

2n−2∑
k=0

A(2n− 1, k + 1)xk = A2n−1(x),

where the last identity is the definition of the (2n−1)th Eulerian polynomial. Setting x = eit,
we deduce that(

2 cos t
)2n−2

U2n−1

( 1

4 cos2 t

)
= exp

(
−2i(n− 1)t

)
A2n−1

(
exp(2it)

)
. (19)
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(Notice that the left-hand side of (19) is an even function of t; so should be the right-hand
side, which corresponds to the well-known fact that the An are reciprocal polynomials.) We
thus have

P(S2n = 0) =
1

(2n− 1)!

1

2π

∫ π

−π
exp
(
−2i(n− 1)t

)
A2n−1

(
exp(2it)

)
dt =

A(2n− 1, n)

(2n− 1)!
.

The above proof (mostly (19)) shows that for n ⩾ 1,

φ2n(t) = e−2i(n−1)tA2n−1(e
2it) =

n−1∑
k=−(n−1)

A(2n− 1, k + n)e2ikt.

3.3 The case a = ±∞

In this section, we identify the polynomials

Tn(x) = lim
a→±∞

Rn(x)

an−1
, (20)

whose existence is guaranteed by Lemma 5 (considered as polynomials in a, the Rn have
degree n− 1). To that purpose, define for any n ⩾ 0 the polynomial Vn(x) such that

tanh(n)(x) = Vn(tanhx),

where tanh(n) stands for the nth derivative of tanh. For instance,

V0(x) = x, V1(x) = 1− x2 and V2(x) = 2x3 − 2x.

See A008293 and A101343 for related sequences in the OEIS.

Proposition 10. For all n ⩾ 1, we have

Tn(x) = (−1)n−1Vn−1(x)

(n− 1)!
. (21)

Proof. Using the recurrence relation (1), we immediately obtain that the polynomials Tn(x)
defined by (20) satisfy the recurrence relation

Tn+1(x) =
x2 − 1

n
T ′
n(x)

for n ⩾ 1, with the initial value T1(x) = x. Define now the polynomials Vn by the relation (21).
Using the above recurrence relation for the Tn, we deduce that the Vn satisfy the recurrence

Vn+1(x) = (1− x2)V ′
n(x).

This exactly corresponds to our interpretation of the polynomials Vn. If indeed tanh(n)(x) =
Vn(tanhx), then we have

tanh(n+1)(x) = (1− tanh2 x)V ′
n(tanhx) = Vn+1(tanhx),

concluding the proof.

10

https://oeis.org/A008293
https://oeis.org/A101343


4 Connection with the probabilistic behavior of the model

In this part, our main objective is to prove Proposition 4, or its generating-function version
stated below:

Proposition 11. We have

∑
n⩾1

R′
n(1)x

n =


x

(1− x)2
1− 2a(1− x)1−2a

1− 2a
if a ̸= 1

2 ,

x

(1− x)2
(1− ln(1− x)) if a = 1

2 .

(22)

Proof. First note that R′
1(1) = 1 by (2). Then take the derivative of (1) and evaluate the

new identity at x = 1. This way, we obtain for n ⩾ 1

R′
n+1(1) = Rn(1) +R′

n(1) +
2a

n
R′

n(1) = 1 +R′
n(1)

(
1 +

2a

n

)
, (23)

where we have simplified Rn(1) = 1 by Lemma 5. To proceed, we can just check that the
sequence

Γ(n+ 2)Γ(2a)− Γ(n+ 1 + 2a)

(1− 2a)Γ(2a)Γ(n+ 1)
,

which appears in the right-hand side of (6), satisfies the same recurrence as (23) and same
initial value for n = 1. So it should coincide with R′

n(1).
A more constructive proof consists in multiplying (23) by n, and to deduce that the series

y(x) =
∑

n⩾1R
′
n(1)x

n satisfies the differential equation

(1− x)y′(x)−
(
1

x
+ 2a

)
y(x) =

x

(1− x)2

with initial condition (y(0) = 0 and) y′(0) = 1. It is standard to solve this order-one differential
equation in closed-form, and to conclude to (22). The formula (6) follows from a Taylor
expansion of the series (22).

Note that the series
∑

n⩾1R
(k)
n (1)xn corresponding to higher-order derivatives (k ⩾ 2)

admit similar, but considerably more complicated, closed-form expressions.
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